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Abstract— Flexible needles with bevel tips are being de-
veloped as useful tools for minimally invasive surgery and
percutaneous therapy. When such a needle is inserted into soft
tissue, it bends due to the asymmetric geometry of the bevel
tip. This insertion with bending is not completely repeatable.
We characterize the deviations in needle tip pose (position
and orientation) by performing repeated needle insertions into
artificial tissue. The base of the needle is pushed at a constant
speed without rotating, and the covariance of the distribution
of the needle tip pose is computed from experimental data.
We develop the closed-form equations to describe how the
covariance varies with different model parameters. We estimate
the model parameters by matching the closed-form covariance
and the experimentally obtained covariance. In this work, we
use a needle model modified from a previously developed model
with two noise parameters. The modified needle model uses
three noise parameters to better capture the stochastic behavior
of the needle insertion. The modified needle model provides an
improvement of the covariance error from 26.1% to 6.55%.

I. INTRODUCTION

Needle insertion is one of the most common minimally
invasive medical procedures. It is used in many medical
applications such as biopsy, local anesthesia, drug delivery,
and brachytherapy. Rigid needles are typically used, which
are unable to maneuver around bones, nerves, and other
obstacles. However, a flexible needle with an asymmetric
tip can be steered inside tissue. In recent years, steerable
needles have drawn considerable attention due to their simple
structure and maneuverability [4], [5], [8], [10], [12], [17],
[18]. The needle’s steerability allows corrections to the
needle path during an insertion, so fewer insertion attempts
are required to position the needle tip at the desired lo-
cation. The maneuverability of steerable needles can also
improve the accuracy of the insertion, which may reduce
the possibility of misdiagnosis during a biopsy, or delivery
of therapy to the wrong location. Potential applications of
bevel-tipped flexible needles include brachytherapy [1] and
brain surgery [6].

The steerability of a flexible needle comes from the
interaction between the asymmetric bevel tip and the tissue
surrounding the needle. When the needle is inserted into
soft tissue, the bevel tip generates an asymmetric force on
the needle, which causes the tip to follow a nearly circular
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arc [11]. The direction of the bending is determined by the
direction of the bevel tip. Rotating the needle base around
the needle tangent rotates the bevel edge at the needle tip
and, thus, the direction of future bending. If the rotation
angle is held constant during an insertion, the tip of the
needle will approximately follow a circular arc with constant
curvature κ. The specific value of the constant κ depends
on parameters such as the angle of the bevel, sharpness of
the needle tip, and properties of the tissue. Suppose that
a bevel-tipped flexible needle is rotated with an angular
speed ω(t) around its insertion axis while it is inserted
with translational speed v(t). Using the geometric bending
curve of the needle and the two inputs, ω(t) and v(t), a
nonholonomic kinematic model predicts the time evolution
of the position and orientation of the needle tip [21].

Based on the nonholonomic kinematic model, a stochastic
model for the steering of bevel-tipped flexible needles has
been developed and used in [13]–[16]. It uses the unicycle
nonholonomic kinematic model [21] and includes white
noises weighted by constants to capture the nondeterministic
behavior of the needle insertion. More accurate models
would improve both image-guided control and path planning.
The main purpose of this work is to determine the model
parameters (curvature and noise parameters) using experi-
mental data. These parameters will be used to inform the
path planner of the likely needle tip position following a
planned insertion.

The Fokker-Planck equation (see [3] for general descrip-
tion) corresponding to the stochastic needle model defines
the probability density function (PDF) of the needle tip pose.
The propagation of the covariance of the PDF was previously
formulated with first-order accuracy for robot arms with
discrete joints in [19]. Using that formula, we analytically
compute the covariance as a function of parameters for the
needle model. Then we match the theoretical covariance and
the experimentally obtained covariance to compute the model
parameters.

II. MATHEMATICAL MODEL FOR NEEDLE STEERING

A. Review of Rigid-Body Motions

The special orthogonal group, SO(3), is the space of
3 × 3 rotation matrices, together with the operation of matrix
multiplication. Any element of SO(3) can be written using
the Euler angles as [2]

R = Rz(α)Rx(β)Rz(γ),

where α, β and γ are the ZXZ Euler angles, 0 ≤ α ≤
2π, 0 ≤ β ≤ π, 0 ≤ γ ≤ 2π. The matrices Rx(θ) and



Rz(θ) represent the rotations by θ around the x and z axes,
respectively.

The Euclidean motion group, SE(3), describes rigid-body
motions in three-dimensional (3D) space. It is the semi-direct
product of R

3 with SO(3). The elements of SE(3) can be
written as [2], [3]

g =
(

R t
0T 1

)
, (1)

where R ∈ SO(3) is the 3 × 3 rotation matrix, t ∈ R
3 is

a 3D translation vector and 0T denotes the transpose of the
3D zero vector.

Given a time-dependent rigid-body motion g(t), the veloc-
ity of the body-fixed frame written in body-fixed coordinates
can be computed as

g−1ġ =
(

RT Ṙ RT ṫ
0T 0

)
∈ se(3)

where a dot represents the time derivative and se(3) is the
Lie algebra associated with SE(3).

The two mappings ∨ : se(3) → R
6 and ̂ : R

6 → se(3)
relate se(3) and R

6 as

ξ̂ =


0 −ξ3 ξ2 ξ4

ξ3 0 −ξ1 ξ5

−ξ2 ξ1 0 ξ6

0 0 0 0

 ∈ se(3)

and ξ̂
∨

= ξ, where ξ = ( ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 )T .
The vector ξ = (g−1ġ)∨ contains both the angular and
translational velocities of the motion g(t) as seen in the body-
fixed frame of reference.

Let ei, i = 1, . . . , 6 denote the standard basis for R
6.

The basis given by a set of matrices Ei = êi, i = 1, . . . , 6
produce elements of se(3), when linearly combined. The
elements of SE(3) then can be obtained by the exponential
mapping exp : se(3) → SE(3) as [2], [16]

g = g(x1, x2, ..., x6) = exp

(
6∑

i=1

xiEi

)
.

Therefore, the vector x = (x1 x2 ... x6)T can be obtained
from g ∈ SE(3) by x = (log g)∨.

The adjoint matrix Adg is defined by the expression

Adg =
(

R 0
TR R

)
,

where g ∈ SE(3) is given as in (1), and the skew-symmetric
matrix T is given as T = t̂.

B. Nonholonomic Stochastic Needle Model

Let us consider a reference frame attached to the needle
tip as shown in Fig. 1. The z axis denotes the tangent to
the needle tip trajectory, and the x axis is orthogonal to
the direction of infinitesimal motion induced by the bevel
tip. The needle bends in the y-z plane. A nonholonomic
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Fig. 1. The definition of parameters, inputs and frames in the nonholonomic
needle model. Y-Z denotes the world frame and y-z denotes the body-fixed
frame attached to the needle tip.

kinematic model for the evolution of the frame at the needle
tip was developed in [15], [21] as:

ξ = (g−1ġ)∨ =
(

κv(t) 0 ω(t) 0 0 v(t)
)T (2)

where κ is the curvature of the needle trajectory and the two
inputs, ω(t) and v(t) are the rotating and insertion velocities,
respectively.

If everything were certain, and this model were exact, then
g(t) could be obtained by simply integrating the ordinary
differential equation in (2). However, in practice we obtain
an ensemble of slightly different trajectories when we re-
peatedly insert a needle into a soft medium used to simulate
soft tissue [21]. The deviation between the trajectories at the
insertion location can be negligible and will increase as the
insertion length increases. A simple stochastic model for the
needle [15], [16] is obtained by letting:

ω(t) = ω0(t) + λ1w1(t), and v(t) = v0(t) + λ2w2(t).

Here ω0(t) and v0(t) are what the inputs would be in the
ideal case, wi(t) are uncorrelated unit Gaussian white noises,
and λi are noise parameter constants.

By adding one more noise parameter λ3, we define a new
nonholonomic needle model with noise as

ξ = (g−1ġ)∨dt =
(

κ0v0(t) 0 ω0(t) 0 0 v0(t)
)T

dt

+

 0 0 λ1 0 0 0
κλ2 0 0 0 0 λ2

λ3 0 0 0 0 0

T  dW1

dW2

dW3

 (3)

where dWi = Wi(t + dt) − Wi(t) = wi(t)dt are the non-
differentiable increments of a Wiener process Wi(t). The
noise parameter λ3 is expected to capture the stochastic
behavior in the rotation around the x axis that the needle
model with the constant curvature cannot capture. The needle
model (3) is a stochastic differential equation (SDE) on
SE(3). As shorthand, we write this as

(g−1ġ)∨dt = h(t)dt + HdW(t). (4)

Similar models arise in various applications [3], [22].

III. COVARIANCE PROPAGATION

We now consider how to determine the model parameters,
κ, λ1, λ2 and λ3. In the literature [13], [15], [16], the noise
parameters were set artificially because experimental data
was not available at that time. However, it is desirable to



extract the parameters from experimental data obtained for a
specific system. This section derives the equation that relates
the distribution of trajectories and the model parameters.

Corresponding to the SDE (4) is the Fokker-Planck equa-
tion that describes the evolution of the probability density
function ρ(g; t) of the ensemble of tip positions and orien-
tations at each value of time, t [3]:

∂ρ(g; t)
∂t

= −
d∑

i=1

hi(t) Ẽr
i ρ(g; t) +

1
2

d∑
i,j=1

DijẼ
r
i Ẽr

j ρ(g; t)

(5)
where Dij =

∑m
k=1 HikHT

kj and ρ(g; 0) = δ(g). In (5),
the ‘right’ Lie derivative Ẽr

i is defined for any differentiable
function f(g) as

Ẽr
i f(g) =

(
d

dt
f(g ◦ exp(tEi))

)∣∣∣∣
t=0

.

For a small amount of diffusion, the solution for the
Fokker-Planck equation (5) can be approximated by a shifted
Gaussian function [13], [14], [16]:

ρ(g, t) =
1

(2π)3|det(Σ(t))| 12 e(−
1
2yT Σ(t)−1y), (6)

where y = (m(t)−1 ◦ g)∨, and m(t) and Σ(t) are the
mean and the covariance of this PDF, respectively. This
approximation is based on the fact that for small diffusion
the Lie derivative is approximated as Ẽr

i f(g) ≈ ∂f
∂xi

[16].
Using this, the Fokker-Planck equation (5) becomes a dif-
fusion equation in R

6. Therefore, (6) is the solution for the
diffusion equation. The probability density function (6) plays
an important role in the path planning algorithm that appears
in [13], [14], [16].

We now develop the relationship between (m, Σ) and
(h,H) below. m is called the mean of a probability density
function ρ(g) on SE(3), if∫

SE(3)

(log(m−1 ◦ g))∨ρ(g)dg = 0. (7)

In addition, the covariance about the mean is computed as

Σ =
∫

SE(3)

log(m−1 ◦ g)∨[log(m−1 ◦ g)∨]T ρ(g)dg. (8)

This covariance matrix can also be computed by co-
variance propagation. The covariance propagation in [19]
is based on the concatenation of a finite number of noisy
motions. In the limiting case of a time-parameterized path
of noisy motions, the covariance propagation formula can be
written as [19]

Σ(t) =
∫ t

0

Ad−1
m(τ)−1◦m(t) D0 Ad−T

m(τ)−1◦m(t)dτ (9)

where D0 = HHT . In principle, m(t) ∈ SE(3) is the mean
which is defined in (7). However, we approximate it using
the noise-free path assuming the small diffusion. The noise-
free path can be obtained by integrating (3) with λ1 = λ2 =
λ3 = 0. This approximation enables the closed-form formula
for (9) as below.

Consider the special case of insertion with a constant speed
(v0(t) = v) without rotating (ω0(t) = 0). In this case, we
can write the homogeneous transformation matrix m(τ) as

m(τ) = exp(ĥτ) =
(

Rx(κvτ) p(τ)
0T 1

)
where h =

(
κv 0 0 0 0 v

)T , κ is the curvature
of the needle trajectory, v is the constant insertion speed
and p(τ) = ( 0, (cos(κvτ) − 1)/κ, sin(κvτ)/κ )T . The
rotational part and the translational part of m(τ)−1 are
RT

x (κvτ) and −RT
x (κvτ)p(τ), respectively.

Since m(τ)−1 ◦m(t) = m(t− τ) in this special case, the
covariance (9) can be rewritten as

Σ(t) =
∫ t

0

Ad−1
m(τ) D0 Ad−T

m(τ)dτ

by changing variables, τ ′ = t−τ , and then replacing τ ′ with
τ .

Since D0 = HHT , D0 can be written as

D0 =
(

D11 D12

D21 D22

)
, where D12 =

 0 0 κλ2
2

0 0 0
0 0 0

 ,

D21 = DT
12, D11 = diag([κ2λ2

2 + λ2
3, 0, λ2

1]), D22 =
diag([0, 0, λ2

2]). λi are the noise parameters in (3). There-
fore, we have

Ad−1
m(τ) D0 Ad−T

m(τ) =
(

S11 S12

S21 S22

)
where

S11 = RT D11R, S12 = RT D11p̂R + RT D12R = ST
21,

S22 = −RT p̂D11p̂R+RT D21p̂R−RT p̂D12R+RT D22R.

The covariance can be given as a closed form:

Σ(t) =
∫ t

0

Ad−1
m(τ)D0Ad−T

m(τ)dτ

=


a1 0 0 0 a2 a3

0 a4 a5 a6 0 0
0 a5 a7 a8 0 0
0 a6 a8 a9 0 0
a2 0 0 0 a10 a11

a3 0 0 0 a11 a12

 , (10)

where
a1 = (κ2λ2

2 + λ2
3)t, a2 = −κ−2v−1λ2

3(1 − C)

a3 = κλ2
2t − κ−1λ2

3((κv)−1S − t)

a4 = λ2
1(

1
2
t − SC(2κv)−1), a5 = λ2

1S
2(2κv)−1

a6 = κ−2v−1λ2
1(1 − C − 1

2
S2), a7 = λ2

1(
1
2
t + SC(2κv)−1)

a8 = κ−1λ2
1(S(κv)−1 − 1

2
t − SC(2κv)−1)

a9 = κ−2λ2
1(

3
2
t − 2S(κv)−1 + SC(2κv)−1)

a10 = κ−2λ2
3(

1
2
t − SC(2κv)−1)

a11 = κ−3v−1λ2
3(

1
2
S2 + C − 1)

a12 = κ−2λ2
3(

3
2
t − 2S(κv)−1 + SC(2κv)−1) + λ2

2t

Here S and C denote sin(κvt) and cos(κvt), respectively.



IV. EXPERIMENTS

We used the device shown in Fig. 2 to perform repeated
needle insertions. The needle was inserted into the artificial
tissue by a DC servo motor attached to a linear slide. An
additional DC motor rotates the needle shaft, but this was
only used to orient the needle before insertion in these ex-
periments. A stepper motor attached to the platform holding
the artificial tissue was used to move the tissue between
trials. We used a 0.57 mm diameter Nitinol wire (Nitinol
Devices and Components, Fremont, CA, USA) with a bevel
angle of roughly 45◦. A telescoping support sheath prevented
the needle outside the artificial tissue from buckling during
insertion.

During insertion, images were acquired at 7 Hz from a pair
of XCD-X710 firewire cameras (Sony Corporation, Tokyo,
Japan) mounted above the artificial tissue. The image pairs
were then triangulated offline to determine the tip position
using a sub-pixel corner finder, which resulted in sub mil-
limeter accuracy in Cartesian space. We used a transparent
plastisol artificial tissue (M-F Manufacturing Co., Inc., Fort
Worth, TX) manufactured from plastic and softener in a ratio
of 4:1. The artificial tissue was approximately 40 mm thick
and was sufficiently transparent for the needle tip to be easily
identified. The artificial tissue had a refractive index of 1.3
and triangulation accounted for refraction assuming that the
artificial tissue’s top surface was horizontal.

The experiment consisted of 100 needle insertions. We
inserted the needle 150 mm at 2.5 mm/sec while keeping
the rotation angle constant. The needle base then remained
stationary for 1 second to allow the artificial tissue and needle
to relax to their final positions. Then the needle was retracted
and the artificial tissue was moved 5 mm perpendicular to
the initial insertion direction to allow the next insertion to
generate a new path. The artificial tissue was moved far
enough to ensure that the subsequent insertions did not
overlap with previous paths. This procedure was repeated
until 100 trials had been completed. After the first 50 trials

Fig. 2. Experimental setup used to perform 100 needle insertions.

were obtained, the artificial tissue was rotated by 180◦ on
the plane so that the final 50 trials were done on the opposite
side of the artificial tissue. The artificial tissue and needle
were not replaced during the experiment in order to maintain
consistency in the data and model parameters.

V. DATA PROCESSING AND RESULTS

The needle trajectory near the wall of the artificial tissue
cannot be clearly detected by the vision system for the first 1
to 2 cm because the artificial tissue has limited transparency
and bubbles form around the edge of the artificial tissue.
Thus, the first detected position of the needle tip during each
insertion is not exactly the insertion position.

We estimate the insertion point at time t = 0 by extrapo-
lating. First, we fit a circle to the needle position readings.
The use of a circle for extrapolation is reasonable because we
observe a circular trajectory in the needle insertion system.
Computation of the best-fit circle is implemented using the
code in [7]. Then we compute the closest point on the circle
to the first detected point. By checking the encoder counts
for the insertion length, we can compute the insertion length
for the first detected point. By backtracking from the closest
point on the circle to the first detected point by the recorded
length, we can estimate the insertion point. Each insertion
trajectory is translated so that the estimated insertion points
for all insertion trajectories are placed at (0 0 0)T .

In addition to translational matching of the insertion point,
we need to align the insertion directions. Due to the variabil-
ity of the puncture event at the start of each trial, which is
not modeled here, the directions of repeated insertions are
not identical. We can estimate the actual insertion direction
by computing the tangential direction of the best-fit circle
at the insertion point. Let z be this actual direction. We can
compute a vector u as

u =
z × z0

‖z × z0‖
where × denotes the cross product and z0 is the unit vector
along the z axis. The rotation matrix for alignment is defined
as Ra = exp(ûθ) where θ is the angle between z and z0.
We obtain the aligned data by applying this rotation matrix
to all position data from each insertion.

We obtain only the position information of the needle tip
using the stereo vision system. The orientation information
can be easily estimated using the best-fit circle again. If we
assume that needle torsion is negligible, the input angle is
propagated to the needle tip without delay or discrepancy.
Using this, we can compute the homogeneous transformation
matrices for the needle tip poses.

Let us assume gi(T ) represents the ith needle tip pose at
time T . Based on (7), we can define a sample mean ms of
gi(T ) as

1
N

∑
i

log(m−1
s ◦ gi(T ))∨ = 0.

where N is the number of samples. ms can be computed
using the iterative method in [20]. Using (8), the sample



Given parameters Estimated parameters
κ λ1 λ2 λ3 κ λ1 λ2 λ3

0.005 0.01 0.1 0.002 0.0048 0.0097 0.1048 0.0020
0.005 0.01 0.1 0.004 0.0049 0.0103 0.0949 0.0043
0.005 0.01 0.2 0.002 0.0049 0.0099 0.1809 0.0020
0.005 0.01 0.2 0.004 0.0050 0.0105 0.1846 0.0041
0.005 0.02 0.1 0.002 0.0051 0.0201 0.1061 0.0020
0.005 0.02 0.1 0.004 0.0053 0.0199 0.0930 0.0043
0.005 0.02 0.2 0.002 0.0051 0.0185 0.2069 0.0019
0.005 0.02 0.2 0.004 0.0051 0.0189 0.1933 0.0039

TABLE I
EIGHT CASES FOR TESTING WITH SIMULATED TRAJECTORIES.

covariance can be computed as

Σs =
1

N − 1

∑
i

log(m−1
s ◦ gi(T ))∨[log(m−1

s ◦ gi(T ))∨]T .

To evaluate our method, we first tested its performance
using simulation data. For given model parameters, we
generate many needle paths by numerically integrating the
stochastic differential equation (3) using the Euler-Maruyama
method [9]. We set the time to T = 60 s and the insertion
speed to v = 2.5 mm/s.

Table I shows 8 cases with different model parameters.
In each case, 100 trajectories are generated, the covariance
of the needle tip pose is obtained, and then the model para-
meters are computed by matching the covariances obtained
by the simulated trajectories and the analytic equation (10).
We implement this matching process by minimizing the
following cost function:

C(κ, λ1, λ2, λ3) = ‖Σ(T ) − Σs‖2.

As shown in Table I, the model parameter estimates show
that the error is less than 10% compared to the given values
for the parameters.

In order to apply our parameter estimation method to the
experimental data, we compute the covariance of the needle
tip pose using the postprocessed experimental data as

Σs =
0.0019 −0.0002 −0.0002 −0.0130 −0.1049 0.1069

−0.0002 0.0044 0.0053 0.3357 0.0062 −0.0195
−0.0002 0.0053 0.0064 0.4029 0.0055 −0.0250
−0.0130 0.3357 0.4029 25.4651 0.5003 −1.3393
−0.1049 0.0062 0.0055 0.5003 7.0490 −2.5077

0.1069 −0.0195 −0.0250 −1.3393 −2.5077 15.6076


(11)

By matching (10) and (11), the following system parameter
estimates are obtained:

λ1 = 0.0219, λ2 = 0.4937, λ3 = 0.0043, κ = 0.0062.
(12)

For the verification of these parameters, we evaluate the
closed-form covariance matrix (10) using these estimated
parameters. The normalized least-squared error (NLSE) of
the closed-form covariance relative to the sample covariance
(11) is 0.0655. The NLSE of Σ2 relative to Σ1 is defined as
‖Σ1 − Σ2‖/‖Σ1‖.

We now assess the 6.55% error in the covariance given
by our stochastic model. We consider whether this error is
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Fig. 3. (a) Error bars for the NLSEs between the two covariances obtained
by the simulated paths and by the closed-form formula. (b) Error bars
for the NLSEs between the two covariances obtained by the experimental
trajectories and by the closed-form formula.

due to modeling, experimental error, or the relatively small
number of samples used to compute 6D data. Since the
quantity of experimental data that can be obtained from the
same artificial tissue is limited, we use numerically generated
data to investigate the effect of the number of samples.
Suppose that our stochastic model with four parameters (λ1,
λ2, λ3 and κ) perfectly describes the needle insertion system.
Then using the parameters in (12) and the Euler-Maruyama
method [3], [9], we generate many needle paths. Taking these
paths as experimental data, we follow the same procedure
that we used to estimate the model parameters and the cor-
responding closed-form covariance. The difference between
the covariance obtained using artificial experimental data
(which is assumed to be perfectly simulated by the Euler-
Maruyama method) and the covariance computed using the
closed-form formula is computed. We use 100 sets of 100
needle trajectories to compute the NLSEs of the covariances
and have the mean µ = 0.1137 and the standard deviation
σ = 0.0538 for the NLSEs. It is shown as the first error bar
in Fig. 3(a). After the tests with the different numbers (200,
300, 400 and 500) of sample trajectories, we also plot the
error bars as shown in Fig. 3(a). These error values show the
accuracy level that we can expect when the needle model
is perfect. Furthermore Fig. 3(b) shows the error bars for
the NLSEs between the sample covariances and the closed-



form covariances. In this test, we resample the experimental
data obtained in Section IV. The NLSEs gets smaller as the
resampling size increases. Comparing Fig. 3 and the 6.55%
error that we achieved, and noticing the decreasing error with
the increasing sampling size, we can conclude that the error
is in large part due to sampling effects.

Let us revisit our previous needle model in [13] and
[16]. In this model, we employed two noise parameters
λ1 and λ2. By fitting this model to our experimental data,
we can estimate the parameters and obtain the closed-form
covariance. The NLSE of the closed-form covariance relative
to the sample covariance (11) is 0.261 (=26.1%), which is
much higher than the error (6.55%) by our new model (3).
Therefore, our new model better fits to the experimental data
than the previous one.

VI. CONCLUSION

Using the experimentally obtained trajectories of a bevel-
tipped flexible needle, we estimated the model parameters
that are embedded in the stochastic nonholonomic needle
model. We derived the equation that describes how the
covariance of the need tip pose is related to the model
parameters. This formulation is based on the theory of error
propagation [19]. The closed-form covariance as a function
of the model parameters was derived for the case in which
the needle is inserted into tissue with constant insertion speed
(v(t) = v0) and without rotating (ω(t) = 0).

Using the stereo vision system, the 3D position data of
the needle tip were recorded while the needle was inserted
without rotating. Repeating the insertion, we obtained 100
sets of insertion data. Matching the covariances obtained
by the closed-form formula and the experimental data, we
determine the curvature of the needle trajectory and the three
noise parameters which represent the amount of uncertainty
in the insertion system. We also confirmed that our modified
needle model in (3) with three noise parameters better fits
to the experimental data than the previous model with the
two noise parameters in [13], [16]. The parameter values
that we estimated in this paper were used for needle path
planning [14].

The method proposed here may be improved in several
ways in the future. First, we can employ different baseline
trajectories. In this paper, we consider only one circular
baseline trajectory. For example, if we insert the needle with
a constant rotation velocity ω(t) = ω0 �= 0, we will obtain
a covariance matrix which will be a different form from
(10). Considering both this new covariance and the current
covariance (10) may lead to more accurate determination
of the model parameters. Second, the anisotropic property
of real tissues should be considered. The current model (3)
assumes that the artificial tissue is isotropic, although real
tissue is anisotropic. Modeling the anisotropy is challenging,
but it will be an essential step for needle insertion to real
tissue. Finally, we can increase the accuracy of the closed-
form covariance using a second-order approximation [20].
We leave this work for the future.
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