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Abstract

In this paper we examine the problem of dynamic
self-reconfiguration of a class of modular robotic sys-
tems referred to as metamorphic systems. A meta-
morphic robotic system is a collection of mechatronic
modules, each of which has the ability to connect, dis-
connect, and climb over adjacent modules. We de-
fine a concept of distance between metamorphic robot
confipurations which satisfies the formal properties
of a metric This metric, called the optimal assign-
ment metric, is then applied to the automatic self-
reconfiguration of metamorphic systems from any ini-
tial to any final specified configuration. The tech-
nique of simulated annealing is used to drive the
re-configuration process with the optimal assignment
metric as the cost function. By driving the distance
between the present and the goal configuration to zero,
sequences of confizurations are generated.

1 Introduction

A metamorphic robotic system [Ch94] is a collec-
tion of independently controlled mechatronic modules,
each of which has the ability to connect, disconnect,
and climb over adjacent modules. Fach module allows
power and information to flow through itself and to its
neighbors. A change in the metamorphic robot mor-
phology (i.e., a change in the relative location of mod-
ules within the coilection) results from the locomo-
tion of each module over its neighbors. Thus a meta-
morphic system has the ability to dynamically self-
recorfigure.  Other distinguishing features of meta-
morphic robots are described in [Ch94].

Figure 1 is an example of hexagonal metamor-
phic robot modules. In this figure a single "move”
is made by one module over the other For details
of hardware that perform this kind of motion see
[PKC95,MuKK95) While the designs in those works
have hexagonal symmetry, the method presented here
is applicable to all polyhedral designs.

Potential applications of metamorphic systems
composed of a large number of modules include : (1)
obstacle avoidance in highly constrained and unstruc-
tured environments (such as a nuclear waste site);
(2) ‘growing' structures composed of modules to form
bridges, buttresses, and other civil structures in times
of emergency; (3) envelopment of objects, such as re-
covering satellites from space.
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Fipure 1: Hardware demonstration of a single 'move’
in the reconfipuration process with two modules.

This paper addresses issues in the kinematics and
motion planning of metamorphic systems with a
fixed base, ie., ‘manipulators,’ as opposed to ‘mo-
hile robots.” No distinction is made between ‘motion
planning’ and ‘self-reconfiguration’ of these systems -
these words are synonymous in the context of meta-
morphic systems. In Section 2, we 1eview kinematics
and motion planning issues pertaining to metamorphic
robots. In Section 3, a definition of ‘distance’ between
configurations is given and illustrated with an exam-
ple. In section 4, the method of simulated annealing is
used to drive the cost function based on this metric to
zero. Section 5 discusses the results obtained from the
implementation of the simulated annealing algorithm
for two different energy functions

2 Problem Formulation and Mathe-
matical Background

In this section, we formulate the general problem
of describing a metamorphic robot configuration, and
characterize constraints on module motion.

One way to view space is as a collection of con-
nected close-packed polyhedia (whick is often referred
to as a ‘tessellation’ of space), the centers and/or ver-
tices of which form a regular lattice. In our problem,
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elements of the lattice {individual polyvhedral cells) are
either filled with robotic modules or obstacles o1 ze-
main empty. By denoting the origin as the vector

§ € RN centered at the fixed base module, and defin-
ing unit vectors along any N independent directions
which contain at least two lattice points (module cen-
ters), every point in the lattice is given a unique set
of coordinates with the above described unit vectors
defining coordinate axes.

In order to define distance between configurations,
we will first need a concept of distance between mod-
ules. While the regular Euclidean metric is an ac-
ceptable choice, one that more accurately reflects the
least possible number of moves required by a module
to move between two points is defined as follows. First
construct a latlice connectivity graph, i.e., a graph with
vertices at lattice points, and edges that are straight
lines connecting all neighboring vertices. The distance
measured along shortest paths connecting two lattice
points in this graph is what we will refer to as the
distance between two lattice points/modules. For ex-
ample, if a metamorphic robot is composed of square
or cubic modules, distance between modules would be
given by the Manhattan/Taxicab metric in RN . We
call this measure of distance a lattice metric, and de-
note it as dr{a,b), where o and b are lattice points.
By definition, the lattice metric yields the minimal dis-
tance between lattice points while defining a path con-
necting all intermediate lattice points. Though this
distance is a unique number, the number of equidis-
tant paths may be very large.

The kinematic constraints governing the motion of
one module over the surface of a collection of other
modules are:

¢ Modules can only move into spaces which are not
already occupied.

o Every module must 1emain connected to at least
one other module, and at least one of the modules
must stay connected to the fixed base from which
the collection of modules originated.

o A single module may only move one lattice space
per timestep, and it achieves this motion by de-
forming and mating faces to faces (or in the pla-
naxr case edges to edges, as shown in Figure 1).

s Modules must observe limitations on their mo-
tions due to internal joint limits.

Under these constiaints, the motion planning/self-
reconfiguration problem becomes : determinegiion of
the sequence of medule motions from any given ini-
tial configuration to eny given final configuration in a
reasonable (preferably minimal) nember of moves.

This however leads to a computationally complex
step of determining an optimal set of moves, ie. the
minimum number of moves required to completely re-
configure. To the best of our knowledge, there is no
sirnple method of solving the above problem. The 1ea-
son is that for any number of modules n, the number
of connected configurations possible appears to be ex-
ponential in . To find a optimal sequence of config-
urations leading from the initial configuration to the
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final configuration is akin to finding the shortest path
in a graph consisting of such configurations as ver-
tices. Because of the size of the graph, this requires
exponential time to solve using standard graph search
techniques.

As a result, we have to look for heuristics which
can give a near optimal solution. Any such heuristic
would require a distance measure between configura-
tions so that the shortest path between configurations
is picked. The metric discussed in this paper is one
possible distance measure. The metric properties en-
sure that it’s a well defined distance measure.

3 Defining Distance Between Configu-
rations

In this section, we define a measure of distance be-
tween configurations of metamorphic systems as op-
posed to distance between modules as discussed be-
fore. Each configuration of n modules is defined by the
collection of n connected lattice spaces which it fills.
That is, we do not distinguish between different mod-
ules, and any permutation of labels has no effect on
configuration since all modules are identical. There-
fore, two configurations with the same shape and rela-
tive position in space are said to be the same. Metrics
that define distance between configurations in this way
are denoted d¢ for ‘configuration metric.” Formally, a
metric function satisfies the properties :

d(A,B) >0 and d(A,B)=0<= A=8

d(A, B) = d(B, A) (1)
d(4, B) +d(B,C) > d(4,0),

which are referred to as positive definiteness, symme-
try, and the triangle inequality, respectively. The orig-
inal set, together with a metric function defined on
that set is called a metric space.

Let the present configuration of the robot be de-
scribed by the set of modules A, where a; € A rep-
resents a lattice point occupied by a module in the
configuration A for 1 = 1,..,n. Lef the new config-
uration be defined by the set B, where b; € B for
j = 1,..,n represents a lattice point in the new con-
figuration. One possible configuration metric is the
discrete metric

1 A#B
68)(-‘4;3)*{0 AZB

Another such metric is the overlap metric

824, B) =n— AN B|

which gives the number of modules not overlapping
between configurations A and B.

In the following subsections we define and illustrate
one particluar configuration metric called the optimal

assignment metric, which is denoted as 5(6? ’ 6g ) is ob-
tained by using the lattice metric and concepts of opti-
mal assignment. We will assign modules {or more pre-
cisely, the lattice spaces in which the modules reside)



in two configurations in such a way that the sum of
the lattice distances between matched module spaces
is minimized over all possible matchings.

3.1 Evaluating the Optimal Assignment
Metrie 52?’ )

The optimal assignment metric Eg )(A,B) between
two configurations A and B is given by an optimal
assignment of each element a; in A to an element b;
in B, f: A — B, such that the sum of the distances
between modules (as defined by the lattice metric) for
the assignment is minimized. Equivalently, this can
be represented as finding a minimum weight matching
in a bipartite graph.

We now review the optimal assignment problem
and an algorithm for selving it.

Let m;; be a variable which is 1 if module g; in the
present configuration maps to module b; in the new
configuration and O otherwise. dj; = dp(a;, b;) is the
lattice distance between module a; and b;. An arbi-
trary assignment will have an associated cost function:

f(A,B)= )Y dymy; (2)
1<i<n
15ign
with the constraints
n
Y my=1 forall j=1,.,n and (3)

fuzxl

forall i=1,.,n

3
Zm,‘j =1

J=1

The constraints ensure that the assignment or map-
ping is a bijection. We define

65(A, B) = min f(4, B), (4)

where II,; is the set of all possible assignments and is
equivalent to the set of permutations of module labels.

Several algorithms are available for solving this op-
timal assignment problem. The method illustrated in
the next section is the Hungarian algorithm for opti-
mal assignment [Ku55],{Ro84].

3.2 Example

For an illustration of the optimal assignment algo-
rithm, consider the following example. Figure 2{(a)
shows the present configuration of a six module meta-
morphic robot, Figure 2(b} shows the new configu-
ration and Figure 2{(c) shows a superposition of the
modules in the two configurations.

Construct an n x n matrix I}, with elements dj; =
dr(a;, by) as shown in Equation 5.
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Figure 2: {a)Present Configuration (b)New Con-
figuration (c}Module Labeling

1! 2! 3f 41’ 51' 6'

1/0 1 2 1 2 2

21 0 1 1 1 2

3|1 2 3 2 3 3
D=4l1 12 2 2 3 (5)

52 3 4 3 4 4

6y\2 2 3 3 3 4

Observe that if we subtract a constant k, from the

¢** row of D, giving rise to a new matrix D' with
elements d;j, then
D dygmig= Y dymig~kg 3 ma
1gi<n 1€ign 1<i%<n
15550 157<n =
= Y dymi; -k, (6)
1<ign
1545

using (3). Thus, an assignment m;; that minimizes (1)
also minimizes { 6) and vice versa. The same result

is obtained if a constant I, is subtracted from the p**
column. This gives us 2 method of finding the optimal
assignment.

Performing row operations (subtracting kg, the
minimum element of each row, from each row respec-
tively) we get the matrix in Equation 7. Similarly
performing the column operations, we get the reduced
matriz in Equation 8.

1! 2! 3! 4I 5! 6.‘
1/0 1 2 1 2 2
2({1 0 1 1 1 2
3]0 1 2 1 2 2
D=4ylo o111 2 (M)
slo 1 2 1 2 2
6\0 0 1 1 1 2
0] 1+ 1+ 0o 1 o
1 (0] o 0o 0o o
.10 1 1[0 o ®)
o o [o] o 0 o
0o 1 1 o 1 [0]
¢ o o o [0] o



The problem can then be solved by finding an in-
dependent set ! of n 0's in the reduced matriz since
they correspond to the least cost assignment. The op-
timal assignment is given by taking my; equal to 1
for the corresponding 0's. ¥ the number of indepen-
dent 0's is equal to n then the solution is simply the
assignment m;; corresponding to the above 0's. Oth-
erwise we successively modify the reduced mairiz to

form a new modified matriz D whete there are n in-
dependent 0's. One method to do this is to find out
the minimum number of lines (one line refers to one
complete row or column) which cover all the 0's in

D. Let p be the smallest uncovered element. Mod-
ify the reduced maetriz by subtracting p from all the
uncovered elements and adding p to each twice cov-
ered element by the lines {i.e. each element which lies
at the intersection of two lines). This is the modified

matriz I). It is easy to show that the new modified
matriz has been obtained from the preceding one by
adding or subtracting a constant from different rows
or columns. Thus, the problem remains the same.
For the present case the reduced metriz in Equation
8 contains several combinations of six independent 0's
and so there is no need for forming a modified matriz.
One such combination of six independent 0's which
solves the problem is shown in Equation 8 by the

boxed elements. The value of 6g}(A, B) is obtained
by the sum of the elements in D corresponding to any
n independent 0’s in 1.

Choosing the boxed solution above, the distance

between configurations (5(03 )(A, B)} is given by,

diy + dagr + dgar + dag + dser + dgs = (9)
04+04+2+24+44+3=11

The minimal value is achieved by assigning modules
with the subscripts in the above expiession.

An interesting property of the optimal assignment
approach is that it only needs to consider pairings of
nonoverlapping modules, thus reducing the size of the
matrices generated using the techniques of Section 3.
In cases where there is substantial overlap, this can
save a lot of computational effort. The proof of these
properties is given in [PECS5].

4  The Method of Simulated Anneal-
ing

One of the most powerful and popular methods for
solving classes of problems which are intractable by
standard graph searching methods is the method of
simulated annealing.

In this section we use the metrics discussed in the
previous sections in a motion planning/ reconfigura-
tion algorithm based on simulated annealing, It is
easy to observe that a pure greedy approach will often
get stuck in local minima and will not, yield a solution,
much less a good one.

1 An independent set of 0s in a matrix is a set of §'s, no two
of which are in the same row or same column.
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4.1 Simulated Annealing

Simulated Annesling is an algorithmic approach
to salving optimization problems especially in cases
where the global extremum is hidden among several
local extrema [KiGV83]. The basic idea behind this
algorithm comes from an analogy with simulating the
annealing of solids [MeRRTT53] and slow cooling of
liguids, i-e. the way metals or crystals cool and anneal
to achieve the minimum energy state.

The basic simulated annealing algorithm considers
the objective function to be minimized as the energy of
the system. Starting from an initial state with energy
E, the system is perturbed to a neighboring state and
the change in energy, AF, computed. If AE is neg-
ative, i.e. the energy is less in the new state, then
the new state is accepted. If AE is positive, then
the new state is accepted with a probability usually
taken as e %/T where T is a control parameter cor-
responding to temperature in the analogous case of
thermodynamic cooling. Besides the energy function
and the control perameter T, a cooling schedule is re-
quired, i.e. a scheme for changing T as the algorithm
proceeds, usually taken as Tj4) = A x T; where 8 < 1
is a constant. Initially T is sef to a high value and
after a certain number of steps (k.) at each value of
T, its value Is decreased by the factor 4. Finally a
stopping criterion is required to end the algorithm.

4.2 Energy Functions for Simulated An-
nealing

In the application of simulated annealing to meta-
morphic robot motion planning/ reconfiguration, en-
ergy {or cost) functions which reflect the differences
between configurations are important. Using mea-
sures of distance that formally satisfy the definition of
a metric guarantee that we have a well defined stop-
ping criterion, i.e, dc(A,, Ax) = Oor k = M,,,., which
ever comes first. Ay is the k" configuration in a se-
quence of configurations, A, is the goal configuration,
and Mgz is the maximum allowable moves. Fur-
thermore, the triangle inequality is important because
without it the optimal cost reducing path generated
from configuration to configuration could involve large
excursions. This could occur without the triangle in-
equality because the evaluation of cost between two
configurations may be larger than the sum of distances
between each configuration and an intermediate one.

In this paper, two types of metric based cost func-
tions of the form

E=dc{C,F)

are used with simulated annealing where C denotes
the current configuration of the robot and F denotes
the final configuration desired. First, the difference
of the number of modules and the number of overlap-
ping modules of any two configurations with the same
number of modules (defined as overlap metric in Sec-
tion 3) is considered. Evaluating this with the present
and final configurations yields an energy function of
the form:

E=80(C F)y=n-1CNF|



where n is the number of modules.
Second, the metric defined using concepts of optimal
assignment developed in Sections 3 and 4 applied to
the current and final configurations is an energy func-
tion :

E = 6%(C,F)

4.3 Reconfiguration Algorithm based on
Simulated Annealing

In our implementation of simulated annealing, the
change in energy associated with the move from any
current configuration to all possible neighboring con-
figurations is computed at each step in the algorithm.
A neighboring configuration of C' (denoted Cn} is a

connected configuration for which (5g) (C,Cn)=1for
i = 2,3 . If a move or moves consistent with the mo-
tion constraints results in a neighboring configuration
with reduced energy, i.e. E(Cy,F) < E(C, F}, then
one of these moves is selected randomly. If none of
the moves result in a decrease in energy, then a nor-
malized probability is obtained for each move based
on the probability function

- AE T

L em BT uo

b=

where k., is the number of all possible moves. The
next move is selected based on the above probability.
The algorithm can then be described as

Reconfiguration Using Simulated Annealing
Assign T = Tipitial
While { (Final Configuration not reached) and
(moves made < moves allowed)}
After every k moves, let T=gxT
Find the energy E of the current config.
using the given cost function
Find out all possible moves of all modules.
For each possible move ¢
Find the change in energy AFE; if
that move is taken
If there is a move/ moves for which AE is
negative
Pick any one of those moves
Else If AE is positive for all moves
Assign a probability

oSBT

pi= S —aEIT to each move

Pick a ﬁfolve based on the
assigned probabilities.

5  Results

We ran twenty trials of the simulated annealing al-
gorithm for two sets of initial and final configurations
(Figures 3 and 5), for each of eight different initial
values of the temperature parameter T. The anneal-
ing schedule consisted of 10 moves at each value of T
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followed by a decrease in the value of T’ by a factor
of 0.8, i.e. Tyy = 0.8+ T;. The algorithm stopped
if the final configuration was reached or if 300 moves
had taken place. The results for the two cases are
shown in figures 4, and 6. Note that average number
of moves made were considered in these figures be-
cause the minimum number of moves do not present
a true picture. The minimum moves made were close
to those obtained by hand.

] Intial
aisisid CONFiguration

Final
Eanfiguratian

-

Figure 3: Reconfiguration involving two serial struc-
tures parallel to each other
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Figure 5: Reconfiguration involving breaking a loop
gtructure

Two very different sets of configurations were cho-
sen in order to ascertain the behavior of the simulated
annealing algorithm with two different energy func-
tions. Figure 4 shows the result for configurations
corresponding to figure 3. The initial and final config-
urations in this case are two serial structures parallel
to each other. Because of the motion constraints the
modules cannot simply move into the lattice spaces
corresponding to the final configuration but instead
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Figure 6: Results for the loop configuration

have to move over each other to attain the final con-
figuration. Hill climbing is involved in this case and
the two energy functions lead to different behaviors.

The results in figure 6 correspond to the config-
urations in fig. 5. In this case the overlapping mod-
ules form a loop. The non-overlapping modules corre-
sponding to the initial configuration lie inside the loop
while those corresponding to the final configuration lie
outside the loop. Since both energy functions can be
locally minimized by preserving the overlap, a definite
hill climbing is involved.

As can be seen, the energy function corresponding
to the optimal assignment metric yields better results
than the overlap metric in all cases. When optimal
assignment is used the moves made are usually those
which reduce the distance between an empty lattice
space in the final configuration and a module in the
present configuration. In the case of overlap metric,
unless there is a move which increases the overlap both
good and bad moves are equally likely.

Another observation was that the initial tempera-
ture had no noticeable effect when the optimal assign-
ment metric is used as the energy function. This is
because if there is a move possible which reduces en-
ergy, simulated annealing will always choose that and
in that case the value of the ratio AE/T does not in-
fluence the result. For example, in both cases AFE; is
always negative for some move 4, until a local minima
i3 1eached and such minima are few in the complete
reconfiguration of the robot from the initial to the fi-
nal configuration. Hence the above behavior. In the
case when the overlap metric is used as an energy/
cost function there are a large number of local min-
ima and plateaus, i.e there’s no move which decreases
energy. As a result when 1" is large the value of the
ratio AE/T is approximately the same for all moves
(Observe that |AE| < 1 in all cases for one single
move). This results in an approximately equal proba-
bility for all moves and so a bad move is as likely as a
good move. This affects the average number of moves
required to reconfigure.

An undesirable feature which was observed for the
metrics considered was that they produced ‘branch-
ing’, i.e. a number of branches of modules can come
out of the initial configuration, all pointing towards
the final configuration. Since the configuration has to
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remain connected at all times, reconfiguration in this
case involves overcoming 'deep’ local minima.

Even though simulated annealing is a very powerful
technique, it has the uncertainties associated with a
randomized approach. As a result, it is best suited
for performing a number of off line simulations and
then using the best one out of those to reconfigure the
robot instead of real time application. A pure greedy
algorithm would not have worked at all for the sets of
configurations shown in figures 3 and 5.

6 Conclusions

In this paper we define a useful metric which is one
of many possible measures of distance between config-
urations of a metamorphic system. We then illustrate
how this metric is applied to the motion planning/self-
reconfiguration of metamorphic robotic systems. The
method of simulated annealing was used with this met-
1ic as the energy function for two sets of initial and fi-
nal configurations (one simply connected and one con-
taining a loop). It was shown that the perfomance of
simulated annealing using the metric developed in this
paper performs better than with another cost function
which seeks to maximize the number of overlapping
modules.
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Abstract

Motion generation gives the joint positions, speeds
and accelerations of manipulators, at every mowment. We
assuime that the motion are polynomial trajectories, that
ensure joint acceleration continuity. Usual kinematical
constraints, obtained with approximations, are not
always sufficient, then we will focus on actuators
constraints on voltages and currents.

1 Introduction

The minimum time iotion generation has been
solved in a number of ways, following the usual
approach, ie taking as the feasible limits purely
kinematic constraints on velocity and acceleration {21,
[5], [6]. Conventional motion generation in joint space
uses a constant bound on the acceleration. This bound
must represent the global least upper bound of all
operating accelerations so as to enable the manipulator to
move under any operating conditions. It implies that the
full capabilities of the manipulator cannot be utilized if
the conventional approach is taken. The efficiency of the
robotic system can be increased by comsidering the
characteristics of the robot dynamics at the motion
generation stage. [6] had applied the classical approach
of point to point minimum time control to robot arms,
where only a linear approximate model was used. [1] has
presented a {rajectory generation based on optimal
control formulation. Assuming that joint lorques are
constrained and using the Hamiltonian formulation of
the dynamic model, a minimum time cost criterion was
considered [3] have shown that most often the structure
of the minimum time controf requires that at least one of
the actvators is always in saturation whereas the others
adjust their torques so that some constraints on motion
are not violated while enabling the arm to reach its final
desired destination

Several other methods were presented for the
resolution of the via points motion preblem {7} used the
fact that velocity and acceleration should be as close as
possible to their bounds to achieve a time optimal
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motion Constant velocity intervals are connected with
constant acceleration ones (quadratic arcs). This resulls
in a trajectory of all joints that move close to the given
points with hopefully sufficient accuracy. [10] suggested
an improvement of the algorithm with respect io the
minimum task execution time and accuracy. (8]
considered the optimal motion generation problem
subject to various actuator constraints while the motion
is constrained {o an arbitrary path,

Although the obtained results are very important
theoretically, practically they are not applicable directly
to an industrial robot From an user view point, it would
be preferable to have a somewhat suboptimal but simpler
solution to implement For this purpose, we have chosen,
a priori, a polynomial trajectory and we find parameters
of the trajectory, for a C* minimal time motion. In this
paper, using the formal calculus software MAPLE, we
will show that the simple expressions previously
obtained [3], [6], can be numerically extended when we
include different actuator constraints.

The remainder of this paper is divided into six
sections. While the models and the proposed problem are
formulated in the second and third section, the resolution
method is stated in the fourth paragraph Some
simulation results are given in the fifth paragraph and
some coniclusions added in the last section.

2 Models

2.1 Manipulator Model

The manipulator is assumed to be made of rigid links
For an n joints manipulator, the dynamic model can be
expressed as :

I = A(q)d +4"B(a)g +Fa)a +G(q) (1)

where the vectors q, q and g are respectively the joint
position, velocity and acceleration, the vector I is the
joint input torque, ( is the gravitational force vector, B
is the n x n x n Coriolis and Centrifugal force mattix, F



