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Elastic models of conformational transitions in macromolecules
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Abstract

We develop a computationally efficient and physically realistic method to simulate the transition of a macromolecule between two
conformations. Our method is based on a coarse-grained elastic network model in which contact interactions between spatially proximal
parts of the macromolecule are modelled with Gaussian/harmonic potentials. To delimit the interactions in such models, we introduce a
cutoff to the permitted number of nearest neighbors. This generates stiffness (Hessian) matrices that are both sparse and quite uniform,
hence, allowing for efficient computations. Several toy models are tested using our method to mimic simple classes of macromolecular
motions such as stretching, hinge bending, shear, compression, ligand binding and nucleic acid structural transitions. Simulation results
demonstrate that the method developed here reliably generates sequences of feasible intermediate conformations of macromolecules, since
our method observes steric constraints and produces monotonic changes to virtual bond angles and torsion angles. A final application is
made to the opening process of the protein lactoferrin.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

As the number of solved structures of macromolecules is
rapidly increasing, we frequently need to relate such struc-
tures to one another. Many proteins have multiple confor-
mations (some are called “open” and “closed” forms)[1].
Conformational transitions between two forms are often im-
portant to understand the relationship between structure and
function. In other words, some motions are requisite to the
way in which a structure performs a particular function such
as catalysis, regulation, transport, and binding of ligands
[2]. Hence, comprehending conformational transitions can
be useful for understanding biological mechanisms; how-
ever, directly computing the transition pathways has proven
difficult. This problem of elucidating transition pathway can
be viewed as a more limited problem than the protein fold-
ing problem.

On the other hand, it is also popular in molecular
graphics to attempt to visualize conformational transitions.
Obviously, one of the best ways is through animations such
as digital movies (e.g. AVI or MPEG). Animations usually
are produced by inserting images of intermediate confor-
mations between the two end conformations at the extrema.
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Since these two are usually the only known conformations,
the hypothetical intermediate conformations are visualized
in sequence to produce an animation, but the realism of
these produced forms can be a problem.

In a number of recent papers in this area, Vonrhein et al.
showed movies of macromolecular motions by a linear in-
terpolation between the atomic coordinates of the two end
conformations in Cartesian space[3]. The severe deficiency
of this method is that the bond lengths and angles of the
intermediate conformations can be unrealistic and in sev-
eral cases protein chains even pass through one another. To
get around this problem, Gerstein and Krebs applied proper
restraints and minimized energy of each intermediate con-
formation to correct for molecular stereochemistry and to
enforce rules of molecular structure[4,5].

An alternative interpolation approach that has been taken
is to use internal coordinates such as bond lengths, bond
angles, and torsion (dihedral) angles instead. Kleywegt and
Jones implemented this approach to construct intermediate
conformations with the LSQMAN program[6,7]. Ideally,
this approach would produce realistic bond lengths and
torsion angles; however, this method also has some prob-
lems. Even if we construct intermediate conformations by
interpolating torsion angles between those of the two end
conformations, while holding bond lengths and angles fixed,
we will often get impossible pathways for several reasons.
First, with these constraints it may not be possible for the
solved conformation from one end to reach the other end
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Fig. 1. An example of torsional angle interpolation between two lac
repressor headpiece structures (named 1LCC and 1LCD, Protein Data
Bank). During the conformational transition from 1LCC to 1LCD, the
�-carbon of ALA13 and the�-carbon of GLU36 come too close to
together,≤1 Å, in (a). This unrealistic relative distance between two atoms
is shown in (b).

in Cartesian space because X-ray crystallography data for
the two end conformations do not always have exactly the
same values of internal variables such as bond lengths and
bond angles. Therefore, we must either refine the two end
conformations so as to have consistent values of internal
variables, except for torsion angles, before interpolating in
torsion angle space or permit the interpolation of all inter-
nal variables simultaneously in order to avoid this problem.
A further limitation is that in the process of generating
intermediate conformations some parts of the molecule
could come too close to other parts in order to achieve a
smooth simulated pathway, which would produce highly
unfavorable states in the sense of high energy interactions
or steric clashes.Fig. 1 shows a case where a particular
pair of �-carbons in a protein come too close to each other
during conformational transitions using internal coordinate
interpolation so that it gives rise to high repulsive energy
peaks simply because of Van der Waals repulsions between
non-bonded atoms. A third problem occurs for the specific
rotation angles. Individual values are not all equi-energetic.
Consequently some forms take on higher energies, and the
intermediate forms generated could have inordinately high
values, even when lower energy alternative pathways exist.

There is a further more complex issue—in some cases a
large transition may require complete denaturation of part
of the structure. This complexity is beyond the scope of the
present paper. However, it is conceivable that the present
model computations could indicate where the denaturation
is required, if intermediates lose sufficient numbers of in-
teracting pairs. If no good pathway is achievable with the
present approach, it would indicate a more complex path-
way, such as one having large distortions rather than a rel-
atively smooth pathway. These large distortions could of
course include denaturing parts of the chain.

A series of recent papers have demonstrated the usefulness
of coarse-grained models including only�-carbons as point
masses representing residues and a simplified harmonic

Fig. 2. Representation of protein structure as an elastic network. The
backbone trace is shown in dark lines. The grey lines represent the spring
connections between�-carbons within a cutoff distance of 8 Å for lac
repressor headpiece structure (1LCC).

potential for considering internal interactions between
neighboring residues as shown inFig. 2. Such models are
suitable to describe the global motions of complex systems
of small proteins or single proteins having more than several
thousand residues[8–10].

In this paper, we generate feasible pathways for con-
formational transitions using the simplest potential and
coarse-grained models. The key idea is to interpolate evenly
the distance between spatially proximal parts of the macro-
molecule in both conformations within the context of the
elastic network model. Since we interpolate relative dis-
tance between spatially close residues, unrealistic confor-
mations and steric clashes become less likely. This method
is a reasonable compromise between oversimplified linear
interpolation in Cartesian or internal coordinates and com-
putationally expensive methods such as MD simulations
and represents another significant example of the utility of
elastic model to treat protein conformations. We address
several fitting strategies to visualize the simulated path-
ways smoothly. Several toy models are presented using the
method developed here, and the conformational transition
of lactoferrin is also simulated.

2. Method

2.1. System modelling

In this section, we derive a discrete mechanical model
of small conformational changes for macromolecules about
an equilibrium conformation. In the discussion that follows,
we formulate the method in the context of protein structure.
Extensions to nucleic acids or other biomolecular structures
are obvious, and are also illustrated with toy models later in
the paper.

We label the mass of theith residue in the protein chain
asmi , and model the interaction between residuesi andj

with a linear spring having stiffnesski,j . Given the full set
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of masses, stiffnesses and equilibrium positions we derive
the global mass matrix and the global stiffness matrix.

2.1.1. Standardizing coordinates
Once structures of macromolecules have been obtained

from the Protein Data Bank (http://www.rcsb.org/pdb/) [1],
the first step is to define a set ofn representative atoms (e.g.
�-carbons in the case of proteins). The position of theith
atom at timet is denoted

xi (t) = [xi(t), yi(t), zi(t)]
T ∈ R3. (1)

This is defined relative to a reference frame fixed in space
at the center of mass of all the representative atoms and
oriented along the principal moments of inertia. That is, the
positions used for this calculation are those for the static
(undeformed) model data. The center of mass coordinates
are given by

xcm(0) =
∑n

k=1 mkxk(0)∑n
k=1 mk

(2)

and the moment of inertia tensor is

I (0) =
n∑

k=1

mk[(x
T
k (0)xk(0))E3 − xk(0)x

T
k (0)], (3)

whereE3 is the 3× 3 identity matrix. We assume that

xcm(0) = 0 (4)

and

I (0) = diag[I1, I2, I3] =



I1 0 0

0 I2 0

0 0 I3


 . (5)

Given another initial set of points{x′
k(0)} that do not satisfy

these properties, we can define

xk(0) = RTχk(0), (6)

where

χk(0) = x′
k(0) − x′

cm(0) (7)

andR is the rotation matrix such that

I (0) = RTI ′(0)R, (8)

where

I ′(0) =
n∑

k=1

mk[(χ
T
k (0)χk(0))E3 − χk(0)χ

T
k (0)]. (9)

By the proper choice ofR that has normalized eigenvectors
of I ′(0) as columns, we can ensure thatI (0) is diagonal.

2.1.2. Elastic network model
The total kinetic energy in a network ofn point masses

has the form

T = 1

2

n∑
i=1

mi‖ẋi (t)‖2. (10)

We defineδi (t) as a vector of small displacements

xi (t) = xi (0) + δi (t). (11)

The global mass matrix for the whole network is the matrix
M such that

T = 1
2 δ̇

T
M δ̇ (12)

where

δ = [δT
1 , . . . , δ

T
n ]T ∈ R3n. (13)

In the present case,M is diagonal.
The total potential energy in a network of connected

springs has the form

V = 1

2

n−1∑
i=1

n∑
j=i+1

ki,j {‖xi (t) − xj (t)‖‖xi (0) − xj (0)‖}2

(14)

and

ki,j =
{

1 if ‖xi − xj‖ ≤ d

0 if ‖xi − xj‖ > d
(15)

whered is a cutoff distance between atoms at timet = 0
andki,j is the(i, j) element ofk (called the “linking matrix”
or “contact matrix”), which is assumed to be unity for all
contacting pairs and zero for pairs not in contact, regardless
of the residue types concerned.

This is nothing more than the sum of elastic energy for
each spring stretched or compressed from its equilibrium
length. Springs represent close residues, all interacting in
identical ways, and the elastic potential energy follows a
harmonic potential, appropriate for small deviations from
equilibrium. In general,Eq. (14)is a non-linear function of
the deformations even though the springs are linear. How-
ever, when we assume that the deformations are small,V

becomes a classical quadratic potential energy function[15].
In order to see this, the quantity inside the summations in
Eq. (14)can be written as

Vi,j = 1
2ki,j {‖(xi (0) − xj (0)) + (δi (t) − δj (t))‖
−‖xi (0) − xj (0)‖}2 (16)

which can then be separated into two parts

Vi,j = 1
2ki,j (V

(1)
i,j + V

(2)
i,j ) (17)

whereV (1)
i,j has the squared terms of the expansion andV

(2)
i,j

has the cross terms :

V
(1)
i,j = ‖(xi (0)−xj (0))+(δi (t)−δj (t))‖2+‖xi (0)−xj (0)‖2

= ‖δi (t) − δj (t)‖2 + 2‖xi (0) − xj (0)‖2 + 2(xi (0)

−xj (0))
T(δi (t) − δj (t)) (18)

http://www.rcsb.org/pdb/
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and

V
(2)
i,j = −2‖(xi (0) − xj (0)) + (δi (t) − δj (t))‖

·‖xi (0) − xj (0)‖. (19)

Eq. (19)can be simplified for small values of||δi (t)|| and
||δj (t)|| using the Taylor series approximation

||x + δ|| ≈ ||x|| + x · δ

||x|| + 1

2

δTA(x)δ

||x|| (20)

where

A(x) = E3 − xxT

||x||2 . (21)

Hence, we write

V
(2)
i,j = −2‖xi (0) − xj (0)‖2−2(xi (0)−xj (0))(δi (t)− δj (t))

−(δi (t) − δj (t))
TA(xi (0) − xj (0))(δi (t) − δj (t)).

(22)

We can now writeEq. (17)as

Vi,j ≈ 1
2ki,j (δi (t) − δj (t))

T

×[E3 − A(xi (0) − xj (0))](δi (t) − δj (t)). (23)

If we let Gi,j ∈ R3×3 be defined as

Gi,j = ki,j [E3 − A(xi (0) − xj (0))]

= ki,j
(xi (0) − xj (0))(xi (0) − xj (0))T

‖xi (0) − xj (0)‖2
, (24)

then for small deflections, the total potential energy(14)can
be written in the form

V = 1

2

n−1∑
i=1

n∑
j=i+1

(δi (t) − δj (t))
TGi,j (δi (t) − δj (t)). (25)

Note thatGi,j = Gj,i andGT
i,j = Gi,j . The stiffness matrix

for the whole network is the matrixK such that

V = 1
2δTKδ. (26)

The matrixK consists of ann×n array of 3× 3 symmetric
blocks. LetKi,j denote thei, j th block fori, j ∈ [1, . . . , n].
If massi is not connected to massj , then thei, j th block
is a 3× 3 zero matrix. Generally, ifi �= j ,

Ki,j = −Gi,j . (27)

Wheni = j , the result is

Ki,i =
i−1∑
k=1

Gk,i +
n∑

k=i+1

Gi,k =
∑
k �=i

Gk,i . (28)

Finally, we can obtain the equation of motion of the protein
composed ofn residues as

M δ̈ + Kδ = 0. (29)

Since we use Cartesian coordinates, the elements ofM

are of the formMi,j = miδi,j (i.e. M is diagonal). If

mi = m, then normal modes are the eigenvectors ofK.
Normal modes generated using this coarse-grained model
can be used to evaluate potential motions about a single
equilibrium conformation of a large molecule with relatively
little computational cost.

2.2. Incremental formation of an intermediate
conformation

We derive here an incremental formulation to generate in-
termediate conformations along a putative pathway between
two forms defined as end constraints. The key idea is to inter-
polate between two values of the distances between spatially
proximal �-carbons, which are artificially connected with
virtual bonds in the elastic network model[8–10]. While
the relationship between molecular conformations and the
distances between atoms in conformations has been studied
extensively[16], our goal is to generate intermediate con-
formations by finding small changes in�-carbon positions
that result from inducing correspondingly small changes in
inter-residue distances.

Suppose that we have atomic coordinates of the two end
conformations of the same protein denoted by{xi} and{χi},
respectively. One can build two elastic network models (one
for each conformation). We introduce a cost function as

C(δ) = 1

2

n−1∑
i=1

n∑
j=i+1

ki,j {‖xi + δi−xj−δj‖ − li,j }2. (30)

An intermediate conformation is defined by the value ofδ

that minimizes this cost when all the other parameters are
held constant. The linking matrixk is the “union” of the
two linking matrices for{xi} and{χi} in the sense thatki,j
has value 1 whenever residuesi and j are within the cut-
off range in either conformation. Alternatively, one can use
the“common” linking matrix in whichki,j has value 1 only
when residuesi and j are within the cutoff range in both
conformations. However, in our experience this does not pro-
duce a transition pathway that makes one end form converge
to the other, because residues which are not connected to
one another in the sense of the common linking matrix are
not confined to move to the targeted form in this approach.
In contrast, if we use the union linking matrix to generate a
transition pathway, both of the two end forms are considered
as constraints in order to make intermediate conformations
converge to the targeted form.

The valueli,j is the targeted distance betweeni and j .
li,j can be chosen as

li,j = (1 − α)‖xi − xj‖ + α‖χi − χj‖ (31)

whereα is the coefficient that represents the extent to which
the conformation has moved away from{xi} towards{χi}.
For example, whenα = 0.5, the desired conformation is the
one with inter-residue distances at the average of confor-
mations{xi} and {χi}. Using the “union” linking matrices
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confines the intermediate conformations to the interval be-
tween the two end conformations. Our goal is to find values
of δ that minimizeEq. (30). Eq. (30)can be expanded in a
Taylor series for small values of||δi (t)|| and||δj (t)|| as

Ci,j = 1
2ki,j (C

(1)
i,j + C

(2)
i,j + C

(3)
i,j ), (32)

where

C
(1)
i,j = (δi − δj )

T
[
E3 − li,j

A(xi − xj )

‖xi − xj‖
]
(δi − δj ), (33)

C
(2)
i,j = 2

(
1 − li,j

‖xi − xj‖
)
(xi − xj )

T(δi − δj ), (34)

and

C
(3)
i,j = (xi − xj )

T(xi − xj ) − 2li,j‖xi − xj‖ + l2i,j . (35)

If we defineG′
i,j ∈ R3×3 as

G′
i,j = ki,j

[
E3 − li,j

A(xi − xj )

‖xi − xj‖
]

(36)

then

1

2

n−1∑
i=1

n∑
j=i+1

ki,jC
(1)
i,j = 1

2
δTΓ δ. (37)

Generally, ifi �= j ,

Γi,j = −G′
i,j . (38)

Wheni = j , the result is

Γi,i =
i−1∑
k=1

G′
k,i +

n∑
k=i+1

G′
i,k =

∑
k �=i

G′
k,i . (39)

Let vi,j ∈ R1×3 be

vi,j = 2ki,j

(
1 − li,j

‖xi − xj‖
)
(xi − xj )

T. (40)

Then

1

2

n−1∑
i=1

n∑
j=i+1

ki,jC
(2)
i,j = 1

2γδ (41)

where

γ = [γ1, γ2, . . . , γn] ∈ R1×3n (42)

and

γ i = −
i−1∑
k=1

vk,i +
n∑

k=i+1

vi,k =
∑
k �=i

vi,k. (43)

Let B be

1

2

n−1∑
i=1

n∑
j=i+1

ki,jC
(3)
i,j = B. (44)

Finally, Eq. (30)is simplified as

C(δ) =
n−1∑
i=1

n∑
j=i+1

Ci,j = 1

2
δTΓ δ + 1

2
γδ + B. (45)

We get the minimum ofC(δ) overδ as

∂C(δ)

∂δ
= Γ δ + 1

2γT = 0. (46)

We note thatΓ ∈ R3n×3n always has three zero eigenval-
ues corresponding to translation modes, because a translated
version ofδ satisfyingEq. (46)can also minimize the cost
function. That is, the solution toEq. (46)is not unique. To
solve this problem, one can either assume a particular point
is fixed in space so thatΓ can be reduced to a non-singular
(invertible) matrix or add the constraint of linear momentum
conservation so that
n∑

i=1

miδi = 0. (47)

Note that here we treatmi = 1.
We apply this method to a simple toy model in the plane

and obtain the smooth pathway from the left to the right
conformation as shown inFig. 3. During the conforma-
tional transitions, the spring on the left side disappears and
the new spring appears on the right side instead. Several
intermediate conformations are more flexible (unstable)
than either of the two end conformations due to the loss
of stiffness. In the equilibrium of a real protein system,

Fig. 3. Pathway illustration of a toy model. Conformations change from
the top left to bottom right. Ninety-nine intermediate conformations are
obtained incrementally using distance interpolation and four intermediate
conformations are illustrated here. Both end conformations have seven
contacts. The union linking matrix has eight. Several intermediate confor-
mations have only six contacts, making them more flexible than either of
the two end conformations. The backbone chain is illustrated as bold lines
and dashed lines represent contacts that are absent. The “union” linking
matrix includes all contacts present in either end-point conformation.
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changes in the surroundings of a protein might trigger con-
formational changes from one equilibrium to another. In the
present case, intermediate states can be less stable and more
flexible.

2.3. Computational complexity

It is known that the dynamic behavior of the elastic net-
work model of a protein can vary with cutoff values. Large
cutoff values give rise to an increase in the number of in-
teracting pairs and a greater cohesiveness. Consequently,
systems become stiffer, the amplitudes of fluctuations
decrease, and motions are usually more cooperative. Also
for relatively short cutoff values, it is possible to ob-
tain more than six zero eigenvalues corresponding to
rigid-body modes in normal mode analysis, and there can
be extremely large amplitude fluctuations along particular
directions for particular residues[8]. Likewise, our inter-
polation method, which is basically derived from a matrix
similar to the stiffness matrix, is sensitive to cutoff val-
ues and the geometry of a given protein structure. Short
cutoff values strongly force the residues to be in contact
with local neighbors only. It can sometimes cause unreal-
istic results that lead to discontinuous motions. To remove
such behavior, one could adopt larger cutoff values. How-
ever, a denser linking matrix can tremendously increase
computation time for generating intermediate transitions
in large protein models composed of several thousand
residues.

We introduce a new approach to assure having uniformly
sparse linking matrices. The method reduces computational
costs for the whole interpolation process and also guarantees
realistic results. To reach this goal, the linking matrix can
be created by imposing a cutoff on the number of residue
contacts, instead of a cutoff distance. Namely, we can con-
nect residues to their neighboring residues in order from the
closest one, increasing the distance gradually until the fixed
limiting number is reached, regardless of the actual distance
of the last connection. This assures obtaining a linking ma-
trix that is sparse and uniform because all residues will have
the same number of connections.

2.4. Visualization

Animations of conformational transitions are more com-
prehensible than a series of static pictures and are particu-
larly useful for teaching[17]. We incrementally generate 99
intermediate conformations between the two end point con-
formations using the distance interpolation method proposed
in this paper. In the implementation, we calculateδ to min-
imize our cost function inEq. (30)using steps ofα = 0.01.
Then we get the first intermediate conformation denoted by
{x1

i }, which is between{xi} and{χi}, and differs from{xi}
by only 1%. That is,

x1
i = xi + δi (48)

wherex1
i is theith residue of{x1

i }. Likewise for the confor-
mation{x2

i },
x2
i = x1

i + δi (49)

whereδ is the solution ofEq. (46) when α = 0.02. The
remaining conformations can be obtained in the same way.
We use several Matlab functions such as “getframe” and
“movie” to build an animation from the solved conforma-
tions. Static pictures accumulate to create movie frames.
Finally, these can be converted to common digital movie
formats.

Our interpolation method does not account for the
absolute position of individual atoms in space but the
distance between interacting pairs. Hence, the Cartesian
position of atoms of an intermediate conformation is not
unique in space. For this reason, several movies produced
by this method clearly show that the solved conforma-
tions starting from one conformation do not converge to
the spatial position and orientation of other conformation,
even though the shape is sequentially interpolated quite
well. Several rigid-body superposition methods are useful
to correct this problem, as discussed below.

2.4.1. RMS superposition
Traditional RMS superposition minimizes the RMS dif-

ference between two conformations. Consider two confor-
mations ofn residue positions inR3 denoted as{xi} and{χi}
where the correspondencexi ↔ χi is assumed for alli =
1, . . . , n. The goal is to find the rigid-body motion(R, a)

such that{χi} is moved to fit in the “best” way to{xi} where
a is a translation vector andR ∈ R3×3 is a rotation matrix.
One way to define the best fit is to minimize the RMS error

E2(R, a) =
n∑

i=1

‖xi − (Rχi + a)‖2. (50)

The optimal rotation matrix that minimizesEq. (50)when
a = 0 is [18]

R = (XYTYXT)1/2(YXT)−1 (51)

where

X = [x1, . . . , xn] and Y = [χ1, . . . ,χn]. (52)

It makes sense thata should be the zero vector in our case,
since all intermediate conformations obtained by our method
always have their origin at the center of mass as a result of
the constraint inEq. (47). Alternatively, one can compute
the optimal estimate ofR in two stages by first computing

R̂ =
[

n∑
k=1

xkχ
T
k

] [
n∑

i=1

χiχ
T
i

]−1

(53)

and then finding the closest rotation matrixR to R̂. The
solution is the orthogonal matrix in the polar decomposition
of R̂ as

R = R̂(R̂TR̂)−1/2. (54)
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2.4.2. Incremental rotation method
Given two end conformations denoted as{xi} and {χi}

and given that we have already computedR such that

n∑
i=1

‖xi − Rχi‖2 (55)

is minimized, if we make a small change to{χi} such that
χi → χi + δi , we easily findω such that the following is
minimized.

C(ω) =
n∑

i=1

‖xi − R(E3 + mat(ω))χi‖2 (56)

where

mat(ω) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 (57)

and the rotational matrix is approximated asE3 + mat(ω).
The result is quadratic inω and can be written in the form

C(ω) =
n∑

i=1

(ωTAT
i Aiω + 2bT

i Aiω + bT
i bi ) (58)

where

Ai = R mat(χi ) ∈ R3×3 and bi = xi − Rχi ∈ R3×1.

(59)

Let

Φ =
n∑

i=1

AT
i Ai and φ =

n∑
i=1

bT
i Ai . (60)

Fig. 4. Simulation results for toy protein models having simple motions. Two end conformations are given and certain points are fixed in the plane to
animate relative motions. Ninety-nine intermediate conformations are produced using a constant cutoff distance. Four intermediate conformations are
uniformly displayed to generate elongation in (a), shear in (b), hinge bending in (c), and breathing in (d). The model successfully represents all of these
transitions.

We can calculateω such that

∂C(ω)

∂ω
= 2Φω + 2φ = 0. (61)

When we align all intermediate conformations with the
two end conformation using this method,R is initially set to
E3 and the first intermediate conformation denoted as{x1

i }
is substituted for{χi}. We get the optimally superimposed
set of residues denoted as{xa1

i } in the form

xa1
i = R1(E3 + mat(ω1))x1

i (62)

whereR1 = E3 andω1 is the solution ofEq. (61). Note that
when we optimize the second intermediate conformation,
the given rotation matrixR2 can be obtained as

R2 = R1(E3 + mat(ω1)) (63)

In general,

Ri+1 = Ri(E3 + mat(ωi )) (64)

PeriodicallyEq. (54)may have to be used witĥR = Ri to
ensure thatRi does not deviate from being a rotation matrix
after many iterations.

3. Simulation results

All simulations are performed using Matlab programming
and static pictures created are sequentially converted to AVI
formats to ensure display in internet browser environments.
We have pursued six toy models to test our interpolation
method.Fig. 4 demonstrates results for four fundamental
planar motions such as elongation, shear, hinge bending,
and breathing.Fig. 5 shows two simple, but more complex
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Fig. 5. Simulation of binding and refolding toy models. The toy model to mimic ligand binding is shown in (a). The docking side of the receptor
opens to receive the incoming ligand as the ligand approaches and simultaneously the ligand deforms to facilitate entry. As the binding is completed,
the receptor and ligand both return to their original conformations. Two parallel lines bow out to represent a nucleic acid transition from double helical
B-DNA to a clover leaf junction (Holliday junction structure) in (b).

Fig. 6. Simulation of intermediate conformation between lactoferrin forms 1LFG (“closed”) and 1LFH (“open”) using a limiting contact number cutoff
of 20. Here, 99 intermediate conformations are obtained incrementally using our interpolation method and two intermediate conformations are illustrated
using RMS superposition. This shows movement of lactoferrin from the “closed” form to the “open” form. This figure was made with Rasmol.
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toy models to mimic such motions as ligand binding and
nucleic acid Holliday junction formation, respectively. Our
method generates plausible pathways for those toy mod-
els. In addition, we have chosen a real protein structure
having two different structures. Lactoferrin has “open” and
“closed” forms, 1LFG and 1LFH, and we generate a feasible
pathway between those two forms using our interpolation
method.

Our uniform and sparse linking matrix generated by a
contact number cutoff enables us to get a feasible pathway
within relatively short computational time.Fig. 6shows the
simulation result of the conformational transition of lactofer-
rin which consists of 691 residues. This simulation illustrates
the movement from the closed (diferric) form (1LFG) to the
open (apo) form (1LFH).Fig. 7presents virtual bond angles
between sequential�-carbons. These small changes can be
easily accommodated within the coarse-grained model since
there is only one point per amino acid. Average distances
between sequential alpha carbons are also shown inFig. 7.
These do not deviate far from 3.8 Å during transition. Our
method observes steric constraints, regardless of the size of
the protein.

Fig. 7. Virtual bond angles and lengths in lactoferrin. The aver-
age values of virtual bond angles and lengths between sequential
�-carbons in all intermediate conformations are shown in (a) and in
(b), respectively. These ought not to deviate away far from 106◦ and
3.8 Å, respectively. Our interpolation method preserves steric constraints
well.

4. Comparison of NMA with the network interpolation

In this section we compare results generated using the
coarse-grained NMA approach of Section 2.1 with those of
network interpolation. All-atom NMA is a widely used tool
[11–14]. Coarse-grained NMA has the advantage of being
computationally faster while still being able to accurately
capture the behaviors of the low frequency modes. Let{vi}
be the normalized eigenvectors computed fromEq. (29)as-
suming the harmonic motionδ(t) = eiωi tvi . The small dis-
placement generated using the network interpolation model
for α = 0.01 from one of the end states isδ. Fig. 8 plots
F(i) = (δ · vi )/‖δ‖. This shows the correlation between the
behavior of conformational transition and non-rigid modes
of the closed and open forms of lactoferrin. As can be seen,
small harmonic motions about these equilibria are consistent

Fig. 8. Decomposition of the normalized displacement from the net-
work interpolation model over eigenvectors calculated from coarse-grained
NMA. The normalized displacement which corresponds to the network
interpolation result of 1% deviation from 1LFG to 1LFH is decomposed
over the set of orthonormal eigenvectors obtained by NMA of ILFG in
(a). Similarly, the decomposition result of the displacement from 1LFH
to 1LFG over eigenvectors of 1LFH is shown in (b). Only the first 500
nonrigid lower modes are displayed. The strong concentration near lowest
modes shows that small harmonic motions are consistent with the large
motions predicted by the network interpolation model.
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with the large motions predicted by the network interpola-
tion model near the end conformations.

5. Conclusions

We develop a computationally efficient method for the
realistic simulation of macromolecules having a transition
between two conformations. Our method is based on a
coarse-grained elastic network model. Using cutoffs to the
number of nearest neighbors generates a stiffness matrix
that is both sparse and uniform, hence, allowing for efficient
computations. Simulation results for several toy models and
an actual two state protein illustrate that the method devel-
oped here reliably generates sequences of feasible interme-
diate conformations and avoids steric conflicts. Our method
is a reasonable compromise between oversimplified linear
interpolations and computationally expensive methods such
as MD and all atom NMA. Animations produced using
this method are posted athttp://custer.me.jhu.edu/proteins/
movies.html. Among the large number of possible applica-
tions, we have demonstrated that one could use this method
to analyze ligand binding or nucleic acid polymorphism.
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