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Abstract—In this paper, we propose an approach for the accu-
rate rotation of a digital image using Hermite expansions. This ex-
ploits the fact that if a 2-D continuous bandlimited Hermite expan-
sion is rotated, the resulting function can be expressed as a Her-
mite expansion with the same bandlimit. Furthermore, the Her-
mite coefficients of the initial 2-D expansion and the rotated ex-
pansion are mapped through an invertible linear relationship. Two
efficient methods to compute the mapping between Hermite coef-
ficients during rotation are proposed. We also propose a method
for connecting the Hermite expansion and a discrete image. Using
this method, we can obtain the Hermite expansion from a discrete
image and vice versa. Combining these techniques, we propose new
methods for the rotation of discrete images. We assess the accu-
racy of our methods and compare them with an existing FFT-based
method implementing three shears. We find that the method pro-
posed here consistently has better accuracy than the FFT-based
method.

Index Terms—Bandlimited expansions, Hermite expansions,
image rotation.

I. INTRODUCTION

T ECHNIQUES for effecting a 2-D rotation of a discrete
image are very important in many different disciplines.

Examples include medical imaging, digital photography, and
computer graphics. Unfortunately, the action of rotation is
poorly matched with both the (necessarily) discretized rep-
resentation of a digital image as well as the discrete Fourier
transform, which is one of the most commonly used tools
in image processing. Inaccuracy in image rotation can cause
subtle problems. At the most superficial level, a composition
of rotations that results in an overall rotation that is a multiple
of may not bring an image back to itself. This can have
unfortunate effects in digital imaging. For example, in medical
imaging, the loss of information during image rotation may
cause the loss of small, but important, anatomical features.

The interactions among Fourier analysis, digitization, and ro-
tation are more interesting and more subtle. While the classical
continuous-domain Fourier transform behaves well under rota-
tion, the discrete Fourier expansions used in image analysis do
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not share this property. This may seem surprising at first. Let us
consider the Fourier transform, , for a nonperiodic function

, where . If we apply the Fourier transform to the
rotated version of

for some rotation of the plane, then we have

In other words, the Fourier transform of a rotated function is
the rotated Fourier transform. However, the continuous Fourier
transform is not the one relevant for image analysis. Rather, in
this setting we need to make use of the discrete Fourier trans-
form (DFT). In this context, the DFT should be viewed as a sam-
pled version of the Fourier series of a periodic function, which
has a discrete (rather than continuous) spectrum. Under such
assumptions the image is identified with a sampled function on
the 2-torus (i.e., periodic in two independent directions) and ro-
tation of the finite 2-D lattice (naturally identified with the torus)
is not compatible with the Fourier transform, much less the fi-
nite lattice, which is not generally mapped to itself under an ar-
bitrary rotation. While this geometric incompatibility could be
addressed via linear or spline interpolations, these are at best ap-
proximate methods. Since there is no mathematically exact way
to rotate and resample the underlying bandlimited Fourier se-
ries from which the discrete samples were assumed to be drawn,
there is no way to “exactly” interpolate discrete values from the
original grid to the rotated one.

In this paper, we show how Hermite functions provide a rep-
resentation better suited for rotation and discuss how they might
be used for image representation. This derives largely from the
fact that the Hermite functions of a given total degree span
invariant spaces for the rotation operator. Their “near-eigen-
function” behavior implies that 1) finite Hermite expansions of
a given highest degree (so-called bandlimited Hermite expan-
sions) are mapped back to expansions of the same degree under
rotation and 2) there is an explicit analytic relation between the
coefficients in the original and rotated expansions that is derived
here using various special function relations.

The remainder of this paper is organized as follows. In Sec-
tion II, a brief literature review is given in the field of image ro-
tations and Hermite-function-based image processing. In Sec-
tion III, using the fact that the rotation of a 2-D bandlimited
Hermite expansion preserves the bandlimit, we derive the rela-
tionship between the Hermite coefficients before and after rota-
tion. We propose two methods for implementing the conversion
of the Hermite coefficients. In Section IV we propose a method
to connect the bandlimited Hermite expansion and an arbitrary
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2-D array of discrete data. Then in Section V, we present com-
putational results and compare the accuracy of our new methods
with an existing FFT-based image rotation approach. Finally, in
Section VI, we summarize our conclusions.

II. RELATED WORK

Non-Hermite-based methods for effecting rotation are the
standard and there exist various approximate methods which
are simple and efficient. Paeth showed that a 2-D rotation can
be effected by applying three shear transformations to a raster
image [20]. This method has been widely investigated [19], [24]
and extended to 3-D rotations of image volumes [2], [4], [23].
However, as Toffoli et al. [23] indicated, shear transformations
of discrete images introduce certain errors when local interpo-
lation is applied. The main reason for this loss of information is
that a discrete image is defined on a grid, and when performing
shears, interpolations to new grid points must be performed.
Local interpolation is an inexact step that destroys global
information about the image. In spite of these disadvantages,
an FFT-based rotation algorithm using three shears shows fast
and accurate results [8], [19]. The basic concept of that method
is that one can apply the three shear processes to the original
image and each shear process is implemented by the FFT. In
Section V, we will compare our new methods with this method.

For the purpose of achieving image rotations, steerable fil-
ters [5] can be a reasonable tool, since the class of the steerable
filters has the special property of remaining bandlimited under
rotation. A steerable filter at any orientation can be constructed
as a linear combination of the basis filters. Steerable filters have
been studied extensively and are widely used (see, e.g., [6], [25],
[26], and [29]). They have also been extended using the theory
of Lie groups [14].

A Hermite transform (i.e., expansion of a function in
using Hermite functions) can be viewed as a steerable filter
[12], [13], [26]. Interestingly, to our knowledge, global image
rotation using Hermite functions has not been investigated
previously. The use of the Hermite transform is a relatively
new approach to image processing. The related literature
includes approaches to image compression [25], [26], local
image analysis [12] and deblocking of a compressed image
[16]. In the case of local image orientation analysis using the
Hermite transform, many copies of small Gaussian windows
are translated so that the whole image can be covered by a
combination of Hermite polynomials. This enables the capture
of local orientational features of the image [12], [13], [25],
[26]. Therefore, it is difficult to adapt this method to perform
a global rotation, even though the method shows successful
performance in local feature analysis. In our approach, we
consider only one Gaussian window placed at the center of the
image.

III. ROTATION OF 2-D HERMITE EXPANSIONS

A. 2-D Hermite Expansions and Steerable Filters

Hermite polynomials are generated by the Rodrigues formula

Hermite functions are defined as [3], [27]

(1)

This definition satisfies the orthonormality condition
. The 2-D bandlimited Her-

mite expansion can be defined as [22]

or equivalently

(2)

where is the Hermite coefficients.
Rotation of a steerable filter of order can be exactly con-

structed by taking linear combinations of the filters of order
[5]. Since the product of two Hermite functions is a steerable
filter on the plane, its steerability can be written as [25]

(3)

where are the rotation operator and is the steering
coefficients. If we use the following property of the Hermite
polynomials [27]

(4)

where , we can also derive (3) without
prior knowledge of steerable filters, as was done in [21].

Using (3), the rotation of a 2-D Hermite expansion of (2) can
be written as

(5)

Note that the bandlimit of the resulting Hermite expansion is
preserved. The new Hermite coefficients can be written as

(6)

for . It is clear that the coefficients and
are linearly and locally related. Namely, the relation (6) can be
written as

(7)

where is the element of the matrix,

and
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B. Recurrence Formulas for

For low orders, the transformation matrix can be de-
rived using (3) and (4). The first few matrices are

and also were derived in [13] and were sufficient
for local orientation analysis. However, we need the higher order
results since we are considering the case of large bandlimits for
global image rotations. Instead of obtaining the closed form for-
mula for directly, we will derive the recurrence formula
for the elements of this transformation matrix.

Multiplying on both sides of (3) and inte-
grating over gives

(8)

Let us consider

If we apply the recurrence formula for Hermite functions

(9)

then we have

since (3) implies that when

(10)

Similarly, it can be shown that

Now, we compute

Using the recurrence formula (9), we have

Since the first term of the righthand side is zero due to (10), we
have

Similarly, it can be shown that

Consequently, we have

(11)

Likewise, we can apply the same process to and
and have

(12)
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C. Properties of

It is easy to show that

(13)

where is the identity matrix. The detailed
derivation is given in Appendix A. Since is a real-valued
square matrix and (13) holds, is an orthogonal matrix.

On the other hand, using (8) we can compute as

Note that we used the coordinate conversion
and . Therefore,

. This guarantees the invertibility of the
rotation process, since always exists. In addition,
the orthogonality of guarantees the stable inversion.
Consequently, the rotation process by (6) is lossless in exact
arithmetic.

Since the rotation on the plane is decomposable and
commutative, we have

. Thus, is the exponential of a skew-sym-
metric matrix multiplied by as

(14)

where is the skew-symmetric matrix. can be obtained
by

Explicitly, we can compute

The detailed derivation is given in Appendix B.

D. Relation Between and Generalized Associated
Legendre Function

In this subsection, we connect and the generalized as-
sociated Legendre functions, . This provides a simple
factorization of the matrix that will facilitate its calcula-
tion.

The irreducible unitary representation (IUR) matrix elements
of are given by [3]

where and are the ZYZ Euler angles, and is the
generalized associated Legendre function. The integral form of

is

(15)

When and are zero, we define .
Since are the IUR matrix of , it follows that

. Furthermore, since is unitary
and is real, is orthogonal. Thus, there ex-
ists a skew-symmetric matrix, such that .
In order to find , we will compute at .
We consider instead of , because the former
is easier to connect to .

The derivative at is

and

Therefore

If we let , and , then

where is the skew-symmetric matrix defined in Section III-C.
Therefore, we have shown an analytic proof of the following:

and

(16)

where , and .
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It is worthwhile to consider the following identity for
(from [18]):

(17)

Note that is also denoted by in many refer-
ences including [18]. Since is defined by the same form
as (15), is equivalent to .

Combining (16) and (17), we have the matrix factorization as

(18)

where ,
and is the

conjugate transpose of . This matrix multiplication gives an
alternative way to compute

IV. CONNECTION BETWEEN 2-D BANDLIMITED HERMITE

EXPANSION WITH DISCRETE IMAGES

In order to use Hermite expansions for image processing we
need to adapt the continuous 2-D Hermite transform to the dis-
crete setting. In this section we examine both the problem of
discrete analysis (computing the Hermite expansion of a dis-
cretized image) as well as synthesis (computing a discretized
image from a Hermite expansion).

A method to find the Hermite expansion from a discrete
image has been reported previously [22]. In that method, a
cost function that computes the difference between the discrete
image and the sampled values from the Hermite expansion was
defined. By minimizing the cost function with respect to the
Hermite coefficients, we can fit the Hermite expansion to the
given image. The “Hermite-filtered” image was obtained by
resampling the Hermite expansion on the original grid. How-
ever, the method is computationally sensitive and expensive,
because it explicitly inverts a large matrix. We propose here a
new method that shows better performance.

The new method uses a Fourier series to connect the discrete
image and the 2-D bandlimited Hermite expansion. Since one
can easily extend the 1-D case to the 2-D case, let us focus on the
1-D case. Given sample values for

we can construct exactly the continuous periodic function

on the continuous domain that hits these sample points
exactly. The set of coefficients can be obtained from
by the FFT. The Fourier series contains terms, and in the
case of the FFT, the number of sampled data, , is usually taken
to be a power of 2. This discrepancy is rectified if the constraint

is imposed. Then there are free parame-
ters in both [3]. The detailed derivation of from a discrete
data set is given in the Appendix C. When implemented using
the FFT, this is performed in arithmetic operations.
Now we need to connect the Fourier series and the Hermite ex-
pansion.

A. Fitting a Hermite Expansion to a Fourier Series

Once the discrete data has been captured in a continuous
Fourier series, we can find a Hermite series to best capture the
same data without sampling. In other words, we seek the Her-
mite coefficients such that

is minimized. Here is a scaling factor that we choose so as to
capture the best resolution for a given Hermite bandlimit, .
In other words, there will be an optimal for a given
image.

Expanding the above cost function, we find that

where

and is the complex conjugate of . Now, a simple approxima-
tion can compute them accurately, assuming a sufficient zero
padding of the image and the optimal scaling factor, .

Namely, if we let , then for functions that decay to
zero sufficiently rapidly

(19)

This means that due to the orthonormality of Hermite functions
over the real line

and

(20)

The equality in (20) is due to the fact that Hermite functions are
eigenfunctions of the Fourier transform
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Similarly

since .
We can rewrite the cost function as

Therefore, the Hermite coefficients for the Hermite series that
approximates this with minimal mean-squared error will be

(21)

For an appropriate choice of and we should expect that
this Hermite series will drive the RMS error to zero. And the
values at the sample points should also converge to the original
specified values. Thus, the scaling factor should be determined
so that (19) is an accurate statement for the integrals that were
approximated for and .

B. Fitting a Fourier Series to a Hermite Expansion

In the previous subsections, we obtained the Fourier series on
a continuous domain from a discrete data set and computed the
Hermite expansion fit to that Fourier series. One might expect
that sampling the Hermite expansion back onto the original data
grid would give filtered data close to the original data. However,
since the Hermite expansion may have a high bandlimit relative
to the Fourier series, sampling it directly can cause aliasing. It is,
therefore, more consistent to use the Fourier series again as an
intermediate between the Hermite expansion and the resulting
sampled values. In this way, the Fourier series connects the Her-
mite expansion and the discrete data in both directions.

Now we will try to find the Fourier series that best fits a ban-
dlimited Hermite expansion. The cost function is the same form
as in the previous subsection except that the argument is now the
Fourier series coefficients rather than the Hermite coefficients,
which are the inputs in this context. The cost function is

Therefore, the Fourier series coefficients that minimize the cost
function will be

C. Determination of the Scaling Factor

From (19) and the definition of and , it is clear that
the range of the integral, should be chosen to cap-

Fig. 1. Contour plot of � ���.

ture enough of the Hermite function. Let us consider the fol-
lowing:

will monotonically increase to 1 as decreases due to
the orthonormality of the Hermite functions. If is close
enough to 1, we can conclude that the range of the integral,

captures enough of the Hermite function.
The contour plot of as a function of and is shown

in Fig. 1. For example, if the bandlimit of the Hermite expan-
sion is 450, then is good, since the corresponding range
guarantees is close enough to 1 for .
While a smaller value of looks better in this context, too small
a value of may cause a problem when we find the Hermite
expansion fit to a Fourier series. If is very small, the Hermite
functions can be meaningful only in the very small part (near
the origin) of the range, . This means that the Her-
mite expansion can describe the reference Fourier series near
the origin only. In order to avoid this, we need to increase the
value of . Thus, we need to find a balanced value for based
on these two criteria.

When the image shown in Fig. 2(a) is tested, Fig. 3(a) shows
the normalized least squared error (NLSE) between the original
image and Hermite-filtered image for various values with sev-
eral bandlimits of the Hermite expansion. The NLSE of the two
images, and , is defined as [11]

We prepare 512 512 images from 256 256 images as shown
in Fig. 2 by zero-padding the original image in such a way that
they are centered in the larger grid. The best value for the scaling
factor in this Lena image can be determined as based
on Fig. 3(a). Fig. 4(a) shows the inverted amplified difference
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Fig. 2. Test images ��������� from http://sipi.usc.edu/database/index.html.
(a) Lena image. (b) Baboon image.

Fig. 3. Normalized least squared error between the original image and the Her-
mite-filtered images. (a) Error in Lena image. (b) Error in baboon image.

image between the original and the Hermite-filtered Lena im-
ages when the bandlimit is and the scaling factor is

. If we apply the same process to the baboon image
shown in Fig. 2(b), we have the different error curve shown in

Fig. 4. Inverted difference images between the original and Hermite-filtered
images (���� amplified). (a) Inverted difference image in Hermite filtering
with Lena image. (b) Inverted difference image in Hermite filtering with ba-
boon image.

Fig. 3(b) and is the best value for the scaling factor
in this case and the corresponding inverted difference image is
shown in Fig. 4(b). For better visualization, we present the in-
verted difference images instead of the regular difference im-
ages that contain black pixels in most areas.

Although the choice of the optimal scaling factor is dependent
on the original image of interest, the image error is not sensi-
tive to the scaling factor around the optimal one. Thus, one can
determine the “quasi-optimal” value for the scaling factor inde-
pendent of images for a given image size. Fig. 6 shows the errors
between the original and the Hermite-filtered images as a func-
tion of the scaling factor, when various test images (512 512)
shown in Fig. 5 are used. As seen in Fig. 6, the scaling factor

is a reasonable choice for all the six test images.
Generalizing this result, we choose the scaling factor
as a quasi-optimal value for the 512 512 images.

V. ROTATION OF IMAGES AND ACCURACY TEST

A. Computation of

Once we have the Hermite coefficients from a discrete image,
the rotation can be applied to the coefficients using (7). In order
to compute , we may use the recurrence formulas, (11)
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Fig. 5. Additional test images ���� � ���� from http://sipi.usc.edu/data-
base/index.html. (a) A house. (b) Barbara. (c) Boats. (d) A clock. (e) Peppers.
(f) A bridge.

and (12), or the exponential mapping, (14), or the matrix mul-
tiplication, (18). Since the matrix exponential of large matrices
increases the computational time, we pursue two methods: the
recurrence formulas and the matrix multiplication. For conve-
nience, we will denote the former method by “Method A” and
the latter method by “Method B”.

We will consider only rotations between 0 and radians,
since and any rotation angle can be ac-
complished by a combination of rotation by and rotation
by , where is an integer and . Note that ro-
tation of discrete images by can be perfectly obtained
by reassigning the pixel values to a square grid.

Since, by the discussion in Section III-C, in exact arithmetic
is an orthogonal matrix, we use the following as a mea-

sure of a degree of accuracy in its computation:

where is the identity matrix. Fig. 7(a)
shows the contour plot of , when we apply the first re-
currence formula in (11). If we average all 4 recurrence formulas
in (11) and (12), is improved as shown in Fig. 7(b).
However, it still shows the instability with higher orders, when

the rotation angle is above some threshold. This can be over-
come by using the multiplicative property of , which is

. For example, can
be stably obtained by the product . Con-
sequently, we compute by , when .
We should implement this by ,
instead of direct multiplication of the two 2-D matrices, in order
to avoid increasing the computational complexity.

Alternatively, we can compute by (18), which is de-
noted by Method B. Since the matrices, and in (18)
are constant and requires only scalar exponential mapping,
this method can be implemented without unstable calculation.
One thing that we should be careful of is handling .
Since it is constant, we will compute it, store it into a com-
puter memory (or storage device) and then use it for rotations.
Since computation of is performed only once and is
stored, we can sacrifice the computation time to have accurate

. The matrix exponential mapping by Padé algorithm
[15] can be used for this end. Explicitly, we use

where is a skew-symmetric matrix defined in Section III-C.
Practically, all for cannot be stored
in the memory of current PCs, when the bandlimit, exceeds
400. We stored them to disk and used it to compute .

To compare Method A and B, Figs. 8 and 9 show examples of
rotated images, when the original test images in Fig. 2 are used.
In these examples, the NLSEs between Method A and B are less
than .

B. Accuracy Test

Now let us consider the accuracy of our methods. If the orig-
inal image were defined as a continuous 2-D function, its rotated
version would also be a continuous function. This rotated con-
tinuous image would be a “perfect” answer with which to assess
the accuracy of our image rotation method. However, this is not
the case. Since the original image is defined only on a discrete
grid and the result is on a different discrete grid, there is no “per-
fect” baseline to compare against for image rotations except for
special rotation angles . Therefore, as an al-
ternative, we perform the following test:

Test 1: Fit the rotated image to an appropriate continuous
2-D function and resample it onto the original grid to have
an image close to the original image. Compare the resulting
image and the original image.

Test 1 assesses how much information of the original image
remains after the rotation. In order to compare the original im-
ages and the resulting images in accuracy tests, we will use the
NLSE, Sobolev norm, and relative entropy.

The Sobolev norm which is defined as [17], [28]
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Fig. 6. Normalized least squared error between the original and the Hermite-filtered images. The images in Fig. 5 were used for this test.

where and are image functions, and and are the dis-
crete Fourier transforms of and , respectively. is the 2-D
frequency vector associated with . is the frequency domain
which is a lattice of the same dimensions as the domain of the

image functions. is the number of pixels of the lattice. We
will use in this paper. The Sobolev norm includes the
difference between two images in terms of the derivatives.
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Fig. 7. Contour plots of �� ���� ��� � ������, where � is the identity
matrix. (a) �� ���� ��� � ������ when one recurrence formula in (11)
is used. (b) �� ���� ��� � ������ when the average of the recurrence
formulas in (11) and (12) is used.

Relative entropy (also known as Kullback–Leibler diver-
gance) is an asymmetric measure of the discrepancy between
two probability distributions [7]. It can also be used for mea-
suring the difference between images. It is defined as [1]

where and are two image functions. In this paper, we
will let be the original image and let be the resulting
image in the accuracy tests.

The NLSEs, the Sobolev norms, and the relative entropies be-
tween the original image and the resampled image by Test 1 are
shown in Tables I and II. The 2-D Fourier series and bi-cubic
interpolation were used in Tables I and II, respectively. We re-
port the results by the two methods (Method A and Method
B) for computing . We also report the test results of the
FFT-based image rotation method developed by Larkin et al.
[8] and Owen et al. [19] by applying their method to our ex-
ample images. As mentioned earlier, in this FFT-based method,

Fig. 8. Rotated Lena images. (a) 0.4 (rad) rotation by Method A, (b) ��� �rad�
rotation by Method A, (c) 0.4 (rad) rotation by Method B, (d) ��� �rad� rotation
by Method B. Method A uses the recurrence formulas (11) and (12), and Method
B uses the matrix multiplication in (18).

Fig. 9. Rotated baboon images. (a) 0.4 (rad) rotation by Method A,
(b) ��� �rad� rotation by Method A, (c) 0.4 (rad) rotation by Method B,
(d) ��� �rad� rotation by Method B. Method A uses the recurrence formulas
(11) and (12), and Method B uses the matrix multiplication in (18).

three consecutive shears are implemented using FFT. Since Test
1 depends on the choice of the reference continuous 2-D func-
tion, this test is not a sufficient test for accuracy, even though
our methods perform better in this test.
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TABLE I
IMAGE DIFFERENCE MEASUREMENTS IN TEST 1 USING THE FOURIER SERIES FOR FITTING AND RESAMPLING.

TABLE II
IMAGE DIFFERENCE MEASUREMENTS IN TEST 1 USING THE BI-CUBIC INTERPOLATION FOR FITTING AND RESAMPLING

Fig. 10. Strategies for consecutive rotations. (a) Strategy 1. (b) Strategy 2.

As briefly mentioned in the previous subsection, rotations by
a multiple of rad can be used as a perfect baseline for
comparison, since those rotations of a discrete image can be ex-
actly obtained by reassigning the pixel values to a square grid.
The first natural test using this perfect baseline would be to ro-
tate an image by rad using an image rotation algorithm
and compare the result to the perfect answer. However, this test

does not reflect the accuracy of the FFT-based methods, because
rad rotation by three shear processes is equivalent to re-

assignment of the pixel values to the rad rotated grid.
Specifically, the amount of translation of pixels in shear pro-
cesses is a multiple of the pixel size, when the rotation angle is

. This means that we cannot assess the effect of interpolation
of the FFT-based method in this particular case. As an indirect
way to assess the accuracy, we run the following tests.

Test 2: Rotate an image by rad 2 times consecutively
and compare the resulting image and the image rotated per-
fectly by rad .

Test 3: Rotate an image by rad 12 times consec-
utively and compare the resulting image and the original
image.

Test 4: Rotate an image by 9 random angles consecutively
and then rotate by the negative of the sum of the previous
9 angles. The first 9 angles are sampled from a uniform
distribution on the interval rad . Compare
the resulting image and the original image.

These three tests are based on the fact that if an image rota-
tion method is accurate, it will preserve the information of the
original image over the consecutive rotations and will give the
resulting image close to the perfect answer.
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TABLE III
NORMALIZED LEAST SQUARED ERRORS IN ACCURACY TESTS

TABLE IV
SOBOLEV NORMS IN ACCURACY TESTS

Since these three tests require consecutive rotations, we need
to define a concept of the multiple rotations. Strategy 1 shown
in Fig. 10(a) fully exploits the steerability of the Hermite func-
tions. First we obtain the Hermite expansion corresponding to a
discrete image via the Fourier series. Then we perform the ro-
tation process on the Hermite coefficients. In order to display
the resulting image, we should find the Fourier series fit to the
Hermite expansion and sample it. In this strategy, we retain the
Hermite coefficients for the consecutive rotations instead of the
resulting image. Therefore, the loss of information occurs only
once when we fit the Hermite expansion to a discrete data. How-
ever, it is more natural to keep the rotated “image” for subse-
quent rotations. Therefore, we also suggest Strategy 2 as shown
in Fig. 10(b). After we apply the rotation process to the Hermite
coefficients computed from a given image, we compute the ro-
tated discrete image by computing the Fourier series fit to the
new (rotated) Hermite expansion and sampling the Fourier se-

ries. In order to rotate it again, we apply the same process to the
rotated image. In the numerical test, we will use only Strategy
2, since it is closer to the real situation of image processing.

The test results for Test 2, 3, and 4 are shown in Tables III–V.
We report the accuracy of our method when using Method A
and Method B. We also report the test results of the FFT-based
method. When we measure the image difference, we compute
it over the region including zero padding. The bandlimit of the
Hermite expansion is fixed to . The test results with
the three measurement methods show our new methods have
lower error than the FFT-based method. Even though we do not
pursue Strategy 1, the NLSEs in Test 2, 3, and 4 with the Lena
image are 0.0017, when we use Strategy 1. This small error is
possible since the error in that strategy occurs only once when
the Hermite filtering is performed.

Fig. 11 shows the visual quality of the FFT-based method
and our method. In this figure, the difference images between
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TABLE V
RELATIVE ENTROPIES IN ACCURACY TESTS

the original Lena image and the resulting images in Test 3 are
shown. With the Hermite-based method, the difference occurs
mainly at the sharp edges in the image as shown Fig. 11(b).
However, with the FFT-based method, the difference can be
seen in the wide area around the sharp edges as shown Fig. 11(a).
In addition, the Hermite-based method gives fewer artifacts in
the zero-padding region.

C. Computation Time

Table VI shows the elapsed time in seconds for the image
rotation process, when various sizes of images are rotated by

. The first and second rows show the computation time for
Hermite transform proposed in Sections IV-A and IV-B, respec-
tively. The total elapsed time for Method A will be the summa-
tion of the first three rows. Similarly the total elapsed time for
Method B is the summation of the first, second, fourth and fifth
rows. Ideally the time for loading can be excluded
from the total elapsed time, since the time for loading the data
depends on the hardware and is not part of the intrinsic effi-
ciency of the algorithm. It is in this sense that Method B shows
a faster performance than Method A.

The algorithm for computing the Hermite coefficients from
a discrete image is implemented with an computation,
when the size of image is and the bandlimit of the Her-
mite expansion is . It is achieved by expressing (21) as a
matrix multiplication. In principle, we could reduce the compu-
tational cost to if we used the algorithm in [9],
[10]. However, the rotation algorithm for the Hermite expansion
in Section III is the dominant contribution to the overall com-
putation time. In Method A, the computation of needs

computations, since each matrix has a size of
and all elements are computed by the recurrence

formulas. Because is multiplied by a -dimen-
sional vector for , the complexity of the
whole rotation process is . Method B using (18) also
has complexity, since computation of using (18)
needs calculation.

Fig. 11. Inverted difference images between the original Lena image and the
resulting images in Test 3 (��� amplified). (a) Difference image obtained
using FFT-based method. (b) Difference image obtained using Hermite-based
method.
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TABLE VI
ELAPSED TIME IN SECONDS FOR THE IMAGE ROTATION PROCESS

VI. CONCLUSION

In this work, in order to rotate images, we used the fact that
the rotation of a 2-D bandlimited Hermite expansion (with a
bandlimit of a special form) is of the same form and has the
same bandlimit as the original expansion. We observed that the
rotation of a 2-D bandlimited Hermite expansion results in a
linear operation on the Hermite coefficients. We proposed two
ways to compute the matrix representing the linear operation:
1) recurrence formulas and 2) matrix multiplication formula. In
addition, we proposed a method of connecting the bandlimited
Hermite expansion and the discrete images. We used the Fourier
series on a continuous domain for the connection. Combining
these techniques, we suggested the image rotation method and
presented the example results. We also designed the tests to as-
sess the accuracy of rotation methods. We showed that the ac-
curacy of our image rotation methods is better than that of the
existing image rotation technique using FFT and three shears.

Reducing computation time of our methods remains ongoing
work. The FFT-based method works in less than one second
with the images used in Table VI. Nevertheless, it is important
to note that our methods are based on a direct physical rotation
on the plane, while the FFT-based method uses the three shears.
We believe that this is one reason for the better accuracy of our
methods.

APPENDIX A
ORTHOGONALITY OF

Let us consider the following:

where ,
, and is the complex conjugate

of . Using the orthonormality of the Hermite functions, we can
rewrite this as

(22)

since we are considering real-valued functions, and and
are real-valued scalars.

Since is invariant under rotation of , we
have

Using (6), we can rewrite this as

Therefore

(23)

Equating (22) and (23), we have

for all possible and . We can conclude that

or

(24)

where is the identity matrix. Since
is a real-valued square matrix and (24) holds, is an or-
thogonal matrix.
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APPENDIX B
SKEW-SYMMETRIC MATRIX

From the definition of

If we define and as

then . Using the derivative of Hermite func-
tion as [3]

and (10), we have

The matrix, is a sparse skew-symmetric matrix.

APPENDIX C
CONNECTION BETWEEN FOURIER SERIES AND THE DFT

Here, we find the Fourier series interpolating a given sam-
pling. For convenience, we assume that the number of data
points, , is even. For an odd number of data points, we can
add zero-padding to obtain an even number of data points.

For given equally-spaced sampled points on the unit circle,
we have to find the corresponding Fourier series such that

where is the given sampled points and ,
. We can expand as

(25)

On the other hand, we can apply the DFT(discrete Fourier trans-
form) to the samples and have

where . Since we assume is even,
we have the following relationship between the DFT and Fourier
series:

(26)

Since and

we can rewrite (26) as

(27)
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Equating (25) and (27), we can write the relationship between
the DFT and the Fourier series as follows:

for an even number, .
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