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Abstract

Metamorphic robots consist of a collection of mecha-
tronic modules which can connect, disconnect and
move around each other. An important aspect of the
hardware implementation of such robots is the cou-
pling mechanism which helps to connect and discon-
nect the modules. The design of the coupling has to
take into account the misalignment of mating links due
to the finite link thickness and use as little power as
possible while carrying load at the same time. In this
paper a mechanically error tolerant coupling mecha-
nism for planar metamorphic robot is described which
satisfles the above constraints. Hardware implementa-
tion of the above design is demonstrated for the case
of hexagonal modules.

1 Introduction

A metamorphic 1obotic system [Ch94] is a collection
of independently controlled, kinematically sufficient,
mechatronic modules, each of which has the ability to
- connecs, disconnect, and climb over adjacent modules.
A metamorphic system has the ability to dynamically
reconfigure by the locomotion of modules over their
neighbors. Thus they can be viewed as a collection of
connected modular robots which act together to per-
form the given task.

Some important characteristics of metamorphic sys-
tems are

1. All modules are identical in physical structure
and are computationally self-contained.

2. The modules possess a certain degree of symme-
t1y so as to fill planar or spatial regions with minimal

232-009

Figure 1: The mechanical structure of a module.

£aps.
3. The modules are kinematically sufficient.

4. Modules possess the ability to connect and dis-
connect with adjacent modules.

One of the designs which satisfies all the above prop-
erties in the planar case involves the use of hexagonal
modules. Each module, as shown in Figure 1, consists
of six links of equal length forming a six bar linkage
Because of the hexagonal shape, the modules com-
pletely fill the plane without any gaps. The centers
of the modules form a regular lattice and thus each
module can be treated as part of a lattice structure.
As can be seen from the figure, each module possesses
thiee degrees of freedom which are controlled by plac-
ing actuators at alternate joints This enables each
module to move around another while remaining con-
nected at all times during this motion (see Figure 2).



The modules are provided with electromechanical con-
nectors or coupling mechanism actuated by D.C. mo-
tors. Each module carries male and female connectors
on alternate links. Because of the symmetry of the
module, male connectors always meet female connec-
tors and vice-versa {Ch94]. Each module must also
contain a microprocessor which controls the link ac-
tuators and the connector moteors making the module
computationally self-contained.

One of the most important aspects of the above de-
sign is the coupling or the connector mechanism. The
connector not only has to adhere to the adjacent mod-
ule but also has to allow sliding motion of the links be-
cause of finite link thickness (discussed in detail later).
In addition it should be a passive or a quasi-passive
mechanism so as to use minimum power i.e, once it
has coupled or uncoupled the modules, it should re-
quire no power to maintain the connection.

This paper deals with issues in the design of error-
tolerant coupling mechanisms for metamorphic robots,
i-e the coupling mechanism can take into account wide
variations in connector position on the mating link.
Section 2 contains a brief literature review. In section
3 we describe the locomotion of hexagonal modules.
Section 4 describes some alternatives in the design of
couplings for such modules. Section 5 discusses the de-
sign and implementation of an error tolerant connector
mechanism satisfying the above conditions. Section 6
presents results and conclusions.

2 Literature Review

The idea of a metamorphic robotic systems differs from
related concepts presented in the literature. Three
types of modular reconfigurable robotics systems have
been proposed in the literature: (1) robots in which
modules are reconfigured using external intervention,
e.g., [BeZL89, CoLDB92, S5ci85, WB86]; (2) cellular
robotic systems in which a heterogeneous collection
of independent specialized modules are coordinated,
e.g., [Be88, BeW9l, FuN88, FuK90}; (3) swarm intel-
ligence in which there are generally no physical con-
nections between modules, e g., [HaB91]. The concept
of & metamorphic system is separate from all of the
above because modules are homogeneous in form and
function, contact between modules must always occur,
and self-reconfiguration is possible. The concept of
metamorphic systems was introduced in [Ch94], and a
closely related problem is examined in [MKK94].

In the present work, where the design of a me-

chanically error tolerant coupling mechanism is ex-
amined, another body of literature is important.
Namely, work that deals with the mechanics of
pushing and friction and work that uses geometric
and physical constraints to guarantee desired perfor-
mance with minimal numbers of crude sensors, eg,
[AkM92,CaG94,ErM88,Mag3,PeS89,PeBGI3,
RaG94]. By using this ‘minimalist’ philosophy, we
have developed a coupling device for metamorphic
robots that requires no sensors and has a geometry
that allows for significant errors. This is important
because a metamorphic robotic system may frequently
need to reconfigure, and so the connection between
modules must be reliable.

3 Locomotion of Modules

The reconfiguration of metamorphic robots takes place
by the locomotion of modules around each other while
remaining connected to each other at all times. This
can also be described as the ‘rolling’ of one module over
others. Figure 2 illustrates the locomotion procedure.
Observe that the module which is moving remains con-
nected to the other module during the entire process.
For clarity, let’s define the module which is moving at
a given time to be mobile and the module over which it
maves to be fited The motion of the mobile module is
achieved by controlling the three degrees of freedom of
the module by three actuators on alternate joints. For
a detailed description of the kinematics of the mecha-
nism and how joint angles are altered see {Ch94}.

Figure 2: The locomotion of one module over another,
One of the links of the mobile module always remains
connected to the fixed module,

As described before, adjacent links of the modules
carry male and female connectors, or in other words,
they are of opposite ‘polarity’. Because of the symme-



try of the modules, the locomotion always results in
links with opposite polarity or male/female connectors
meeting with each other. In addition this symmetry is
maintained over the entire structure, i.e. the adjacent
links on the boundry of the collection of all modules
are of different polarity. See Figute 3.

Figure 3: Polarity matching in the reconfiguzation of
metamorphic robot.

Any implementation of the locomotion process de-
scribed above in practice has problems because of the
finite thickness of the links.Due to the finite thickness,
the axes of rotation of the joints of two mating links
are not coincident. As a result, when a module moves
over the other, the links in the new position are not
aligned. For an illustration of this see Figure 4. The
displacement (d) between the two links is a function of
the width (w) of the links and is given as

d=wtan8

where # is 30°. This can be detived very simply by
observing the module geometry in figure 4. H this dis-
placement or misalignment is not eliminated, the next
motion of the module in the same direction cannot take
piace. Another problem due to this misalignment and
due to the possibility of motion in both clockwise and
counterclockwise directions is that the connectors on
the two opposite links do not meet at an exact point on
the links, i.e. the connectors themselves get displaced
with respect to each other.

An alternative strategy for motion is one in which
the fized and the mobile modules move together so that
the old connection and the new one are parallel to
the mating links, i.e. each of the two mating links
moves by 60° towards each other instead of the link
of the mobile module moving by 120°. This ensures
proper alignment bui requires a coordinated simulta-
neous movement of other modules in the structure.

Figure 4: Displacement between the links due to finite
link thickness ’

The above argument indicates that the locomo-
tion procedure of modules warrants a mechanism that
somehow removes the displacement between the links.
Also, since the connectors do not meet at the same
position relative to the links, an error tolerant con-
nector mechanism is required. The next section dis-
cusses some of the alternatives which overcome the
above problems.

4 Alternatives in Connector De-
sign

As described in the previous section, the locomotion of
modules necessitates the use of a design which aligns
the mating links and an error tolerant connector on the
two mating links of the modules. A number of possible
designs can satisfy the above requirements.

One alternative is to make the links extensible, ie.
the links can contract or expand relative to their nor-
mal length. In this case the mating link on the mobile
module extends (Figure 5, step 1) aligning itself to the
link of the fized module (Figure 35, step 2), locks in,
releases the old connection and contracts to regain the
normal shape (Figure 5, step 3). The obvious problem
with this method is that it needs an actuator for each
link to extend or contract in addition to the actuators
required for the motion of the joints and for locking
unlocking of connectors.

Another approach which tries to solve the two prob-
lems is one in which the connector is a spring loaded




step 3

Figure 5: Motion involving link extension and contrac-
tion.

mechanism which aligns the two links together. For
an illustration of this see Figure 6. The connector
on the link of the mobile module slides into a wedge
shaped connector on the opposing link by compress-
ing the spring. ‘The relative compression and exten-
sion of the springs on the links is given by the mini-
mization of the strain energy function associated with
the springs. When the old connection gets released
the spring aligns the entire module to normal position.
The problem with this method is that for moving the
entire module once the old connection gets released,
a stiff spring is required. But this necessiates the use
of high torque motors for joint motions in order to
compress the spring in the first place. The larger actu-
ators in turn increase the weight of the system, which
then requires stiffer springs. As a result this design is
difficult to implement and increases the power require-
ment.

Yet another option is to use electromagenetic con-
nectors which serve the duval purpose of aligning the
two mating links and connecting the two modules. One
design employing such a method is shown in Figure 7.
Each link has an electromagnet as a connector. When
the old connection is released {by repulsing the electro-
magnets forming the connection), the electiomagnets
align the links completely due to magnetic force. The
rigid connection between the modules is provided by
the magnetic force between the two connectors . A
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step 3

Figure 6: The spring loaded connector shown for two
links from each module

similar scheme has been used by [MKK94] in the de-
velopment of self~assembling machines or ‘fracta’. The
problem with this approach is that connection between
different modules are active instead of passive. This
means that a large amount of power for the electzo-
magnets is required at all times to keep .the modules
connected.

step |

Figure 7: Module motion using electromagnetic cou-
pling.

The next section describes the design of a error tol-
erant connector which tiies to overcome the limitations
of the above designs while providing proper alignment
and a passive connection between the modules.



5 FError Tolerant
Mechani$m

Coupling

This section describes a coupling mechanism for the
mating links of two metamorphic robot modules. The
mechanism takes into account the finite link thickness
and helps in carrying out the motion as described in
section 3.

The coupling mechanism consists of two different
types of connectors, referred to as male and female,
Let’s define the link cariying the male connector as
link A and the one carrying the female connector as
link B. See Figures 8 and 9.

Lirk A

Figure 8: Semi-exploded view of link A showing the
spiing loaded protrusion.

Link A consists of two parallel plates with space
in between. The space carries a T-shaped protrusion
mounted on a sliding mechanism. The protrusion is
held in place by two springs, one on each side (see
Figure 8). As a result, when force is applied to the
protrusion, it can slide sideways by compressing the
springs.

Link B also consists of two paraliel plates with space
in between. The space carries two cams, able to rotate
120° about their axes. The cam dimensions are such
that when they move in, they completely lock the pro-
trusion on the corresponding link of the other module.
The locking of the protrusion by the cams prevents
any lateral movement while the T-shaped structure of
the protrusion stops any longitudinal movement. The
cams are operated in unison by a single actuator (a
small DC motor in our case) which is connected to the
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Figure 9: Semi-exploded view of link B showing the
double cam mechanism. Shown here without the ac-
tuator

cams by a get of 4 gears ag shown in Figure 9. Asa
result the cams open and close simultaneously.

The motion sequence utilizing this mechanism is
shown in Figure 10, steps 1 to 4. Step 1 shows the orig-
inal position of the two adjacent modules, one of which
is about to move around the other. In step 2 link Al
of the mobile module moves towards link B2 without
displacing link B1. In step 3 this motion is continued,
but ag link Al moves into B2, it slides the connector on
link A2 by compressing one of the springs. As a result,
link Bl gets displaced from its original position and
shifts sideways. The cams on B2 now close in, aligning
link Al parallel to B2. This results in the connector
on Al getting displaced from it’s mean position and
one of the springs getting compressed. In step 4 the
cams on link Bl open up, releasing the connector on
A2. Bl then rotates by 120? and the structure attains
the configuration shown in the figure corresponding to
step 4. The compressed spring on Al now aligns link
Al and B2 completely. This completes one move of
the rnodule.

As can be geen, only one actuator is needed for each
coupling mechanism ie one actuator for every two
links of the module. The links are aligned exactly by
the use of springs on alternate links. A large space is
available between the cams(in their open position), as
a result the protrusion or the connector on the oppos-
ing link can mate from both directions and need not
mate at an exact position, i e, the coupling mechanism
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Figure 10: Motion sequence demonstrating action of
the error tolerant coupling mechanism,

is error tolerant. Another advantage of the above de-
sign is that the locking mechanism is passive in the
stationary state and so uses very little power.

A working prototype using the above design is shown
in Figure 11, Tor a video of the locomotion pro-
cess involving error tolerant connectors, see [PCh95] .
Presently only two links on each module of the proto-

type carry the coupling mechanism in order to illus--

trate the concept. The figures show the different steps
in the locomotion process.

6 Conclusion

In this paper we described the design and implemen-
tation of an error tolerant coupling mechanism for a
planar hexagonal metamorphic robot The locomo-
tion process for metamorphic robots and alternatives
in connector design were discussed. The implemented
design overcame the limitations imposed by finite link
thickness and had the benefit of being error tolerant.
In addition it uses a minimal number of actuators and
no power to lkeep the robot connected in the stationary
state.

12

Figure 11: IHustration of the motion sequence
hardware.

with
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Abstract

A binary manipulatoris a discrete manipulator whose ac-
tuators have only two states. We present an efficient algo-
rithm for the approximation of workspaces and work en-
velopes for binary manipulators of highly actuated struc-
ture. The approximation describes not only the shape of
the workspace, but also its local point density, i.e. the dis-
tribution of the number of points per unit area/volume.
This characteristic of manipulator workspaces and work
envelopes is of great practical importance for binary ma-
nipulators for a variety of problems, e.g., inverse kine-
matics and obstacle avoidance,

The method extends naturally to the continuous range-
of-motion case for any manipulator that can be approx-
imated as a binary manipulator with a sufficiently large
number of bits. This is particularly useful for manipula-
tors with low resolution, since the point density provides
a measure for the local positional aceuracy of the end-
effector

1 Introduction

The traditional assumption in robotics is that mecha-
nisms are actuated with continuous-range-of-motion ac-
tuators such as d.¢. motors. However, there are many ap-
plications of mechanisms and robotic manipulators that
require only discrete motion. For these tasks, continuous-
range-of-motion machines are overkill

A binary actuator is one type of discrete actuator
which has only two stable states (denoted ‘0’ and ‘17).
As a result, binary manipulators have a finite number
of states. Major benefits of binary actuation are that
extensive feedback control is not required, task repeata-
bility can be very high, and two-state actuators are gen-
erally very inexpensive {e.g., solenoids, pneumatic cylin-
ders, etc }, thus resulting in low cost robotic mechanisms.

In principle, an analogy can be made between con-
tinuous vs. binary manipulators and analog vs. digital
circuits. In the history of electronics and computing,
digital devices replaced many of their analog counter-
parts because of higher reliability and lower cost - ex-
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actly the same reasons for developing a binary paradigm
for robotics [1].

The goal of this paper 15 to develop an efficient al-
gorithm for the approximation of binary manipulator
workspaces and work envelopes for highly actuated struc-
tures. The workspace, W < RY, is the set of all posi-
tions reachable by the end-effector. A work envelope is
the boundary of the smallest simply connected subset of
IRYN which contains the whole manipulator structure un-
dergoing all configurations of the manipulator.

The importance of manipulator workspace properties
for design considerations is well known, e.g , [2, 3], as is
the importance of manipulator work envelopes, especially
inn the context of obstacle avoidance.

In this paper, we explicitly consider binary manipu-
lator workspaces and work envelopes. The methodology
can be adjusted to analyze general discrete manipulators,
and extends to the continuous range-of-motion manipula-
tors if they can be approximated as binary manipulators
with a large number of bits. Note that the approximation
describes not only the shape of the workspace, but also
its local point density {precise definition to fellow) For
manipulators with low resolution this is useful, since the
point density provides a measure for the local positional
accuracy of the end-effector, in this context see [4, 5]

The number of configurations that a binary manipula-
tor can attain is of the form 27 where n is the number
of binary actuators. In order to reach a large number of
points n tends to be large for binary manipulators. 4
is easy to see that for n large enough (e.g, n = 40) the
explicit computation and storage of all workspace points
becomes impractical. Therefore an algorithm to deter-
mine binary manipulator workspaces and work envelopes
for large n becomes necessary

A schematic of a highly actuated prototype is shown in
Figure 1 for two of its almost thirty three thousand (2%%)
end-effector positions. This particular design is a variable
geometry truss manipulator. As currently configured,
this manipulator consists of 15 identical prismatic actu-
ators, each with two stable states: completely retracted,
9, or completely extended, 1. The actuator lengths here
are respectively 3/20 and 5/20 The platform widths are
each 1/5. For this protoype it is still possible to calculate
all points of the workspace explicitely by enumerating all
configurations (Figure 2) This workspace will be used
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Figure 1: Sample configurations for a manipulator
with 5 cascaded platforms

Figure 2: Workspace for a manipulator with & cas-
caded platforms

for a comparison with the output of the algorithm pre-
sented in this paper.

‘The 1emainder of this paper is organized as follows:
Section 2 presents the necessary background and def-
initions needed to formalize our approach. Section 3
presents the workspace mapping algorithm {our approx-
imation algorithm for binary manipulator workspaces)
Section 4 presents numerical examples and applies the
algorithm to the development of work envelopes. Section
5 is the conclusion,

2 Background Concepts and Def-
initions

The goal of this section is to provide background needed
to develop an efficient algorithm for the approximation
of binary manipulator workspaces and work envelopes.
Intuitively, the approach presented here is to break up
the workspace into pixels, and calculate how many end-
effector positions in each one are reached. This is done
efficiently with an algorithm that superposes the contri-
butions of each section of the manipuiator by performing
recursive homogeneous transformations starting at the
end-effector and terminating at the base. In a sense, the
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whole workspace is generated by repeatedly performing
a discrete convolution product of the workspaces associ-
ated with individual segments of the manipulator. The
computation of the work envelope is also a superposition
of the workspaces of subsections of the manipulator, but
these cornputations start at the base and work upwards.

The computations required by our algorithm to gen-
erate the workspace for a manipulator composed of m
concatenated modules of a given module design, are of
order (), where the slope depends on the design of
the module. The work envelope iz generated using m
runs of the workspace algorithm, and therefore requires
O(m?) computations.

The quantity calculated by the algorithm is called the
point density of the workspace and will be represented
by something called a density array (precise definitions
to follow). The latter is a computer representation of
the number of end-effector points for each pixel of the
workspace.

The following subsections present the necessary back-
ground and definitions fo formalize our approach This
background is necessary because the workspace descrip-
tion for a binary manipulator is different from that of
standard continuous range-of-motion manipulators Sub-
section 2.1 presents notation and definitions. Subsection
2.2 discusses the storage of information needed for the
mapping algorithm.

2.1 Concepts for Discrete Workspaces

The workspace of a continuous range-of-motion manipu-
lator is often described by its boundary, all points in the
interior of which can be reached. For a binary manip-
ulator the situation is quite different since only a finite
number of points can be reached. Therefore not only the
boundary of the workspace is important, but also the
distribution of the points inside this boundary.

From now on we assume that the manipulator
workspace W (a subset of RY) is divided into blocks
(pixels) of equal size. The distribution of the points is
described as follows: The point density p assigns each
block of W ¢ JRY the number of points within the block
that are reachable by the binary manipulator, normalized
by the volume of the block:

_ # reachable points in block
- unit volume/area

p{block)

The point density serves as a probabilistic measure of
the positional accuracy of the end-effector in a certain
area of the workspace. The higher the density in the
neighborhood of a point, the more accurately we expect
to be able to reach the point

The density array is an N-dimensional array of integers
(D(i, f) for N =2 or D{i, j, k) for N = 3) in which each
element corresponds to one block of the workspace and
contains the number of reachable points in this block.
The density array provides a discretized version of the



workspace from which point density is trivially calculated
{multiplication with a constant). Furthermore, the shape
of a workspace is approximated by all blocks for which
the corresponding entry in the density array is not zero.

The following definition specifies the type of manipula-
tor for which our algorithm is used. A macroscopically-
serial manipulator is a manipulator that is serial on a
large scale, i.e it can be represented by a serial collec-
tion of modules where each module is mounted on top of
the previous one. Modules are numbered 1 to B, from
the base to the end of the manipulator. Closed loops may
exist in each module, but macroscopic loops are not per-
mitted. Note: any module partitions a macroscopically-
serial manipulator into distinct segments.

The ** (upper) intermediate workspace, Wi, of a
macroscopically serial manipulator composed of B mod-
ules is the workspace of the manipulator segment from
module i + 1 to the end-effector. The #** (lower) par-
tial workspace, W,.P , of the same manipulator is the
workspace of the segment from the base to module :. To
visualize this, imagine that the manipulator arm is cut
between module 7 and module i+ 1. The upper part (the
most distal B —{ modules) are considered as a manipula-
tor on its own, with its base in the separating plane The
workspace generated by this manipulator segment is the
tth intermediate workspace of the whole structure. The
lower part {the first ¢ modules) determine the i** partial
workspace

The workspace mapping algorithm is based on the
sequential calculation of the intermediate workspaces,
starting at the end-effector and ending at the base. The
fact that these workspaces are the intermediate results
of the algorithm is responsible for the naming. The par-
tial workspaces are only used for the generation of work
envelopes.

Each module has a frame attached to its top The
frames are numbered such that frame 7 is on top of mod-
ule ¢, and frame 0 is the frame at the manipulator base
The number of independent binary actuators in module
iis denoted J;. Therefore there exist 27 different com-
binations of binary actuator states {and corresponding
configurations) for the i*" module Each module i with
Ji binary joint angles, for i = 1,. ., B will be represented
by the configuration set:

Ci = {{Ry,b1), {(Ra,ba), ., (Ras,bqasn)},

where R; € SO(N) are rotation matrices and b; € RY
are translation vectors for j 1,..,2% These pairs
describe all possible relative orientations and positions
of frame ¢ with respect to frame i ~ 1.

2.2 Efficient Representation of Work-
spaces
Our algortihm is based on determining intermediate

workspaces in sequence Therefore a conceptual tool is
needed to efficiently store intermediate workspaces for
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future use Efficient representation is critical because in-
termediate worltspaces may contain many points, e g, in-
termediate workspaces generated by modules composed
of binary Stewart platforms can easily have millions of
points.

We use the point density array defined in Subsection
2.1 to store all intermediate workspaces To restore or
generate a workspace from a given density array some ad-
ditional information, e.g. size and volume of each block,
is needed. For this purpose, we define the following: The
density sel associated with an intermediate or partial ma-
nipulator is a computational structure containing the fol-
lowing information:

¢ A reference point xg € JR"® which defines a point of
the workspace in real coordinates. Here xg is chosen
to represent the middle point of a workspace. That
is, each component of xg is the middle of the interval
bounded by minimal and maximal coordinate values
of the workspace.

The resolution of the discretization, i.e. block di-
mensions given by Ax = [Az, Ay, Az]T,

The dimensions/length of the array in each direc-
tion, either in real (workspace) coordinates, xp,
[zr,yr,22]%, or as integers, ir,jr,kz, giving the
numbers of pixels for the particular resolution,

The density array, D1, j, k}, of the workspace, which
is a N-dimensional array of integers representing the
point density of the workspace multiplied by block
volume.

We denote a density set as
D = {D,x0, Ax,x1}.

Note that the orientation of the end effector is not stored
since we only discretize in the workspace translational
coordinates.

We denote the density set of the #** intermediate
workspace as D, and the density set of the i*F partial
workspace as D . In the special case when the manip-
ulator is composed of identical modules, Df = DF, but

generally this will not be the case.

3 The Workspace Mapping Algo-
rithm

The generation of manipulator workspaces and work en-
velopes is primarily a matter of generating the partial
and intermediate workspaces and convolving them in the
appropriate way In this section, the workspace mapping
algorithm, which is an efficient way of generating these in~
termediate and partial worlispaces, is presented Subsec-
tion 3 1 presents an overview of the workspace mapping
algorithm. Subsection 3.2 describes the implementation



of one iteration of the algorithm in detail. Further details
of the implementation, an analysis of the computational
complexity of the algorithm in terms of time and mem-
ory and the error resulting from the discretization can be
found in [6].

3.1 An Overview of the Algorithm

The workspace mapping algorithm determines intermedi-
ate workspaces starting at the end-effector and ending at
the base. At each step we climb down one module, main-
taining an approximation of the intermediate workspace
corresponding to the segment of all modules above the
current one. In this subsection we explain how the inter-
mediate workspace at a given level has to be transformed
to yield the next intermediate workspace including one
mote module.

Throughout this section B denotes the number of
modules of the manipulator under consideration. Index
s denotes the sth iteration of the mapping algorithm,
(s =1,2,. ., B), index m denotes the mth module con-
sidered in the sth step. The algorithm starts with the
last module and propagates backwards. Hence the mod-
ule number m considered at step 5 of the algorithm is
m(sy=B-~s+1, s=1,2, ., B, le misdecreasing,
while s is increasing.

By our definition WJ denotes the intermediate
workspace from the top of module m and W1, _, is the
intermediate workspace from the bottom of module m.
These two workspaces are related to each other through
the set Cy of all possible configurations of module mu
Cm = {(R{™,b{™), (RE™,B{™), (R, BT)))
One iteration of workspace mapping determines the
density set DI _, (representing the point density of
workspace W1 _,} from given point density D7, and con-
figuration set Cr.

A schematic of this procedure is shown in Figure 3
To simplify the graphical representation a manipulator
with only four states per module is considered. Figure
3(a) shows at the left the four configurations (Cy,) of the
module under consideration in iteration s in terms of the
translation and rotation of a frame. The second input
to the procedure is the density set DI . It is represented
by one rectangle that is divided into blocks of equal size
with an integer associated to each of them. An additional
reference point represents the position of the center of
the rectangle with respect to the origin. The way the
density sets (rectangles) are superposed depends on the
configurations of the module, as shown on the right of
Figure 3{a). An introduction of a wider grid on top of
the superposed density sets is shown in Figure 3(b} It
only remains to add all entries in each pixel of the new
grid to get the output of this iteration: density set D}, _,

As can be seen in the picture one iteration only con-
sists of a set of homogenous transformations and the su-
perposition of the results. On a more abstract level this
can be seen as a discrete convolution determined by the
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configurations Cp, applied to the input D7,

{a) Configurations of one module and resulting overlay
of density sets
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(b) Summing the points in the new grid leads to the
next density set

o

Figure 3: Schematic of one recursion of the workspace
mapping algorithm

3.2 Implementation

We start the discussion of the details with a summary
of the algorithm: The algorithm starts with the density
set DL The first iteration determines D5 _,, the second
determines Df_,, etc. After B iterations the algorithm
terminates providing the point density D{ of the com-
plete manipulator arm.

The first implementation detail is the question of the
intermediate workspace to start with: Workspace W[ is
the first workspace to be considered. It describes the
location of the end-effector relative to the top of the
most distal module. In general this is simply one point,
typically the location of the center of the end-effector.
However, for the purpose of work envelope generation we
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1 FEstimate size and location of intermediate workspace W, _,. Based on this information:
(a} Choose the dimensions of a block in the new density array: (Az(’"“” , Agylm=1) Az(m_l)).

(b) Based on these dimensions determine the number of fields of the density arzay in each direction:

{c) Allocate sufficient memory for this density array and initialize it with zeros.

{d) Determine the coordinates of the middle point of the new workspace: (mémml),yém“l),zémml))

{e) Determine the array indices, (iémml}, ju(m“”, kém_l) ) , of the middle point of the new artay

transformation to the density array D,

2. For all configurations (Rfm),bgm}) € Cm, (1 =1,...,2"™ ) apply the corresponding homogeneous

For all indices (i,7,k) for which the entry DL (i,j,k) of the density array D}, is not zero:

i

(a) Calculate the vector x = (z(i), y(7), 2(k))” from the array indices (i, 7, k).
(b) Calculate the coordinate vector x = R{™x +b{™ e Wi_,.
{¢) Find the array indices (i', j‘,k') of x in the new array.

(d) Increment the entry of the block of the new array by the corresponding entry of the old array:

DLl k) e (Dhati iKY+ Dhiisk)

Figure 4: Implementation of one recursion of the workspace mapping algorithm

choose W4 to be the discretized shape of the end-effector
including the upper part of the last module, In any case
density set ’ng can easily be determined from this infor-
mation.,

A schematic of one iteration is given in Figure 3 and
was explained in the previous subsection. Figure 4 lists
the major steps of whe implementation of one iteration
and is further explained below

The first block in Figure 4 describes the administra-
tional part of an iteration: an estimate of size and lo-
cation of the intermediate workspace to be calcaluted is
needed, the resolution has to be chosen and memory has
to be allocated accordingly For details we again refer
the reader to [6].

To estimate size and location of workspace W1 _ |, all
27m homogeneous transforms are applied to the eight cor-
ners of the density array DI (four for the planar case).
The resulting maximal and minimal values in each coor-
dinate axis provide a conservative estimate for the bound-
aries of the next density array, Df,_,. An additional
reduction procedure is implemented to reduce a result-
ing memory overhead after the workspace is calculated.
The computational complexity for the estimate and the
reduction procedure are not significant compared to the
essential mapping process described in the second block.

The second block in Figure 4 describes the implemen-
tation of the homogenous transformations. They are im-
plemented by steps (a) - {d), in the interior of the lower
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blocl, which are performed for each configuration and
for all indices corresponding to non-zero entries in DL, .
Hence it is the main contribution to the computational
complexity of the algorithm. It is therefore worthwhile
to discuss these steps in more detail:

We consider only one iteration To eliminate indices
that complicate the presentation the following notation
is used. All variables belonging to workspace W,/ or den-
sity set D! have names without superscript, while vari-
ables belonging to W/ _, or DI _| have a supersciipt '.
Purthermore we restrict the description to one particular
configuration (R, b) = (R{™ bi™) e O

Now we consider one particular block of the input den-
sity set DI specified by the indices (i,j,&). The cor-
responding entry of the density array is denoted d =
DL (:,4,k) The operations to be performed are:

(&) The middle point of block with index (¢, j, k) is taken
as the refernce for the block Its coordinates in the
workspace are:

x=| 0 Ay 0 i+ w—jelAy
0 0 Az k zg — kodhz

{h) The homogenous transformation corresponding to
configuration {R,b) is applied to this reference point:

:En'
x o= ¥y | =Rx+b

-~



(c)} The indices (i, j ,%') of % for the output density set
DI, are:

(2 round {ig + (&' — zp)/Ag’
round {jo + (¥ — %)/ AY
round k;} + (2 —zp)/ Az

St St Somaare”
i

(d) Finally the entry of block (i', j',k') in density set
DL _, is incremented by d = D} (4, ,k).

Note, that the entries of the same density array DI _;
are changed while handling all I = 1,. ., 27~ configura-
tions, without reinitializing. This implements the super-
position (or convolution) of all parts of workspace Wi, _; .

Steps (a)-(¢) are affine transformations, the last one
followed by a rounding procedure. This can be repre-
sented as one composite affine transformation followed by
rounding which considerably improves the performance
of the operation. The described procedure is performed
in constant time for each block. Choosing a fixed number
of pixels for all intermediate workspaces, has shown good
performance. As a result the error grows quadratically in
the number of modules B with a very small factor. The

amount of required memory is linear in the number of

modules as is the time requirement, see [6]

4 Applications and Examples

In this section we present examples of workspaces gener-
ated using the workspace mapping algorithm, and show
how the algorithm has to be altered to generate work en-
velopes. In these examples the algorithm is applied to
a binary truss manipulator. Each module has the same
structure as the modules of the manipulator described in
Section 1 and illustrated in Figure 1 and 2. Only the
number of modules varies.

Figure b (a)-{c) show the results for a binary truss ma-
nipulator with 5,8 and 14 platforms respectively, each
with actuator strokes stated earlier. Figure 5 (a), which
presents the workspace of the manipulator with 5 plat-
forms, can be compared to the exact results shown in
Figure 2. Note, that the length scales of the figures differ
for different numbers of platforms.

In order to generate the work envelope, we modify the
algorithm by choosing a different start workspace than
before. Previously a single point was used representing
the center of the end-effector. Now we choose a contour
that represents the shape of the end-effector. Here we
simply use a line representing the upper base of the most
distal module. Application of the algorithm sweeps this
line (contour) through the plane in discrete steps corre-
sponding to all possible configurations. The algorithm
can also be modified to allow smaller steps of the sweep-
ing procedure than given by the discrete configurations.
This way a continuctus sweeping contour is generated A
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Figure 5{a): Density of a manipulator with 5 mod-
ules (15 Bits), rs = 0.018858
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Figure 5(b): Density of a manipulator with 8 mod-
ules (24 Bits), rg = 0.041780
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Figure 5({c): Density of a manipulator with 14 mod-
ules (42 Bits), r;4 = 0.146833

further simplification is that the number of points for
each pixel is pot stored, but instead whether or not it is
empty {0 or 1}.

To calculate the work envelope of a manipulator con-
sisting of m modules, this modified version of the map-
ping algorithm is applied to the partial manipulators
composed of m, m — 1, ..., 1 modules and the result-
ing partial workspace are superposed. The result will be
a fairly reliable representation of the work envelope, Fur-
thermore, if the modules are all the same, the algorithm
has to be applied only once, since D, = D

Figure 6 shows the work envelope for the case when
the joint stops are closer together than in the previous
examples, (3/20,4/20), and the width of each platform is
chosen as before (4/20).

5 Conclusions

This paper has presented an efficient algorithm for gen-

erating approximate workspaces and work envelopes of

robotic manipulators with binary (two-state) actuators
Examples were provided for the case of a planar binary
variable geometry truss with up to 20 modules. While the
focus of this paper was binary manipulators, the method
is applicable to general manipulators if their joint range is
discretized and represented using an appropriate number
of bits.
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Figure 6: Work envelope of a manipulator with 9
modules (27 Bits)
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