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Interconversion Between Truncated Cartesian
and Polar Expansions of Images

Wooram Park, Student Member, IEEE, and Gregory S. Chirikjian, Member, IEEE

Abstract—In this paper, we propose an algorithm for lossless
conversion of data between Cartesian and polar coordinates, when
the data is sampled from a 2-D real-valued function (a mapping:
R2 — R) expressed as a particular kind of truncated expansion.
We use Laguerre functions and the Fourier basis for the polar co-
ordinate expression. Hermite functions are used for the Cartesian
coordinate expression. A finite number of coefficients for the trun-
cated expansion specifies the function in each coordinate system.
We derive the relationship between the coefficients for the two co-
ordinate systems. Based on this relationship, we propose an algo-
rithm for lossless conversion between the two coordinate systems.
Resampling can be used to evaluate a truncated expansion on the
complementary coordinate system without computing a new set of
coefficients. The resampled data is used to compute the new set of
coefficients to avoid the numerical instability associated with di-
rect conversion of the coefficients. In order to apply our algorithm
to discrete image data, we propose a method to optimally fit a trun-
cated expression to a given image. We also quantify the error that
this filtering process can produce. Finally the algorithm is applied
to solve the polar-Cartesian interpolation problem.

Index Terms—Coordinate conversion, interpolation method,
truncated expansions.

I. INTRODUCTION

N 2-D real space (R?), polar and Cartesian coordinates
I are very common and widely used. Many measurement
devices such as ultrasound equipment and radar systems gather
data in polar coordinates [8], [9]. On the other hand, since
conventional display systems have a rectangular grid and cor-
responding mathematical expressions are more straightforward
(e.g., the Euclidean distance between points is easy to compute
and products of Fourier expansions follow naturally), Carte-
sian coordinates are widely used for image display and most
mathematical manipulations. Therefore, in order to display
data obtained from polar-coordinate-based transducers and
deal with them using Cartesian-based mathematical tools, we
need a concrete way of converting between polar and Cartesian
coordinates. Of course, existing coordinate conversion tech-
niques and interpolation methods have been suggested before,
including: [5], [6], and [9]. However, all of these techniques
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are approximate in nature, and so the conversion from polar
to Cartesian and back (or Cartesian to polar and back) results
in the destruction of some information. Existing methods are,
therefore, not a lossless process, and if one restricts the dis-
cussion to Fourier expansions (i.e., Fourier series in Cartesian
coordinates and Fourier-Hankel transform in polar coordinates)
then there will never be an exact conversion. Even though one
can reconstruct a band-limited function to within a desired error
bound using an optimal sampling window with Fourier-based
analysis techniques [7], it is generally not possible to describe
the same function as simultaneously bandlimited in both of
these two classical bases.! The basis considered in this work is,
therefore, special.

Conversion between polar and Cartesian coordinates is given
as

(z,y) & (p,0) where =z =pcos, y=psind.
Using this relation, we can have two representation of a 2-D

real-valued function (mapping: R? — R) as

fc(xty) = fp(pa)

where the superscripts ( - ) and (- )P denote the representations
in the Cartesian and polar coordinate systems, respectively. If
the function is continuous, the conversion is very straightfor-
ward and has no ambiguity. However, if the function is defined
on a discrete and equally spaced grid, the conversion cannot be
defined in the same way, because the two grid systems do not
match as shown in Fig. 1. Therefore, when we display the data
from a polar grid on a Cartesian grid, we have to perform inter-
polation computations to obtain data on the Cartesian grid using
the data available on the polar grid. A similar problem can occur
in tomographic reconstructions [4].

In Section II, we investigate the truncated expansions of a 2-D
function both in the Cartesian and polar coordinate systems. In
Section III, we show how to compute a set of coefficients that
specifies the truncated expansion fit to given discrete data. The
error in this filtering process is investigated. In Section IV, we
show that the two sets of coefficients have a special relationship,
which we use to define the lossless coordinate conversion of a
2-D function. In Section V, we show how our algorithm works
with numerical examples. Section VI gives conclusions and dis-
cussions.

IThe term *“band limited” is used commonly to denote truncated Fourier ex-
pansions, but can also be used more generally to describe truncated expansions
in any orthogonal basis. Generally, a truncated expansion in one basis will not
be truncated in another. In order to avoid any confusion, we use the word “trun-
cated” in the context of Hermite/Laguerre—Fourier expansions, since these are
generally not band limited in the Fourier sense.

1057-7149/$25.00 © 2007 IEEE
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Fig. 1. Equally spaced grids. (a) Grid in polar coordinates. (b) Grid in Cartesian
coordinates.

II. TRUNCATED EXPANSIONS IN CARTESIAN
AND POLAR COORDINATES

In this section, we review Hermite and Laguerre functions,
and how they are used to construct orthonormal expansions of
functions over 2-D domains.

A. Truncated Hermite Expansions in Cartesian Coordinates

Hermite polynomials are well known in the literature [12],
[13] and are generated by the Rodrigues formula

The Hermite functions are defined as

1 2
hn(t) = —————=H,(z)e” 7. €))
)= g )
Note that the set {h,(x)} is orthonormal, which means
JZ2 b ()b (2)dz = 6. The Hermite functions satisfy the
recurrence formula

Vi Thpp1(x) = V2zhy (2) — /by 1 (2).

This recurrence formula is very useful to evaluate the Hermite
functions of high orders.

The set {h,,(z)} forn = 0,1,2... forms a basis for the set
of square-integrable functions on the line [12]. Due to this fact
and their orthonormality, any f € £?(R) can be expanded as

= Z fhn (z)
n=0

_ /Z F(@)ho () da

Approximately, a function can be expanded as a truncated Her-
mite series

H,(z)=(-1)"e

where

flz) ~ f han ()

ﬁMz

where N is a large nonnegative integer.
If the domain of a function is 2-D, we can employ the 2-D
Hermite series.

Folwy) =Y

m=0n

fmnhm(m)hn(y)

NE

0
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where Hermite series coefficients are defined as

Foom = /_o; /_0; P, ) (@) ()dady. @)

Also, we can use a truncated expansion of the form

Z men m(@)hn(y) 3)

m=0n=0

where N is a large nonnegative integer. We will use the slightly
different form as follows:

C(xvy) = Z

or equivalently

N—m

> Fonh(2)h
n=0

n(Y) 4

Zz.fnm nlln ) m— n('y) 5)

m=0n=0

(z,y)

The reason why we use (4) or (5) instead of (3) will be explained
in Section IV.

It should be noted that finite Hermite expansions have some
drawbacks. For example, they do not preserve the truncation
limit under shifts, while Fourier expansions do. Furthermore,
since the Hermite functions decay exponentially outside of a
bounded region, it is important to center the image of interest
within this region to obtain the highest resolution for a given
truncation. Despite these shortcomings, the Hermite function
expansions are superior for Cartesian-polar coordinate conver-
sions for the reasons demonstrated in the rest of the paper.

B. Truncated Expansions in Polar Coordinates Using
Laguerre Functions and Fourier Basis

The associated Laguerre polynomials are also well known
and given by the Rodrigues formula

erx—k dn

n!  dzn

L(x) = (7).

T

The associated Laguerre polynomials are orthogonal over

[0, 00) with respect to the weighting function zFe =
o k)!
/ ahe L (2L (z)dz = w&”’"'
0 n.

On the other hand, the Fourier series expansion of a 1-D func-
tion with period 2 is defined as

us 27r Z f e

where

Using the Laguerre polynomials and the Fourier basis, one
can define orthonormal basis functions in 2-D polar coordinates
as follows [1]:

Xomn(p0) = (=1 [(m — [n])/2]!

W[(m + [nf)/2]!
xL (m |n\)/2( )e_pz/ze_ine (6)

)(m—\nl)/2
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where (m — |n|) and (m + |n|) are even numbers. If we define
Yinn(r) and Z,,(6) as

Youn(p) = (—1)(m=lebrz, [2Mm = 12D /2

[(m + |n])/2]!
in] _
X Ly 2(0)e ™"/
Zn(0) = L e

Vor

then X, (p, #) can be decomposed as

A 2-D function in polar coordinates can be expressed as

fr(p,0) = Z Z fm.,nX:n,n(p70) (7
m=0n=

where the Laguerre—Fourier coefficients are

N 27 [e's)
Foom = / / 120 6)Xmm (0. O)pdpds ()

and x* is the complex conjugate of . Note that the integer vari-
able n in (7) increases by multiples of 2. A truncated expansion
can be written in the form

M m
(.00 =Y > fanXinn(p.0) )

m=0n=—m

where M is a positive large integer.

One of the major contributions of this paper is to establish the
equivalence of (4) and (9), and to find how N and M and fy,,
and f,, . are related.

III. FILTERED IMAGE

When data is obtained from discrete images, we cannot di-
rectly apply (2) and (8) to this data to get the truncated expan-
sion. In this section, we propose a way to obtain truncated ex-
pansions corresponding to a discrete image. Sampling of these
expansions defines a filtering? of the original image. We inves-
tigate the difference between the original image and its trun-
cated (filtered) version. Of course, for this to be a filter, the
number of coefficients must be less than or equal to the number
of values specified on the grid. Otherwise, no information (or
noise) would be rejected from the original image, and the excess
degrees of freedom would need to be constrained in some way,
since they would not be determined by the original image. A
filtering method using Hermite expansions in the Cartesian co-
ordinates is presented in the manuscript [14]. A brief summary
of these results is presented here without derivation. A detailed
filtering method using Laguerre—Fourier expansions in polar co-
ordinates will be presented.

2Since this is not shift invariant, it is not a filter in the sense of Fourier-based
image processing. However, we view it as a filter in the sense that it acts like a
low-pass filter in the Hermite expansion.
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Fig. 2. Contour plot of logarithm of condition number of HZ H depending on
truncation limit and range of «:; (M = 301).

A. Filtered Images in Cartesian Coordinates

Definition: Fy, is a given M x M image matrix. The Her-
mite-filtered image function f(x,y) is given by

N N-m

flz,y) = Z Z fmnhm(x)hn(y)

m=0 n=0
where fm—1,n—1 is the (4, j) element of F,and F'is given by
F=HTH) *HTF,,HHTH)™!

where H; ; = h;_1(z;). The Hermite-filtered image is sampled
from this function on the grid points of the original image.

The matrix H depends on the truncation limit N and a series
of x;. For a given M x M image, z; is determined by

wi=—R+2R(i—1)/(M —1)

where R is the range of z; and 7 = 1,2, ..., M. This means that
the image is mapped to [—R, R] X [~ R, R] in the Cartesian co-
ordinates. Fig. 2 shows the logarithm of the condition number of
HT H when the size of the image is 301 x 301. Since the small
condition number of H™ H guarantees the stability in its inver-
sion as well as the invertibility, 21 appears to be a good number
for the range of x;, making it possible to choose a larger trun-
cation limit with which the Hermite filtered image can describe
more details of the original image.

Choice of the range of z; is related to the effect of scaling
factor in the Hermite transform. Basically the Hermite trans-
forms of the similar functions f(z) and f(10z) illustrate a
weakness of Hermite expansions. However, when we get a
truncated expansion fit to a given discrete data, we can choose
the scaling factor so that the difference between the filtered
image and the original image is small and the matrix inversion
in the filtering process is stable. Since, in Fig. 2, the available
truncation limit is maximized near the value of 21, this value
can be chosen as a near-optimal scale regardless of the image
of interest.

Fig. 3 shows a 301 x 301 brain scanning image and corre-
sponding Hermite-filtered image with the truncation limit, 240.
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Fig. 3. Original and Hermite-filtered images. (a) Brain image (301 X 301).

(b) Hermite-filtered image (N =
image is from
latlas/t1ax11.html.

240, error = 5.0%). The original
http://www.med.univ-angers.fr/discipline/radiologie/Int-

The normalized RMS error between the original and the filtered
version is 5.0%. For the truncation limits, 150 and 200, the er-
rors are 10.2% and 6.9% (the images are not shown), respec-
tively. The normalized error is defined as || — Ir||/||I||, where
|| - || denotes the Frobenius norm, and I and I are the original
image matrix and its Hermite-filtered version, respectively.

B. Filtered Images in Polar Coordinates

As in Cartesian coordinates, for a given array of M, x Mjy
sample points on a polar grid, f?(p,,#,), we minimize the fol-
lowing cost function to get the Laguerre—Fourier coefficients

C(fm.n)

M, M,

= Z Z fp(p;m 0q)

p=1g=1

N m
_Z Z f’"v7lx:<n,,n(pP:9¢1) Pp-

m=0n=—m

1949

For a fixed p,, we consider the two functions
9() = T”(ﬂp 0,

= Z Z fmnan Pp> ek)

m=0n=—m
N m

=2 D FmnYmnl0p)Z(00)
m=0n=—m

where k = 1,2,..., My. When the two functions are defined
on an equally spaced grid on a circle, Parseval’s equality for the
discrete Fourier transform (DFT) tells us

M, | Mot
Z 9(0x) — h(6r)]* = A Z |F(g)t — F(h)i[?
6
k=1 1=0
where the DFT is defined as
Z_ —27‘L]l/]\[0
7=0
The DFT of Z}(6y.) gives
Mo—l ..
F(Z00) = Y Za(y)e>mie
j=0
My—1
27ij(n—1)/Mpy
\/ 27r Z
M,
= _eél,n-

V21

With these relations, the cost function can be rewritten as

My—1
C= SZPP Z fp(/)p))
=0
\/%Z Z fmn m,n pp)éln
m=0n=—m
M, My—1
:SZ Z fp pp Pp
p=1 1=0
N 2
mz Z fmn nln(pp)\/ﬁéln
m=0n=—m

where S is a constant, which is not important in minimizing the
cost function. Changing the order of summations gives

Mo—1 M,
C=83 D |FUop)nv/y = =
=0 p=1

2

N N
X Z Z .ﬁn,nxn,n (ﬂp)\/p_P§I,1z

n=—N m=|n|

Note that, in the fourth summation, the variable, m is increasing
by multiples of 2. For the filtering to be possible, the number
of data points should be greater than or equal to the number of
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coefficients, which means My > N + 1 in the 6 direction. The
cost function is

0=53 Y [P
1=0 p=1
2
\/_ —N m=|n| ' 1
My—1 M, ~
8 3 D FT vl
I=N+1p=1

Since the second term on the right hand side is constant, the first
term is all that is of interest when performing minimization. The
new cost function is

N M,

=22 |F

=0 p=1

fp /)p Pp

2

—%ifmmmz(p NS (10)
mm:l ’ , ! :

For a fixed [, let us define the following two vectors and a matrix
(shown in the equation at the bottom of the page), where [n /2] =
n/2if n is even and [n/2] = (n — 1)/2 if n is odd. The cost
function is

N
= Z “bl - Al$l||2-
=0

Even though b; and x; consist of complex numbers, the pseudo
inverse approach is still possible because A; is a matrix of real
numbers. As long as the condition number of A; is small, the
minimizer is
xry = (A’ITAI)_l AlTbl

The matrix A; is determined by the truncation limit and the
range of p, much like H was in the case of Cartesian coordi-
nates. Fig. 4 shows the condition numbers of Ag, when M, =
151; 21 and 240 are the best choice for the range of p and
the truncation limit, respectively. In that case, Fig. 5 shows the
condition number of A; with respect to /. Since the maximum
condition number appears at [ = 0, the choice is safe. Fig. 6
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Fig. 5. Logarithm of condition number of 4, (M, = 151, N = 240).

shows a brain image expressed in polar coordinates and corre-
sponding Laguerre—Fourier-filtered images with different trun-
cation limits.

IV. INTERCONVERSION BETWEEN POLAR
AND CARTESIAN COORDINATES

In this section, we find the relationship between the represen-
tations of a function in polar and Cartesian coordinates when the

b= [F(fP(p)iv/pr -
[ oon

T

and
A =

53

VP1Yii(p1)
VP2Y1(p2)

X

F(P(prs,)i/Pay)
~ T
: f2[(N—l)/2]+l,l:|

VP1Yi2,(p1)

\/myz[Ngl]+l,l (pa,)
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()

Fig. 6. Original and Laguerre—Fourier-filtered images viewed in a polar
coordinate array. (a) Brain image on polar coordinates (700 X 151).
(b) Laguerre-Fourier-filtered image (N = 150,error = 7.1%).
(c) Laguerre-Fourier-filtered image (N = 200,error = 4.5%). (d) La-
guerre—Fourier-filtered image (N = 240, error = 3.3%).

truncated expansions in (5) and (9) are used. Furthermore, we
relate the truncation limits, N and M, so that there is no loss of
information during conversion.

A. Laguerre—Fourier Coefficients in Terms of Hermite
Coefficients

The Laguerre polynomials and the Fourier basis can be
written in terms of the Hermite polynomials as follows [2]:

= S

r=0 s=0
XH2r+m,—s(x)H2n—2r+s(y)

where p = /224 y? and § = atan(z,y). The function
atan(x,y) returns the four-quadrant inverse tangent, which is
the angle between the vectors (z,y)” and (1,0)7.

Using (1), (6), and (11), we can express X.mn(p, 8) as

eimGPmLm( 2

(11)

(m+n)/2 —n
Xen(p,8) = D Y i*Chin Oy har—ns(2)
r=0 s=0

(2r —n—s)l(m+n—2r+s)!
Xhm Nn—2Lr-+s
N W 7 (52 )1 (257
where n < 0,z = pcosf and y = psin 6. If we use a new vari-
able, « = 2r —n— s, then the double sumis >, m+")/2 S
If we define the combination symbols, C* = n! / (k'(n — k),
to be zero when they cannot be defined (e.g., C, !, Cs = 0),
we can extend the limits of the summations as me/ . S s

where [m/2] = m/2if misevenand [m/2] = (m —1)/2if m

1951

is odd. Finally, we change the order of summations to get

Z

) ")!( 2")'
/2

Z 2r—n— aCm+n)/2OET7;n

an p7

T ha(2)hm—a(y).

For n > 0, we use the fact that x.mn = X7, —
this x,.» and (5) in (8) gives

- Substituting

12)

p
= Z Gn(p7 Q)fn;P—”

n=0

fp,q

Cf;21’7;27‘—q—’n

ifg<o0
- Z ”/2] Cr Cn 2r( )27’+q—n

if ¢ > 0.

A similar equation has been shown in [1]. However, (12)
specifically tells us how we can compute the Laguerre—Fourier
coefficients using the Hermite coefficients. This equation also
contains some other important properties, as described below.

First, the Laguerre—Fourier coefficients ( f ) can be computed
by linear combination of the Hermite coefficients ( f ). Second,
fp.q is determined only by a set {fn,_n}(n = 0,1,...,p).
In other words, the relationships are localized. Third, it tells
us how the truncation limit should be determined in order for
the coordinate conversion to be lossless. Since we started with
(5), pin (12) cannot exceed N. Therefore, the Laguerre-Fourier
coefficients from (12) are f,, 4, (p =0,1...,N,q = —p,—p+
2,...,p). We reconstruct the 2-D function, f?(p, ) as

N p
= Z Z fp,qxz,q(p79)

p=0g=—p

Note that this is directly derived from (5) without approxima-
tion. Comparing this to (9), we come to know that the trunca-
tion limits in (5) and (9), N and M, should be equal in order for
there to be no loss during conversion.

B. Hermite Coefficients in Terms of Laguerre—Fourier
Coefficients

The Hermite polynomials can be written in terms of the La-
guerre polynomials and the Fourier basis as follows [2]:

Hy(z)Hy—1(y) = Re ((—i)k_l > Z

r=0 s=0

Cl Ck l
> (T + S)!ei(kZT25)9p(k2r2s)LI:_|—_52r—25(p2)> (13)

where C*¥ = n!/(k!(n — k)!), = pcosf,y = psinf, and
Re(c) gives a real part of a complex number, ¢. To evaluate
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the associate Laguerre polynomial, L}, for n < 0, we use the
formula [2]

mlp" Ly, (p%) = (=1)"(m +n)lp "L, (7).
Depending on r and s in (13), the superscript of the Laguerre
polynomial may be positive or negative. Using (14), one can
rewrite (13) with Laguerre polynomials having only positive
superscripts. Then, applying (1) and (6) to the new version of
(13), we can express the Hermite coefficients in terms of the
Laguerre—Fourier coefficients as

(14)

k
fir_1=Re ZD]'(Lk—l)fk,zj—k (15)
=0
where
! .
_ ke e | (K= )1
D;(l,k=1) =) (=) (=) Cy e U h—1)1"

r=0
This relationship is also linear and localized. In addition, the

truncation limits, /N and M should be equal for lossless conver-
sion.

C. Interconversion Between Truncated Hermite and
Laguerre—Fourier Expansions

Now we can conclude that the following two expressions are
equivalent

I

Mz

p
Z FoaXis.q(p,0

q=-

I
=]

p

fola,y) = f ho(@)hm—n(y)  (16)

MZ@
ﬁMs

I
=)

m

where z = pcosf and y = psin 6, and the constraints described
below are in effect.

Since f is a real-valued function, in the Cartesian coordi-
nate expression there are ((N 4 1)(IV +2)/2) coefficients
that are real numbers. On the other hand, since n is in-
creasing by 2 in the polar coordinate expression, there are
((N + 1)(N + 2)/2) coefficients that are complex numbers,
which means there are (N + 1)(N + 2) real numbers. How-
ever, since f, o is a real number and f,, = f;_ ¢ there are
exactly ((N + 1)(N + 2)/2) independent real numbers in both
expressions.

As shown in (16), once we have a truncated expansion in
either of the two coordinate systems, we can easily evaluate the
function on the complementary grid. This can be rewritten as

fE(p,0) =

—ZZfW —nh

m=0n=0

fc(p cosf, psin )
n(p o8 0)p—n(psinb)

a7)

= fP(\/ 2% + y2,atan(z,y))
N p
=D > FeaXpa(Va? 4y atan(z,y)).

p=0q=—p

f(z,y)

(18)
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Suppose filtered data is provided on one coordinate grid (i.e.,
polar or Cartesian). Evaluation on the complementary coordi-
nate grid is possible without using the truncated expansion asso-
ciated with the complementary grid by simply resampling when
the expansions in (16) are equivalent. It is important to realize
that the justification for doing this is the lossless interconversion
between these expansions when the compatible truncation limits
are enforced via filtering. In other words, the mathematical in-
vertibility of (12) and (15) in exact arithmetic is what justifies
resampling.

In principle, given a truncated expansion in one coordinate
system, we can find the complementary expansion by imple-
menting (12) or (15). However, in practice, there may be an
obstacle in computing them. The factorials and the combina-
tions (C!™) for large arguments introduce some numerical error
during computation. To overcome this, we use a resampling
technique. Given a set of f, we sample appropriate points of
fP(p,0) using (17) and then compute the Laguerre-Fourier
coefficients using the method described in Section III-A. For
an arbitrary image, there is loss of information in the filtering
process, but applying it to resampled data from a truncated
expansion gives exact coefficients (to within machine preci-
sion). The whole process and the numerical examples will be
presented in the next section.

V. NUMERICAL EXAMPLES

Fig. 7(a) shows how we perform the interconversion for a
given image initially defined on a Cartesian coordinate grid. For
the image on a rectangular grid, we compute the Hermite coef-
ficients using the filtering process suggested in Section III-A.
The truncated Hermite expansion gives the filtered image as
shown in Fig. 3. Then we evaluate the Hermite expansion on the
polar grid. Since we know that the sampled values are sample
values of a truncated expansion on the polar grid, we can com-
pute the exact coefficients of the truncated Laguerre—Fourier ex-
pansion using the method in Section III-B. If we again evaluate
the truncated Laguerre—Fourier expansion on a Cartesian coor-
dinate grid, the image is the same (to within machine precision)
as the original Hermite filtered image. The double arrows in
Fig. 7 indicate that the process is reversible. Fig. 8(a) is resam-
pled data on polar grid using the truncated Hermite expansion.
We compute the exact Laguerre—Fourier coefficients using this
resampled data. Again, if we resampled data on the Cartesian
grid using the truncated Laguerre—Fourier expansion, we have
the resulting image shown in Fig. 8(b), which is the same as the
filtered image of Fig. 3(b). The normalized error between the
two is 3.5 x 10~ 14, which illustrates the lossless interconversion
when the filtering process in Cartesian coordinates is applied.

Similarly, Fig. 7(b) shows the interconversion for a given
image on a polar coordinate grid. For the image on the polar
grid, we compute the Laguerre—Fourier coefficients using the
filtering process. Fig. 9(a) is resampled data on a Cartesian grid
using the truncated Laguerre—Fourier expansion. We compute
the exact Hermite coefficients using this resampled data. When
we resampled data on a polar grid using the truncated Hermite
expansion, the resulting image shown in Fig. 9(b) is the same
as the filtered image of Fig. 6(d). The normalized error between
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Fig. 7. Block diagram of interconversion of data given in different coordinate
systems. (a) Interconversion with data on Cartesian grid. (b) Interconversion
with data on polar grid.

(b)

Fig. 8. Images from interconversion with data initially given on a Cartesian
grid. (a) Reconstructed data on polar grid with Hermite expansion. (b) Recon-
structed data on Cartesian grid with Laguerre—Fourier expansion.

the two is 3.3 x 10—, which illustrates the lossless intercon-
version when filtering in polar coordinates is applied.

As we mentioned earlier, the data obtained from a transducer
or sensor in polar coordinates often needs to be displayed on
a Cartesian coordinate grid. Since equally spaced grids in the
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(b)

Fig. 9. Images from interconversion with data initially given on a polar grid.
(a) Reconstructed data on Cartesian grid with Laguerre—Fourier expansion. (b)
Reconstructed data on polar grid with Hermite expansion.

two coordinate systems do not match as shown in Fig. 1, one
needs to compute a new set of data that fits on a Cartesian grid.
Displaying the data from the polar grid on the Cartesian grid
directly introduces two problems. First, it is hard to determine
where to assign data at (r, #) on the Cartesian grid. The data may
be assigned to (rcosf,rsinf) on the Cartesian grid, but the
equally spaced Cartesian grid cannot capture (r cos 6, sin )
completely. Second, even if one assigned the data to the approx-
imate position, there can be some vacant pixels in areas far from
the origin as shown in Fig. 10(a), and while local interpolation
methods exist (e.g., bivariate linear), these use only local fea-
tures and are not reversible.

With data provided on a polar coordinate grid, we compute
the Laguerre—Fourier coefficients by the filtering process. Eval-
uating the truncated Laguerre—Fourier expansion onto a Carte-
sian coordinate grid gives the interpolated image as shown in
Fig. 10(b). Since the interpolated image can also be viewed as
being sampled from a truncated Hermite expansion, we then can
apply existing image processing methods associated with the
Hermite transform [10], [11].

In the strict meaning of interpolation, our algorithm has a
drawback in that the filtering process introduces some error with
respect to the original image, and that error persists through the
coordinate conversion process. However, we showed that the
error can be controlled at the expense of the truncation limit and
the actual error does not leave critical artifacts on the image as
shown in Figs. 3 and 6.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed a new method of intercon-
verting images between polar and Cartesian coordinate systems
without loss of information after an initial filtering process. We
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(a)

(b)

Fig. 10. Interpolation using the interconversion method. (a) Direct assignment
of polar grid data onto a Cartesian grid. (b) Interpolated image.

defined the filtering process and assessed the error that the filter
can produce. Using truncated expansions, we investigated the
relationship between the two representations of a function in
polar and Cartesian coordinates. Some special functions such
as the Laguerre polynomials, the Fourier basis and the Hermite
functions were used.

Conversion between the coordinate systems boiled down to
conversion of the coefficients of the truncated expansions on the
polar and Cartesian coordinates. We found that the two sets of co-
efficients are linearly and locally related. From the equation ex-
pressing the relationship, we uncovered a special truncation limit
for the two expansions, which guarantees lossless conversion.

Based on the equivalence of the two truncated expansions in
polar and Cartesian coordinates, we could get an image in a new
coordinate system by resampling the points from the truncated
expansion in the original coordinate system. Additionally, we
showed that this technique can be applied to the interpolation
problem. With the filtered image on the polar grid, we could ob-
tain an image on a Cartesian grid without losing any information
or having missing pixels by using a resampling technique.

In our expansions, an image (and its extension to values all
over R?) is defined by O(N?) coefficients. The Hermite fil-
tering process is of O(N?), because we invert a N x N ma-
trix. Resampling the Hermite expansion on polar coordinates is
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of O(N*?), while O(N?) computations are sufficient in resam-
pling it onto Cartesian coordinates. Our implementation of the
Laguerre—Fourier filtering process is of O(N*), since we invert
a N x N matrix N times. Note that we invert the matrices re-
gardless of Fourier transform. Even when employing the fast
Fourier transform, minimizing (10) still uses O(N*) computa-
tions. Resampling the Laguerre—Fourier expansion on the polar
and Cartesian coordinates uses O(N?3) and O(N?) computa-
tions, respectively. Therefore, the total complexity of intercon-
version is O(NN?). If the constants in (12) and (15) are precal-
culated, the direct conversion of those coefficients is of O(N?).
However, the direct computation introduces numerical error as
explained in Section IV-C. Even though it is possible, the com-
plexity of the whole interconversion process does not change
because the sampling process on the complementary grid uses
O(N*) computations. There presently are not fast algorithms
for the Hermite-function and Laguerre—Fourier transforms. This
is an active area of research, and as the situation changes, our
algorithm may become faster.

Finally, we showed how we can use our algorithm can be used
to interpolate an image defined in the polar grid to obtain an in-
terpolated image in Cartesian coordinates. If the original image
is filtered in the way we suggested in this paper, the interpo-
lated image does not lose information of the original filtered
image. Therefore, we also propose a new filtering process that
enables the interpolation between the polar and Cartesian coor-
dinate systems.
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