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We present algorithms for fast and stable approximation of the Hermite transform of
a compactly supported function on the real line, attainable via an application of a fast
algebraic algorithm for computing sums associated with a three-term relation. Trade-
offs between approximation in bandlimit (in the Hermite sense), and size of the support
region are addressed. Numerical experiments are presented that show the feasibility
and utility of our approach. Generalizations to any family of orthogonal polynomials are
outlined. Applications to various problems in tomographic reconstruction, including the
determination of protein structure, are discussed.
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1. Introduction

In this paper,wepresent amodification and application of an algebraic algorithm for the efficient computation of a certain
class of discrete polynomial transforms. A preliminary version of this paper first appeared in [20]. In particular, we modify
a theorem of Driscoll, Healy, and Rockmore [10] in order to find an efficient algorithm for the computation of a certain kind
of discrete Hermite transform (see below) for the general purposes of tomography, and in particular, for accomplishing a key
step in an algorithm for the efficient determination of protein structure from a so-called tilt series (cf. Section 6).
The classical two-dimensional tomography problem performs the reconstruction of a two-dimensional density from a

collection of measured one-dimensional projections. Most computational approaches to the general problem use standard
Fourier analysis and the Fast Fourier Transform (see e.g., [16] and the references therein). The availability of a fast algorithm,
such as the FFT can drive the choice of the Fourier basis, but for some problems, it may be more natural to use another basis
for L2(Rn), making necessary the consideration of new fast algorithms in order to make these techniques feasible. One such
case is the use of the basis of Hermite functions and their tensor products.
The Hermite transform expresses a function f (x) ∈ L2(R) in the complete orthonormal L2(R)-basis of Hermite functions

{ψn(x)}∞n=0 where

ψn(x) = (hn)−
1
2 e−

x2
2 Hn(x) (1)

and hn = 2nn!
√
π providedHn(x) is the nthHermite polynomial. The Hermite polynomials are determined by the three-term

recurrence relation
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Hn+1(x) = 2xHn(x)− 2nHn−1(x) (2)

with initial conditions H−1(x) = 0, H0(x) = 1.
Thus, any f ∈ L2(R) can be represented as

f (x) =
∞∑
n=0

f̂ (n)ψn(x)

where f̂ (n) is the nth Hermite coefficient and is defined by

f̂ (n) = 〈f , ψn〉 =
∫
∞

−∞

f (x)ψn(x)dx. (3)

TheHermite functions have the useful property that they are eigenfunctions for the Fourier transform (see [36] for various
details of the Hermite functions). Moreover, in higher dimensions (in which case wemean the product of Hermite functions
in the independent variables) the Hermite transform behaves well under rotation: given f ∈ L2(R3) and a given R ∈ SO(3),
then if f is ‘‘Hermite-limited" (i.e., has a finite expansion in terms ofHermite functions), thenRf (defined byRf (x) = f (R−1x))
is also Hermite-limited. This is effectively a consequence of the fact that the Hermite functions are also eigenfunctions for
the Laplacian (in any number of dimensions), and that the Laplacian commutes with rotation. Thus, there is a relatively
simple transformation between coefficients that depends only on R [30].
Our interest in the Hermite transform arises from this nice rotational invariance, as it applies to a particular problem in

protein structure determination (cf. Section 6). In real applications such as this, there aremany considerations. In particular,
questions of discretization and then questions of efficient and reliable computation are paramount. Thus, we have two
algorithmic goals:

(1) Analysis: computation of a discrete Hermite transform, realized from a sampling of the real line that takes a finite
collection of function values (sample values) and returns Hermite coefficients.

(2) Synthesis: computation of the function values at a discrete set of points from a finite collection of Hermite coefficients.

Analysis and synthesis are sometimes also referred to as the ‘‘forward" and ‘‘inverse" transforms, respectively.
In this paper, we explore aspects of the related notions of forward and inverse discrete Hermite transforms. In Section 2,

we derive efficient algorithms for the forward and inverse transforms: O(M log2M) algorithms for computing both the
forward and inverse discrete Hermite transform from a set ofO(M) sample points. Note that in its extension to n dimensions
(the cases of n = 2, 3 provide the motivating applications for this work), this amounts to algebraic algorithms that take
advantage of a three-term recurrence that require O(Mn log2M) operations versus O(M2n) operations, if accomplished
directly (i.e., ‘‘naively"). These complexity results are augmented by an investigation of numerical aspects of the problem.
In Section 3, we take into account that the situation of interest is one in which the function f has compact support, whose
range of definition is essentially arbitrary. We investigate some of the trade-offs that arise in the accompanying flexibility in
the choice of range of integration. This is critical for the applications of interest in which the data is clearly limited in space,
but does not come with a fixed range of support (i.e., there is no a priori fixed set of units that make it necessary to use one
grid over another). Section 4 provides an error analysis of these numerical methods. We have implemented our algorithm
(see [1] to obtain the software) and a discussion of some standard numerical experiments is given in Section 5. Finally, in
Section 6we sketch the applicationswhich these efficient transformswere designed to facilitate. In particular, we closewith
some 2D experiments using simulated EM image data for a particular protein complex. The success of this last experiment
is evidence for the utility of this approach.

2. Efficient transforms

Our concern is the efficient computation of a discrete Hermite transform for functions of compact support. If we absorb
the (truncated) exponential factor into the function of interest, the assumption of compact support allows us to reinterpret
the integrals (3). We then instead find ourselves in the situation in which we seek to express a function f ∈ L2([a, b]) in
terms of a complete orthonormal basis constructed via any set of orthogonal polynomials, the precise set-up of which can
be found in [5]. Thus, in this section, we present amethod for efficiently transforming functions in L2 ([a, b]) into a complete
orthonormal bases constructed via any orthogonal polynomials. We shall call such a process an orthogonal polynomial
transform and the associated coefficients the orthogonal transform coefficients.
The orthogonal polynomial bases are of the form {ψn}∞n=0 where

ψn(x) =
√
w(x)pn(x) (4)

with w(x) the weight function and the {pn}∞n=0 are a collection of orthogonal polynomials which we can view as determined
by a recurrence relation

pn+1(x) = (anx+ bn)pn(x)− cnpn−1(x) (5)
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with initial conditions p−1(x) = 0, p0(x) = d0. Hence, f ∈ L2 ([a, b]) can be represented as

f (x) =
∞∑
n=0

f̂ (n)ψn(x)

where

f̂ (n) = 〈f , ψn〉 =
∫ b

a
f (x)ψn(x)dx.

Notice we are using the conventionwhere we have absorbed the normalizing constants into the polynomials. Our definition
of approximate discrete Hermite transform extends immediately to this setting, and we now assume a Hermite basis in this
absorbed form. In the absorbed form the normalized Hermite polynomials satisfy d0 = 1

π1/4
and the three-term relation

pn+1(x) = x

√
2
n+ 1

pn(x)−
√

n
n+ 1

pn−1(x).

For most numerical applications, this absorbing of the constants is necessary to control overflow. A standard source for
numerical approaches to this can be found in the LAPACK library.1
We will need to make use of the following theorem from [10]:

Theorem 1. Suppose we have a collection of numbers {gm,l}M−1l,m=0 that satisfy the three term relation

gm+1,l = (amxl + bm)gm,l + cmgm−1,l,

then for any {fl}M−1l=0 we can compute the collection{
M−1∑
l=0

flgm,l

}
m=0,...,M−1

(6)

in O(M log2M) operations via a linear straight-line algorithm. Furthermore, the stability of this computations can be improved if
xl is a linear function of l.

The proof of Theorem 1 takes advantage of the natural divide-and-conquer approach (or dynamic programming) implicit
in the three-term recurrence — that is, a polynomial of a given degree can be expressed using linear combinations of
suitably shifted lower degree polynomials. The linear nature of the relation enables this to be expressed in terms of a
product of sparse, structured matrices so that the matrix-vector product implicit in the calculation of (6) can be written
as a product of sparse structured matrices with an arbitrary vector input. This is akin to the factorization of the discrete
Fourier transform matrix that is implicit in many of the FFTs (e.g., Cooley-Tukey) and its generalizations (see [23] for a
discussion and references) and it gives the increased efficiency (and the straight-line algorithm). See [10] for details.

2.1. The Gauss quadrature transform

Functions of the form
∑M−1
n=0 fnψn (with ψn as in (4)) will be called bandlimitedwith bandlimit M (suppressing the actual

orthogonal system when it is not a point of confusion). The functions with bandlimitM are precisely those functions in the
form p(x)

√
w(x), where p(x) is a polynomial of degree ≤ M − 1. When dealing with a function of the form q(x)w(x) with

q(x) a polynomial of degree less than 2M − 1, the fundamental theorem of Gauss quadrature (see e.g., [7]) asserts that∫ b

a
q(x)w(x)dx =

M−1∑
k=0

q(xk)wk

where the {xk}M−1k=0 are the abscissae of the roots of pM(x) and the {wk}
M−1
k=0 are the associated weights. A careful description

of these quantities and how to compute them is presented in [32].
Thus, while in some cases the quadrature formulawill be exact, more generally, a natural (possibly) approximate discrete

transform is given by

f̂g,M(n) = f̂g(n) =
M−1∑
k=0

f (xk)gn(xk). (7)

Here, the subscript g indicates that this is a Gaussian quadrature summation with quadrature points dictated by the
bandlimit M (which we will suppress at times). Also gn(xk) =

wkpn(xk)√
w(xk)

. The Gauss Quadrature Transform (of bandlimit M)
is then the collection of summations (inner products)

1 See http://www.netlib.org/lapack.

http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
http://www.netlib.org/lapack
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{f̂g,M(n)|0 ≤ n < M}.

In the particular case in which the pn(x) are the (normalized) Hermite polynomials, we call this the Hermite Gaussian
Quadrature Transform of bandlimitM .
For a function in the form f (x) = p(x)

√
w(x)with bandlimitM we have

f̂g(n) =
M−1∑
k=0

f (xk)gn(xk)

=

M−1∑
k=0

wkp(xk)pn(xk)

=

∫ b

a
f (x)ψn(x)dx

= f̂ (n).

Now we apply Theorem 1 to obtain the following:

Theorem 2. With the notation above (which assumes a family of orthogonal polynomials), the Gauss Quadrature Transform of
bandlimit M, f̂g,M can be computed in O(M log2M) operations. If f has bandlimit M, then (in exact arithmetic) this is the exact
computation of the orthogonal transform coefficients of f in the basis of orthogonal polynomials of degree at most M. In particular,
this holds for the Hermite Gauss Quadrature transform.

The fact that we have used a linear straight-line algorithm for the discrete Hermite transform allows us to apply Tellegen’s
principle (see Theorem 13.20, Ch. 13 in [8]) in order to compute efficiently the transpose

M−1∑
n=0

h(n)gn(xk) 0 ≤ k < M. (8)

Thus, in the case in which h(n) = f̂g(n) (8) becomes

M−1∑
n=0

f̂g(n)gn(xk) =
wk

w(xk)

M−1∑
n=0

f̂g(n)ψn(xk) (9)

which is precisely the evaluation of the function determined by the orthogonal transform coefficients computed by the
Gauss Quadrature Transform (7), i.e., it is the inverse (Gauss quadrature) transform (evaluation) determined by the forward
transform. Note that in the case of a function of bandlimitM , this is an actual inverse (when evaluated on the sample points).
After an O(M)modification of (9) by factoring out the ratio wk

w(xk)
, we have our next result:

Theorem 3. With the notation above (which assumes a family of orthogonal polynomials), the inverse Gauss quadrature
transform (of order or bandlimit M) can be computed in O(M log2M) operations. In particular, this holds for the inverse Hermite
Gauss Quadrature Transform.

The gulf between existence and realization of a fast algorithm (as guaranteed by Tellegen’s principle) can be quite large,
for while Tellegen’s principle is, in principle, constructive, implementation is a highly subtle issue (see e.g., [6]) and it is
rarely relied upon for practical implementations. In [8] practical rules are developed to help ease the construction, but it
is still in general a complicated task. In fact, we have implemented a different approximate inverse transform which we
describe in Section 2.3.
Remark. It should be noted that in the image processing literature theHermite transform refers not to our use of theHermite
transform, but rather to the use of the Hermite basis in the local processing of the data as introduced byMartens in [22]. It is
unlikely that the discussion herewill be relevant in this context, since the number of coefficients used in such a preprocessing
step is rather small (for example in using the hierarchical Hermite transform in [21] the author chooses transforms of order
at most 3).

2.2. The Newton–Cotes transform

Three practical problems arise when implementing the Hermite Gauss Quadrature Transform:

(1) In applying the algorithm described in [10] to this case, an intermediate step is required which uses the power basis
(e`(x) = x`) evaluated at the abscissae xk. For most choices of orthogonal polynomials this will likely to lead to an
unstable computation, since the power basis is notoriously ill-conditioned.

(2) Real data is unlikely to be in the form of evaluations at the roots of the orthogonal polynomials (indeed, it is quite often
the case that it comes at equispaced points in a grid) so that some sort of interpolation step is required, again forcing
information to be thrown away with a concomitant further level of approximation and introduction of error.
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(3) The bandlimited functions are very unlikely to represent accurately the functions underlying our real data, and the
Gaussian quadrature method itself is well known to be a poor approximation when applied to functions outside the
class of those that are bandlimited.

The above issues will be particularly relevant in the case in which one of the endpoints of (a, b) is infinite, and the
data is naturally viewed as compactly supported in some region, as is the case with our image-like data. In this case, it is
possible to deal simultaneously with all three of these problems by working instead withM1 equispaced points Ex such that
xk − xk−1 = C

M1
for some constant C . Then the Hermite Newton–Cotes Quadrature Transform of bandlimitM and orderM1 is

the computation of

f̂c,M1(n) = f̂c(n) =
M1−1∑
k=0

f (xk)cn(xk) 0 ≤ n < M, (10)

where the subscript c indicates Newton–Cotes, M1 gives the number of sample points (suppressed when not confusing),
and cn(xk) =

ckC
M

√
w(xk)pn(xk) (the ck depend on the integration technique). For example, the two-point formula gives

the trapezoid rule with c0 = 1/2 = cM1−1 and ck = 1 otherwise, while the three-point formula (when M1 = 2K ) with
c0 = 1/3 = c2K , c2l = 2/3 for l 6= 0, K and c2l+1 = 4/3 gives Simpson’s rule.
Again, as an application of Theorem 1 we have

Theorem 4. Let all notation be as above and let M1 = O(M). Assume that the pk are a family of orthogonal polynomials. Then
the Newton–Cotes Transform (for the family pk) of degree M can be computed in at most O(M log2M) operations. In particular,
this applies to the Hermite polynomials.

Note that f̂c(n) satisfies the criteria for stability stated in Theorem 1. This is achieved by making use of the Chebyshev
polynomial basis rather than power basis (see [10,14]). In this case we are working on a grid, allowing us to dodge concern
(2). Finally, the third concern is alleviated since Newton–Cotes (especially the trapezoid rule) tends to be robust when
applied to non-smooth data. We also have the freedom of using more information per orthogonal transform coefficient,
by independently fixing the number of sample pointsM1 and the bandlimitM .

2.3. The Euler inverse transform

Here, we give an explicit approximate algorithm for an inverse transform. The approach presented here is fast but is
restricted to the case of classical orthogonal polynomials, defined as those polynomials f (x) that satisfy a Sturm–Liouville
differential equation of the form

Q (x)f ′′ + L(x)f ′ + λ(n)f = 0

(see page 164 of [5]). It also requires significant restrictions on the domain on which the function is compactly supported.
We proceed by using a slight generalization of the classic Euler forward method. This is used to approximate a first order

derivative by forward differences. In our case, wewish to incorporate the information contained in both the first and second
order derivatives (as described by the Sturm–Liouville differential equation), in order to approximate the values of the pn(x)

on a discretization {x0 < · · · < xM1−1} of the support. Letting dxi = xi − xi−1, Q (xi) = Qi, L(xi) = Li, α = 2−
dxiLi
Qi
−
dx2i λn
Qi
,

and β =
(
−1+ dxiLi

Qi

)
then a generalization of the Euler forward method applied to this equation yields

pn(xi+1) = αpn(xi)+ βpn(xi−1)+ O(dx3i ). (11)

We assume here, that in the implied asymptotic, the dxi are of the same order. By ignoring the error term, this relation allows
us to recursively approximate the pn(x) via a three-term recursion relation.
We now introduce the following notation. We let πM(f ) denote the projection

∑M−1
k=0 f̂ (n)ψn for any f ∈ L

2(R). I.e., πM
represents the projection onto the subspace spanned by the first M elements in our orthonormal basis. When there is no
worry for confusion, we let f̂M denote the orthogonal transform coefficients of πM(f ) .
Let p̃n(xk) denote the approximation to pn(xk) given in (11). Then using this, we can hope to approximate the inverse

transform (evaluation) at any set of points Ex = (x0, . . . , xM1), from a set ofM orthogonal transform coefficients, denoted as
(f̂M )̌(Ex) via the Euler Inverse Transform denoted (f̂M )̌e(Ex) defined by

(f̂M )̌e(xk) =
M−1∑
n=0

f̂M(n)exk(n).

where the subscript e indicates the use of the Euler forward method (11) and exk(n) =
√
w(xk)p̃n(xk).

Once again, we can apply Theorem 1, this time to compute (f̂M )̌e(Ex): assuming M1 = O(M) we can compute (f̂M )̌e(Ex)
in O(M log2M) operations by first computing the sums

∑N−1
n=0 f̂M(n)p̃n(xk) (using a fast transform as described by either

Theorem 2 or 4) and then performing the multiplication by the
√
w(xk) (requiring another O(M) operations). Thus, we have

the following theorem.
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Fig. 1. Here we approximate the function f (x) composed of three contiguous boxcars. Each of the graphs is a rescaled version f (cx). For each choice of c ,
the projection π100(f (cx)) overlays the boxcars f (cx). Notice the range of behaviors of the approximation.

Theorem 5. With the notation as above, assume that M1 = O(M). Then for any set of M1 sample points Ex, we can compute the
Euler (approximate) inverse transform (f̂M )̌e(Ex) in O(M log2M) operations.

Notice that we are in the stable case, provided that λn is a linear function of n. We postpone a discussion of convergence
to the exact answer to Section 3.

3. Support intervals and template functions

For the purposes of applications, we are primarily interested in functions of compact support, defined on either R2 or R3
which via tensor products we reduce to the one-dimensional case. Since our interest is in the analysis of image or electron
density data, a realistic class of functionswould be oneswhich are compactly supported on an interval [−A, A] and piecewise
smooth, with a bounded number of pieces. Amuch less realistic, but easy to handle class, would be the Hermite-bandlimited
functions of bandlimitM .
In practice, the attractive analytic qualities of a bandlimited function are often overshadowed by the fact that realistic

functions can be quite different from bandlimited functions, and serious choices must be made in deciding how to re-scale
a realistic function so that it is best captured by a bandlimited function.
For example, in Fig. 1we see how scale affects our view of a realistic function by examiningπ100(f (cx)) for various choices

of c. The bottom right shows the basic function, a sequence of three boxcars that fit within the closed interval [−2.5, 2.5].
The three different scalings then fit this into [−15, 15], [−20, 20] and [−25, 25]. Notice how the degree of approximation
varies. From our point of view, a good choice of c will correspond to a good choice of support interval [−A, A].
One way to deal with this re-scaling problem, is to try and pick a support interval suited to the analysis. To help motivate

the choices involved, it is useful to recall the behavior of the Hermite functions. As we see in Fig. 2, ψn has an interval
[−Sn, Sn]where it is pseudoperiodic, and a complementary interval where ψn decreases monotonically and asymptotically
as 2n
√
hn
xne−x

2/2. There are several ways to estimate Sn. Following [17], the last maximum Sn,1 = arg(max(ψn)) can be used,
or as in [25], the beginning of the tail is another reasonable choice, giving Sn,2,ε = max(arg(ψn) = ε). We choose to use the
final inflection point of ψn, Sn =

√
2n+ 1, since it is easy to remember, compute, and it satisfies Sn,1 ≤ Sn ≤ Sn,2,ε for any
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Fig. 2. Here we see ψn(x)with Sn ∈ {5, 15, 25, 35}.

reasonable choice of ε. In Fig. 2, we seeψn for n = 12, 112, 312, 612with corresponding support intervals having endpoints
Sn = 5, 15, 25, 35 units from the origin.
Thus, given a choice of bandlimit, M , a natural choice of A is A = SM−1. Intervals of roughly this length have

the advantage of using the vast majority of the information contained in the Hermite functions, but a potential
liability is that this information is compressed near the origin, where all the Hermite functions can contribute to the
approximation.
This compression of information motivates the use of the Hermite functions in the study of foveated images. This is a

non-uniform resolution of an image whose resolution is highest at certain point, called the fovea. In Fig. 1, we see that in
the top two scaled versions, our bandlimited version of the image is extremely foveated, while it is not at all foveated in the
version at the bottom right, and it is only slightly foveated in the bottom left where A = SM−1.
Foveation can be an asset (e.g., [19]), but if a more uniform resolution is required, then it may be necessary to choose an

interval shorter than SM−1. In an extreme case, consider a fixed interval, i.e., in which A is independent ofM . We choose to
use the points within π standard deviations from the mean using the density function |ψ0(x)|2. Hence A = π

√
2
. Thinking of

the Gaussian |ψ0(x)|2 as our archetypical template function,we see that this density is indeed ‘‘almost" compactly supported
on this interval and that any larger interval would be something of a waste from this vantage point. The exact choice of π
was to highlight certain estimates and features, most notably that this Hermite transform on this interval compares with
the Fourier transform with frequencies less than

√
M in absolute value. Hence, this partial series utilizes roughly 2

√
M + 1

terms of the Fourier expansion.
Fig. 3 provides a comparison for Fig. 1 with the results from using Fourier techniques, comparing the bottom two pictures

in Fig. 1 with their corresponding Fourier projections to get a sense for the residual foveation. We now adopt the notation of
πM(f ) to denote the projection

∑M−1
k=0 f̂ (n)ψn for any f ∈ L

2(R) and π FM(f ) to denote the analogous Fourier projection. In the
top two pictures in Fig. 3, we compare the Hermite projection π100(f (c1x))with the projection onto the first 100 coefficients
of the Fourier basis π F100(f ), while the bottom two compares π100(f (c2x)) with π

F
21(f ). Note that the various expansions do

indeed contain comparable information.
In Fig. 4 we compare the Newton–Cotes and Gauss quadrature transform on an example.



218 G. Leibon et al. / Theoretical Computer Science 409 (2008) 211–228

Fig. 3. In the top row we compare π100(f ) and the Fourier projection π F100(f )when using A = S100 . In the bottom row, we compare π100(f ) and the Fourier
projection π F21(f )when using A =

π
√
2
.

4. Convergence

In this section we discuss aspects of convergence and error estimation. Proofs of the two main analytic results
(Theorems 6 and 7 can be found in [20]).

Error estimation
With respect to the Newton–Cotesmethod, we now see thatwe have the freedomof usingmore information per Hermite

coefficient by independently fixingM1 (the number of sampling points) andM (the number of coefficients) required for the
forward and inverse transforms, respectively. We can also estimate the error (see [20] for a proof).

Theorem 6. Let M1 denote the number of sample points, let M denote the bandlimit and let M = (1/C)M1. For some fixed
constant C, let A ≤ SM , and let

||f (x)||∞,k = max
m≤k
||
dm

dxm
f (x)||∞.

Then

||̂fc
ˇ
− πM f ||L2(R) ≤

Cε,k||f ||∞,k,A
M(k−2)/2+1/12−ε

where ||f ||∞,k,A is the sup norm of the first k derivatives, restricted to the interval [−A, A].

So we get convergence asM increases for any k-point Newton–Cotes method (k ≥ 2). Notice the convergence from the
estimate derived for the trapezoid rule is only on the order of M−1/12+ε . In practice, it seems that the trapezoid rule does
better than this (rather dramatic) overestimates suggests, even whenM1 = M. This is illustrated in Fig. 5.
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Fig. 4. Comparison of Hermite Gaussian Quadrature, Hermite Newton–Cotes, and Fourier projections. Let M = M1 = 150. Here, we compare πM (f )
in the upper left, π F

2
√
M+1

(f ) in the upper right, (f̂g )ˇ in the lower right and (̂fc)ˇ in the lower left for M1 = M = 150 and A = π
√
2
. Notice if you intend to

manipulate the transform, then the Newton–Cotes transforms tend to perform as well as the Gaussian-Quadrature transforms.

4.1. Error analysis and numerical exploration of the Euler inverse transform

In Section 2.3, we gave a fast algorithm for an (approximate) Euler Inverse Transform (Theorem 5). Notice that we are
in the stable case, provided that λn is a linear function of n. In Fig. 6, we compare this approximation with the true inverse,
using a uniformly spaced set of points.

Example 1. The Hermite polynomials are classical with respect to L(x) = −2x and Q (x) = 1, and λ(n) = 2n. Since λn is
a linear function of n, we are in the stable situation. In the case where AM = A0 the above procedure works well. When
we utilize the Euler transform, we actually perform it twice, once in the forward direction starting at x1 = 0 using M1/2
steps and then in the reverse direction using M1/2 steps. To avoid overflow problems we need to approximate the initial
conditions using Stirling’s formula. Namely the initial value is

Hn(0)
√
hn
=

{
(−1)n/2n!

π1/4(n/2)!
√
n!2n/2

n even
0 n odd

≈

{(
(−1)n/221/4
√
π

)
1
n1/4

n even
0 n odd

and the initial derivative is
Hn
dx (0)
√
hn
≈

{(
(−1)(n+1)/223/4

√
π

)
n1/4 n odd

0 n even.

Although Stirling’s formula is only an asymptotic approximation, it is nevertheless quite good in general. Higher order
approximations could be used if necessary.

A slight improvement in the convergence can be obtained by using the three-term relation, derived from the fact that
the ψn satisfy the second order equation

ψ ′′n + (λ(n)+ 1+ x
2)ψn = 0.
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Fig. 5. LettingM = 100 and A = SM , here we compare πM (f ) in the upper left to the trapezoid rule approximations (̂fc)ˇ forM1 = 100, 200, 400 in order
to get some sense for the improvement obtained by makingM1 larger relative toM .

Fig. 6. Here we compare (̂fc)ˇe in red with (̂fc)
ˇ in blue withM = M1/2 = 150. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Using a fixed constant A, this approach works well, and below we see that it converges asM1 = CM is increased. However
the Euler approximation is not robust as the interval A is lengthened, and even for moderate n the Euler approximation runs
into serious problems when we approximateψn(x) after the point of inflection at

√
2n+ 1. This puts serious restrictions on

those Awhich can be used safely. This, in turn, will affect the accuracy of this method. In general, makingM1 larger thanM
is an effective way of improving the convergence rate. But even in the worst case scenario whereM = M1, using the results
of [18], we can prove the following convergence (see [20] for a proof):
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Fig. 7. Here we compare (f̂M )ˇe and πM (f ) for three different intervals 3
π
√
2
, 2 π
√
2
, and π

√
2
(in the three rows) and for two different values ofM = (1/2)M1

in the columns (M = 150 andM = 1000). In red is πM (f ). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Theorem 7. With the notation as above,

|(f̂M)ˇe(xk)− πM f (xk)| ≤
Cε ||f ||L2(R)
M1/4−ε

for a fixed interval.

Notice also that this result is achieved for a fixed interval, and the constant C depends rather dramatically on the choice
of interval. In Fig. 7, we look at a few examples using different support intervals. For each example, we show the dependency
onM = (1/2)M1, usingM = 150 in the first column andM = 1000 in the second.
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Fig. 8. Here we compare (f̂M )ˇe and πM (f ) in the Legendre case. In red is πM (f ). The top left is 150 = M = M1/2 while in the top right we multiply thisM1
by 5. In the bottom left is 1000 = M = M1/2 while in the bottom right wemultiply thisM1 by 5. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

In Fig. 6, we compare (f̂M)ˇ(Ex) and (f̂N)ˇe to see what we found to be a typical phenomena. In comparison with difference
between the f and (f̂M)ˇ(Ex), the difference between (f̂N)ˇe and (f̂N)

ˇ(Ex) is small, allowing us in practice to sensibly use the Euler
Inverse Transform.

Example 2. In the noncompact (Hermite-like) case, the accuracy of this approximation is very dependent on the choice of
interval. To give a sense of the extent to which the non-compactness of the interval plays a role, in Fig. 8 we apply these
techniques to the Legendre polynomials which satisfy the Sturm–Liouville equation for L(x) = −2x, Q (x) = 1 − x2, and
λ(n) = n(n+1) and live on the compact interval [−1, 1]. Using the techniques presented here for estimating the error, one
can only demonstrate that the convergence is in distribution ifM = CM1. Hence, one is forced to increaseM1 relative toM
to improve the convergence. We witness this in Fig. 8.

Remark. The techniques described in this section are easily modified to give an efficient algorithm for the computation
of expansions in terms of associated Laguerre polynomials (see e.g., [2]). These expansions arise in many areas, but are of
particular interest for their use in the description of functions defined on the two-dimensional polar grid (see e.g., [24]).
Considerations of compact support are similarly important for applications to image processing, and an analysis such as
appears in this paper could be readily adapted to this case.

5. Timing and stability experiments

Using the Fast Hermite Newton–Cotes algorithm indicated above, we implemented a C program that performs a fast
Newton–Cotes Hermite Transform [1] (denoted in Table 1 as FHT). The software is freely available [1]. In this section we
report the results for the efficiency and stability of this implementation.
As discussed above, we have a freedom of choice in the description of the data (i.e., on which square [−A, A] × [−A, A]

the data live). Thus, for a given bandlimit M , we let A =
√
2M (recall Section 3). Furthermore, let n denote the number of

sample points and define our sampling grid (xi, xj) by

xi = 2A(i/n− 1/2), (12)

for i = 0, . . . , n.
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Table 1
Stability of computation of ‖HĎH − I‖2 for a range
of realistic bandlimit (powers of two)

M n = 10M ‖HĎH − I‖2 Std. dev.

4 20 3.43E−08 2.57684E−08
8 40 1.00E−08 1.22054E−08
16 80 1.15E−09 1.78611E−09
32 160 3.92E−12 4.12421E−12
64 320 3.73E−12 4.11435E−12
128 640 7.63E−10 1.27733E−09

Note that the calculation ofHĎ requires somematrix
multiplies as well as the calculation of B−1 . These
were all accomplished using the standard matrix
arithmetic calls in Matlab. All calculations were
performed on a Dell Latitude D800 (Specs: 1.79 GHz
Processor, 512 Mb Ram, Windows XP Professional).

Since we are using scaled and ‘‘windowed"ψk(x) (i.e., constrained to the interval [−A, A]) Hermite functions, theψk are
no longer orthonormal, but are nearly orthonormal.
Let us make some definitions. Let P denote theM × (n+ 1)matrix given by the firstM sampled Hermite polynomials,

Pi,j = pi(xj)

with xj defined as above. Then given a sampled function f = (f (x0), . . . , f (xn))t the (discrete) Hermite transform is defined
as

Hf = (dx)PEf (13)

where E is the n× n diagonal matrix of sampled exponentials

Ej,j = e(−(xj)
2/2)

and dx = (2A)/n.
We have described a fast algorithm for the computation of Pf , , which then gives a similarly efficient algorithm for the

computation of Hf . In this section, we will examine both the efficiency and stability of this algorithm.
For the stability, we first show that, as suggested, the windowed, scaled, and sampled versions of the Hermite functions

ψk do in fact retain their orthonormality. Let B = ( 1dx )HH
tr . By the orthogonality of the Hermite polynomials, B will be

invertible. From this it then follows directly that

HĎ
=

(
1
dx

)
H trB−1

is the (n+ 1)×M pseudoinverse of H . Table 1 shows that for a range of realistic bandlimit (M) and comparable number of
sample points (10M) HĎ does, in fact, give a very good approximation to the pseudoinverse.
Table 1 indicates that the following is then a reasonable test of stability and efficiency:

• Do (for fixed N and n)
. Step 1 (synthesis): Compute N ‘‘random" Hermite coefficients and synthesize a ‘‘random" bandlimited f .
. Step 2: Compute ‖HĎFast(H)f − f ‖2.

• Until done.

The random coefficientswere computed according to aN(0, 1) distribution, with the kth Hermite coefficientweighted by
1
k2
to reflect twice differentiability. Once finished, compute the average error as well as the average time for the calculations

of Fast(H)f . Table 2 shows the results of this experiment.
There are a few things to say about Table 2:

(1) For M < 64 the results are decidedly stable. At M = 64 the results begin to falter, but are still passable. The trend of
increasing error in fact continues to the point that for M > 64 the computation is very unstable. For N > 16 the fast
algorithm begins to beat the naïve calculation by a significant amount over many trials. It should also be noted that
the timing results improve with increasing n, due to the efficiency of the Chebyshev step, which transforms the sample
points into function space.

(2) The results we show here are for a one-dimensional transform. Image processing would occur on a two-dimensional
grid, so the timings would be squared, indicating an even greater advantage in using the fast transform.

(3) The program currently works for powers of two. This limitation can be overcome with some simple adaptations
according to [10].
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Table 2
Computation of stability and timings for Fast(H) for several
realistic problem sizes

M n L2-Error St.dev. FHT time Naive time

4 20 3.43E−08 2.58E−08 0.1 0.1
8 40 1.00E−08 1.22E−08 0.2 0.3
16 80 1.15E−09 1.79E−09 0.5 1.2
32 160 1.15E−10 7.50E−11 1.6 4.7
64 320 1.98E−04 1.97E−04 5.11 18.12

L2-error means the average of ‖HĎFast(H)f − f ‖2 for 100 randomly
generated bandlimited functions f (of bandlimit N). This is reported
in column 3. Column 4 contains the standard deviation of these
numbers. Columns 4 and 5 show the average time in milliseconds
for the FHT and direct matrix vector multiply Hf respectively. The
timing results are processor times in tens ofmilliseconds (hence the
recording of a timeof 0 s for the small problem sizes) as estimated by
the clock function includedwith the gnu C compiler. All calculations
were performed on a Dell Latitude D800.

(4) The algorithm described in [10] prescribes an initial fast transform onto the Chebyshev polynomials, followed by a slick
manipulation of the three-term recurrence relations of both the Chebyshev polynomials and the Hermite polynomials.
We decided to perform this initial step naively, due to stability issueswith known fast Chebyshev transforms. As a result,
we cannot claim that our programperforms asymptotically better in this initial step. The Chebyshev transform, however,
was so fast and simple to perform, that for useful values ofM the naïve algorithm was perfectly acceptable.

(5) We only show results up to M = 64 even though in Table 1 the calculation of the pseudoinverse is stable even for
M = 128 (and presumably beyond). This reflects the fact that for M = 128, the calculation for Table 2 was highly
unstable (even if very fast!). It is possible that (among a variety of possibilities) our naïve linear scaling of the number
sample points may be a source of inaccuracy. It would be of interest to investigate methods for improving the range of
stable calculation, and this is a current project of interest.

(6) The timing results do not include any precomputation involved in the fast algorithm. In a practical implementation
(including ours), the results of this step would be saved to the hard disk and brought up each time the program is run.
The program would then save these results for successive uses of the fast algorithm. Given many uses of the algorithm,
this time would be negligible.

6. Potential applications: Medical imaging and cryo-electron microscopy

Multidimensional bandlimited Hermite function expansions are a promising tool in a number of potential applications.
Their benefits relative to other bases follow from the properties that:

(1) A rotated version of a multidimensional bandlimited Hermite function expansion will be of the same form, and with the
same bandlimit, as the original unrotated version of the function [27,30]; and

(2) In the bandlimited case, data sampled on a polar/spherical grid can be converted into data sampled on a Cartesian
coordinate system exactly without loss of information [28].

Such situations arise in medical imaging and cryo-electron microscopy. In both of these applications, projections of a
density are obtained and one desires to reconstruct the original density from a finite number of these projections. These
applications are described in detail below.

6.1. Overview of medical imaging and cryo-electron microscopy

In the case ofmedical imaging, the direction alongwhich projections are taken is known, andmethods for reconstruction
(using a technique called filtered backprojection) are well established [16]. This method requires interpolation of data from
a polar grid in Fourier space onto a Cartesian grid, so that FFT methods can be used. This interpolation step, however, is
an approximate one that can lead to loss of information. Using an alternative basis, such as the Hermite functions, has the
potential to reduce this loss. A limiting factor is the existence of fast algorithms, such as those discussed in this paper.
Numerous methods exist for the approximate interconversion between Cartesian and polar data. Applications for this

conversion include tomography and radar. To our knowledge, the only ‘‘exact’’ method for performing this interconversion
is that presented in [28]. The exactness of the interconversion relies on the Cartesian data being bandlimited in the Hermite
sense, which corresponds to a bandlimited Laguerre-Fourier expansion in polar coordinates. The interconversion problem
is different from the related problem of performing fast transforms in polar coordinates, such as those presented in [3,12,
31]. In other words, it is one problem to convert losslessly between bandlimited expansions in two different curvilinear
coordinate systems, and it is another problem to derive fast transforms in each of these coordinate systems. Both problems
are important, but they are not the same.



G. Leibon et al. / Theoretical Computer Science 409 (2008) 211–228 225

Hermite-function expansions in cryo-electron microscopy (cryo EM) potentially can be applied to tomographic
reconstruction. In cryo EM, the structure of large protein systems, such as ribosomes or viral capsids are investigated via
the use of an electron microscope, which passes an electron beam through the sample, effectively integrating the electron
density along the beam line.2 Sometimes, multiple beams can be passed through each protein structure at different angles,
generating what is called a tilt series. In this case, reconstruction amounts to precisely the same inverse problem as in
tomographic imaging.
Unfortunately, acquisition of the tilt series via the electron beam can actually cause damage to the sample, resulting in a

degradation of the data that is collected. It is for this reason that a technique called single-particle cryo EM is sometimes used
in place of a tilt series. In this method, many copies of the molecular complex of interest are frozen in a thin film of vitreous
ice, resulting in a planar suspension of essentially identical copies, arranged at randomized orientations. The resulting two-
dimensional film of ice and protein is called a micrograph. Then, using electron beams that pass orthogonally through the
plane of the micrograph, a single planar projection is obtained per copy of the molecular complex. The goal is to obtain
the electron density from the resulting projection data, the directions of which are random and unknown with respect to
each molecular complex. This is a problem that has been studied intensively by electron microscopists and others over the
past two decades (see e.g., [15,26]), and for which there are still many open issues. Some effective algorithms have been
developed over the years, including contributions from van Heel’s group [34,35], and the widely used algorithm of Baker
and Cheng [4].
Multidimensional Hermite expansions turn out to be very attractive for the cryo EM problem. One reason, is that, unlike

the Fourier basis, the rotation information is isolated from the basis elements in a finite number of coefficients [27,30].
This may help in rapid determination of the unknown projection directions, thereby efficiently solving the reconstruction
problem [29]. More details of how fast Hermite expansions may assist in this problem are discussed in the following
subsection.

6.2. Hermite expansions and the mathematics of tomographic reconstruction

Here, we provide amathematical formulation of density reconstruction from a collection of measured projections. These
projections are essentially integrals of the density along directions which may or may not be known a priori. The issue of
whether or not the projection direction is known is the major difference between the medical imaging and single-particle
cryo-EM problems.
A simplified version of both reconstruction problems is stated as follows: find the unknown function f (x), where x ∈ R3,

from the measurements

gi(x1, x2) =
∫
∞

−∞

f (RTi x)dx3 (14)

for i = 1, . . . ,M where each rotation Ri ∈ SO(3) is either known or unknown.
If each Ri were known in advance, this would be nothing more than a classical tomography problem. However, when

all the rotations Ri are unknown, the reconstruction of f (x) from the collection of projections {gi(x1, x2) | i = 1, . . . ,M} is
known to be a hard problem (particularly when the biomolecular structure under investigation does not share features with
known structures).
Given an initial guess f̃ (x; c), which is a bandlimited expansion defined by the coefficients c, and represents an a priori

best estimate of f (x), one can compute the cost function

C(c, R̃1, . . . , R̃M) =
M∑
i=1

∫
x1

∫
x2

∣∣∣∣gi(x1, x2)− ∫
x3
f̃ (R̃Ti x, c)dx3

∣∣∣∣2 dx2dx1. (15)

In the case when the projection directions are not known, {R̃i} is an initial guess for the set of projection orientations. This
can be chosen by sampling from the uniform distribution on SO(3). Then, the best match of projection direction to each
experimentally measured projection is determined by minimizing over all possible permutations on M indices, ΠM . One
seeks to reduce the value of C(c, R̃1, . . . , R̃M) by updating guesses of M orientations and the parameters c that define the
best estimate of f (x). A natural choice for the formof f̃ (x; c) is amulti-dimensional Hermite expansion, for reasons discussed
previously, and used in [29].
The fast Hermite transform enters into the formulation at the very first stage of this procedure, where the experimental

data gπ(i)(x1, x2) are expressed as a bandlimited multidimensional Hermite expansion. The extraction of Hermite function
coefficients from the data and the use of the Parseval theorem for Hermite expansions (together with the property that
rotations of multi-dimensional Hermite expansions maintain their original bandlimit), then means that (15) can be dealt
with purely in the spectral domain.

2 A more realistic version of the problem needs to take into account things like aperture-dependent phase and gain effects, that are specific to the
particular electron microscope being used [9,11,33,13], but when such effects are known a priori the problem effectively can be formulated as stated
above.
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Fig. 9. (a) A simulated EM image of GroEL/GroES (PDB Code: 1AON); (b) Resulting image after applying Hermite forward and inverse transform to (a). The
simulated image (left) was obtained by assigning a 3D Gaussian kernel (standard deviation = 1.25 pixel) to each Cα, and then projecting the resulting
density onto the x, y-plane. The image size is 257×257, and the bandlimit for each axis is 256.

Table 3
Computation time for different sizes of test images
Image size 33×33 65×65 129×129 257×257
Bandlimit 32×32 64×64 128×128 256×256
FHT time (s) 0.078 0.313 1.464 7.157
Naive time (s) 0.025 0.218 1.682 13.984
FHT error 0.2573 0.1217 0.1418 0.1034
Naive error 0.2573 0.1216 0.1417 0.1027
Support interval [−8 8] [−8 8] [−7.92 7.92] [−6.4 6.4]

The third and fourth rows show the computation time for the fast
Hermite transform algorithm and the naive implementation of the 2D
version of (10), respectively. The fifth and sixth rows show the error
between the original image and the resulting image after the forward
and inverse Hermite transforms are applied. The last row show the
support intervals.

6.3. Hermite expansions of 2D projected images in cryo electron microscopy

The numerical experiments in Section 5 are accomplished in the 1D setting. In this section, we include some further
experiments, this time in 2D, that are more directly relevant to the protein structure problem that originally inspired this
work. They also provide a nice example of the various tradeoffs that can occur among choices of bandlimit, sampling, and
interval of definition (see Section 3).
Recall that the first step in solving the reconstruction problem in (14), is to apply the Hermite transform to the projected

2D image, gi(x1, x2). We present here numerical examples of the 2D Hermite transform of simulated cryo EM images.
Fig. 9 shows the first example. A simulated EM image of the GroEL/GroES protein complex (PDB Code: 1AON) was

obtained by assigning a 3D Gaussian kernel to each Cα atom in the complex, and then projecting the result to the x, y-
plane. The standard deviation of the kernel corresponds to 1.25 pixel lengths in the image in this particular example, which
is equivalent to 1Å in the real scale of the GroEL/GroES protein complex. Projection from an orthogonal direction results in
the x, z projection shown in Fig. 10. Figs. 9 and 10 can be considered to be the top and the front projections, respectively.
In these two examples, wewere able to use a bandlimit that was almost the same as the sample size, without introducing

computational instabilities. Thiswas possible bymanipulating the support intervals thatwe discussed in Section 3. Too large
an interval leads to aliasing problems and instability, and too small an interval causes considerable loss of information in
the forward Hermite transform process. The optimal value for the support interval can be determined from a series of trials.
Since the Hermite transforms in Figs. 9 and 10 will be merged to one 3D density, it is important to apply the same support
interval for both cases.
To test the computation time with respect to the size of images, we prepared images with the following different sizes:

33×33, 65×65 and 129×129 and 257×257. The 257×257 image is shown in Fig. 9 and the other images were obtained by
reducing the largest image. The numerical results are summarized in Table 3.
The term ‘‘Naive" in Table 3 means the naive implementation of the 2D version of (10). Explicitly, the 2D Hermite

transform can be written from (10) as

f̂ (m, n) =
M1−1∑
k=0

M1−1∑
l=0

f (xk, xl)cm(xk)cn(xl).
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Fig. 10. (a) A simulated EM image of GroEL/GroES due to projections in the x–z plane (PDB Code: 1AON); (b) Resulting image after applying Hermite forward
and inverse transform to (a). The image size is 257×257, and the bandlimit for each axis is 256.

Since the variables, xk and xl are separated in the function c(x), this can be implemented with an O(M31 ) algorithm. The
actual computation time of the fast algorithm and this naive algorithm are reported in the third and fourth rows in Table 3,
respectively. These trials were done on a different platform than the other results, and so the absolute times are not
necessarily comparable, but their ratios are.
The fast Hermite transform shows faster performance in the relatively large images. The fifth and sixth rows show the

normalized least squares error (NLSE) between the original image and the resulting image after the forward and inverse
Hermite transform. This error can be called ‘‘filtering error", since the original image is not bandlimited in the Hermite
sense. The NLSE of the two images, R(m, n) and I(m, n) is defined as

NLSE =

√√√√√√√√
N∑
m=1

N∑
n=1
[R(m, n)− I(m, n)]2

N∑
m=1

N∑
n=1
[R(m, n)]2

.

Notice that the filtering errors are similar in both FHT and naive algorithm. This means that our fast algorithm for the
Hermite transform pair achieved the speed benefit, without sacrificing numerical accuracy. The last row reports the size
of the optimal support interval that we found by trial and error.
Hermite functions are good to represent not only the projected data, but also the 3D density. The 3D Hermite expansion

is given as

f3D(x, y, z) =
M∑
i=0

M∑
j=0

M∑
k=0

ai,j,khi(x)hj(y)hk(z)

where ai,j,k is the Hermite coefficients and h(x) is the Hermite function. For a fixed value of z, the 2D slice of the 3D function
is given as

f2D(x, y) =
M∑
i=0

M∑
j=0

bi,jhi(x)hj(y),

where bi,j =
∑M
k=0 ai,j,khk(z). (In contrast, the projection of f3D(x, y, z) onto the plane x–y plane would give a 2D Hermite

expansion with coefficients of the form bi,j = ai,j,0).
This implies that the application of the Hermite transform to 3D functions can be tested with 2D slices of the original

3D function. An example is shown in Fig. 11. Recall that Figs. 9 and 10 are projections onto the x–y plane and the x–z plane,
respectively. Fig. 11 shows a ‘‘slice’’ in the x–z plane passing through the geometric center of the GroEL/GroES complex. The
figure also shows the Hermite-filtered version of this image. This image slicewas obtained by assigning a 3DGaussian kernel
to each Cα and sampling on the slice plane. For visualization purposes, we used the higher standard deviation (1.625 Å)
for the Gaussian kernel than in the previous examples, because the Cα atoms are more sparsely spaced in slices than in
projections.
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Fig. 11.Hermite transformwith sliced image of Groel/Groes. (a) A simulated slice of electron density (b) Image resulting from applying the Hermite forward
and inverse transform to (a). The image size is 257×257, and the bandlimit for each axis is 256. The filtering error is 9%.
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