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We present several numerical algorithms for six-degree-of-freedom rigid-body registration of line
fiducial objects to their marks in cross-sectional planar images, such as those obtained in CT and
MRI, given the correspondence between the marks and line fiducials. The area of immediate
application is frame-based stereotactic procedures, such as radiosurgery and functional neurosur-
gery. The algorithms are also suitable to problems where the fiducial pattern moves inside the
imager, as is the case in robot-assisted image-guided surgical applications. We demonstrate the
numerical methods on clinical CT images and computer-generated data and compare their perfor-
mance in terms of robustness to missing data, robustness to noise, and speed. The methods show
two unique strengthg1) They provide reliable registration of incomplete fiducial patterns when up

to two-thirds of the total fiducials are missing from the image; &)dthey are applicable to an
arbitrary combination of line fiducials without algorithmic modification. The average speed of the
fastest algorithm is 0.3236 s for six fiducial lines in real CT data in a Matlab implementation.
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[. INTRODUCTION registration and target definition from a single image slice
using a simple calculation with a closed formula. The pio-
In this paper, we present several numerical methods for rigigheers of stereotaxyBrown, Kelly, Leksell et al)*~3 were
body coregistration of line fiducials and their correspondingsuccessful in maximizing accuracy while still minimizing
cross-sectional image, such as a CT or MRI image slice. Outomputational complexity. These registration systems have
work originates from frame-based stereotactic procedureserved reliably in classic applications where the frame is rig-
such as stereotactic radiosurgery and functional neurosufdly attached to the body and the imaging protocol is strictly
gery. Traditional stereotactic registration algorithms have aontrolled in a preoperative session. Emerging intraoperative
excellent track record in these applications, where the framﬁ'naging’ however, presents new challenges.
is rigidly fixed to the patient and only preoperative imaging  Classic registration methods uniformly fail when the pat-
is used. At the same time, however, classic registration methern of fiducials is incomplete, i.e., when certain rods are
ods begin to show their limits when used outside the scope ghissing from the cross-sectional image. This problem has
their original design. In this paper we discuss new challengeslways been present in frame-based stereotactic navigation,
for frame-based stereotactic registration and present alternut it became critical with the advance of fast imaging scan-
tive computational methods to solve those problems. ners, allowing for intraoperative stereotactic navigation. In
Stereotactic head frames have been used for over two dehese applications, the stereotactic frame is not necessarily
cades. Initial applications were intracranial neurosurgery andttached to the patient, allowing for greater maneuverability.
radiosurgery.—3 The methodology has been further extendedAs a result, the fiducial frame can move outside the field of
for extracranial radiotherapy applicatiohs, and then re- view during the procedure, causing fiducial rods to be miss-
cently for robotically assisted surgéety.Popular registration ing from the image. In robotically assisted surgery, the end-
algorithms follow the theme described by Brovand many  effector of a robot can be registered to the scanner using a
years later by Susit and Masamun@.Classic stereotactic rigid body fiducial frame attached to the end-effector. $@sil
fiducial frames are composed of nine fiducial rods, which aresuggested a miniature version of a stereotactic head frame.
arranged in three N-shaped motifs. Some of the frequentiflasamun® built the first clinically applicable embodiment
used stereotactic fiducial frames are shown in Fig. 1. Thesef Susil’s prototype. Susil's device and Masamune’s device
head frames are highly redundant fiducials that provide roare displayed in Figs.(d) and 2Zb), respectively. Early ex-
bustness against image processing errors. The strength périence with Masamune’s device revealetiat the incom-
these registration systems is the ability to achieve concurremleteness of data tends to be a chronic problem because it is

1881 Med. Phys. 29 (8), August 2002 0094-2405 /2002/29(8)/1881/11/$19.00 © 2002 Am. Assoc. Phys. Med. 1881



1882 Lee, Fichtinger, and Chirikjian: Numerical algorithms for spatial registration 1882

Fic. 1. Some of the frequently used
stereotactic fiducial framega) BRW
CT. (b) BRW MRI. (c) Kelly CT.

common for the robot to accidentally move the fiducial As we mentioned earlier, in many applications a single
frame out of the field of view, causing the image slice toslice must be sufficient for fullsix degrees-of-freedonmeg-
become incomplete for registration. Figure 3 illustrates aristration. Other works have been performed with other crite-
image of Masamune’s device with an incomplete number ofia in mind. For instance, Zylkat al1? assumed that all the
fiducial rods. Traditional methods cannot handle this probimage slices have been acquired without motion of the head
lem without acquiring extra images, which costs time andframe between image slicdall slices were parall¢l and
exposes the patient to unnecessary radiation. they registered the lines from the 3-D volume of image data
Classic registration algorithms must be “reinvented” eachto the head frame. They, however, did not solve the problem
time when the geometric description of the frarfshape, of registering planar point patterns to lines in space; there-
assembly of rods, etcchanges. This is particularly inconve- fore their approach is not applicable to single-slice-based
nient when one needs to go through several prototypes of egistration.
new design. Image-guided robots must often work in tight The algorithms sought must also run reasonably fast, in
spaces like inside the gantry of a CT, where there may not berder to be useful in intraoperative applications. Computa-
sufficient room for a conventional fiducial device composection time longer than one second would be prohibitive.
of a triplet of V- or N-shaped planar motifs. The mathematical problem in this paper is basically to
The foregoing problems could be eliminated by a compu+egister a planar image in space, given a set of known lines
tational method that is invariant to the number and assemblin space, given a pattern of points in the plane, and given a
of fiducials in the stereotactic frame. In this generic scenariogorrespondence between the lines and points. Figure 4 dis-
conventional fiducial devices like the Brown- plays Masamune’s device when seven intersection points are
Roberts—Wells or Kelly? head frames in Fig. 1 are uni- generated in an image plane. While the problem of register-
formly handled, and incomplete scans also fit in the frameing one set of points to another has received a lot of atten-
work. tion, the general problem of registering points to lines has
There are additional requirements for a new registratiomot been studied as extensivéfyThere are two variants of
method. Very importantly, it must be resistant to noise in thethis problem that are addressed here. In the first, we are
input data. One of the inputs to the registration algorithm isinterested in finding the equation of the plane. If we know
the two-dimensional coordinates of the fiducial marks in thethis, then the planar registration of one planar set of points to
cross-sectional image. This information is produced by arthe other can be performed afterward. In the second formu-
image processing program that is not the subject of this inlation of the problem, a frame of reference is attached to the
vestigation. It is conceivable that the locations of fiducialintersecting plane, and we solve for the position and orien-
marks are not exactly identified in the medical images, due teation of this frame in three-dimensional space. Hence, in the
suboptimal imaging and image processing techniques. Thesist approach two three-parameter problems are solved se-
errors are considered to be “noise” in the input to the regis-quentially, while in the second approach one six-parameter
tration algorithm. problem is solved.

Fic. 2. Stereotactic localizers mounted on robotic
needle drivers(a) Susil’s device.(b) Masamune’s de-
vice.

(b)
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which the line passes, together with a unit vector specifying
the direction of the line. In parametric form, a line is given
by the equation

X(S)=p+sv, (1)

where s is the distance along the line measured from the
point p, andv is the unit vector specifying the direction of
the line. Given multiple linesx;(s;),... Xn(sp), theith will

be defined by the vectorg andy; .

B. Review of rigid-body kinematics

A spatial rigid-body motion consists of a rotation and a
translation which act on a position vector as

x'=Rx+Db,

wherex, x’, be R® and Re SO(3) (the three-dimensional
rotation group. The pairg=(R,b) e SO(3) X R® describes
Fic. 3. Example of incomplete data with the Masamune’s device. ~ POth motion of a rigid body and the relationship between
reference frames fixed in space and in the body. Furthermore,
motions characterized by a paiR,b) could either describe
We present several algorithms for both mathematical apthe behavior of a rigid body or of a deformable object un-
proaches. We demonstrate the numerical methods on clinicglergoing a rigid-body motion during the time interval for
CT images and computer-generated data. We compare th&ihich this description is valid.
performance in terms of robustness to missing data, robust- Consider a rigid-body motion that moves a reference
ness to noise, and speed. We implemented our algorithms &ame originally coincident with the “natural” space-fixed
Matlab programs to prove the computational feasibility.  frame (1,0) to (R;,b;). Now consider a relative motion of

the frame R,,b,) with respect to the frameR;,b;). That
[l. MATHEMATICAL BACKGROUND AND NOTATION is, given any vectox defined in the terminal frame, it will

In this section we review the fundamental mathematics of@0k like X"=Rzx+b, in the frame Ry ,b,). Then the same
lines in space and rigid-body motions to the extent needed t¥ector will appear in the natural frame as

formulate and solve the registration problems presented later x” =R, (R,x+b,) +b;=R;RXx+ R;b,+b;.
in this paper.

The net effect of composing the two motiofw changes

A. Parametric description of lines in space of reference frameis equivalent to the definition

The position of points in three-dimensional space are de- (R, b,)=(R;,b;)°(Ry,b,)2(R;R,,Riby+by). 2)
noted with vectorsx=[x;,X,,X3]" € R3, where the super-
script T denotes the transpose of a vector or a matrix. A lineFrom this expression, we can calculate the motiBa,b,)
in space is defined by the position of any point throughthat for any R;,b;) will return the body-fixed frame to the
space-fixed frame. All that is required is to solRgR,=1
andR;b,+b;=0 for the variableR, andb, and givenR;
and b;. The result isR,=R] becauseR *=R' for R

Fiducial Rods e SQ(3) andb,=—RIb;. Thus, we denote the inverse of a
motion as
(R,b)"*=(R",~R"b). (€)

This inverse, when composed either on the left or the right
side of R,b), yields(l,0).

The set of all pairsR,b), together with the operationis
denoted aSE(3), which is the three-dimensional rigid-body
motion group. It is often convenient to represent elements of
this group using X4 homogeneous transformation matrices:

R b
]

Left and right differential operatorX- and XR for i

Fic. 4. Seven pointsR,—P,) are generated by intersecting the image — L--,6 acting on functions oBE(3) are defined in analogy
plane. with the definition of the partial derivativéor directional
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derivative of a complex-valued function dtN-valued argu-
ment. For small displacements from the identityalong or

about a coordinate axis, the homogeneous transforms repre- i:th
senting infinitesimal motions look like line
Hi(e)2exp(eE)) ~| + €E; ,
wherei=1,2,3 andi =4,5,6, respectively, correspond to ro-
tations or translations fax, y, andz axes and
0 0 0 O 0O 0 1 0
~ 0 0 -1 o0 ~ 0O 0 0 O
EiZlo 1 of" B2l -1 0 0 of i
0 0 0 O 0 0 0 O
Fic. 5. Mathematical parameters of a line.
0 -1 0 O 0 0 01
~ 1 0 0O ~ 0 0 0O 1
Es= o Ba= ? XRf(H)~ = [f (e)—f
0 0 0O 0 0 0O Xif(H)~—[f(H-Hi(e)—f(H)],
0 0 00 0000 is negative, then this indicates that this is a favorable direc-
0 00 O 0 00 O tion in which to update the rigid-body motion &&—H-(l
00 0 1 000 0 + €E;). Ifitis positive, then update d3—H-(l — €E;). If it
Esz . ~Es= is close to zero, then do not update in this direction. This
0 0 0O 0 001 process is repeated by cycling through values of subscript
0 00 O 0 00 O until a minimum is reached.

Given that elements a8 E(3) (viewed as homogeneous
transform$ are parametrized as=H(q), whereq is a six-
dimensional array of rotation and translation parameters, difA. Solving a system of polynomials  (algorithm 1 )
ferential operators take the form

IIl. NUMERICAL METHODS

The technique presented in this section uses (Egto

_ 1 find the plane in space in which the image must lie. After this
XPf(H)= lim—[f(HeHi(e))—f(H)] plane is found, existing point-to-point registration techniques
=0 are used to determine the rigid-body motion between frames.
_df(He(I+1Ey)) " 1. Determination of the image plane in space
dt t=07 Suppose we are given a head frame with three fiducial
1 lines and three corresponding fiducial points in the planar
XHE(H) = lim=[f(H; *(e)oH)—f(H)] image. The problem of finding the location of the image
e—0€ plane in space can be solved by simultaneously satisfying
~ three constraint equations of the form
_df(t—tE)eH) 2_ 42
= dt : ©) i (s) —x(splI*=di], (6)
t=0

for (i,j) €{(1,2),(1,3),(2,3). In general, if more than three

SinceH andH; (e) are 4<4 matrices, we henceforth drop the fiducials are used, this problem is overdetermined, so only an
“o” notation since it is understood as matrix multiplication. @PProximate solution is possible. As shown in Figxgs;)
If we want to analytically minimize a function of rigid- IS @ position vector of a point on thith line that is defined by

body motion,f(H), we set the positionp; and unit directiorv; . Heres; is the arclength
_ from p; to xi(s;) andd;; is the Euclidean distance between
XRf(H)=0 xi(s)) andx;(s;).

This set of equations will, in general, be a second-order

or polynomial ins; ands; of the form

XFf(H)=0, S7—2s;s; €Oty + 57 +ay; s+ bys;=df + ¢ .

fori=1,...,6 and solve the resulting six equations. If we wantThe constants;; , b;;, 6;; , andc;; all come from the geom-

to minimize f(H) numerically, we do gradient descent by etry of the problem and cag=v;-v; .

using a numerical approximation to E@) or Eq. (5). For The approach we take is to iteratively solve the system of
example, if for small values o, polynomials by assuming that each of the parameters can
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vary with “artificial” time. We make an initial guess;(0) 2. Determination of rigid-body motion
(in practice, this guess corresponds to the plane whose nor-
mal is the axis of the head frame with a value @f that
causes this plane to cut the head frame in)half

Then we take the time derivative to get

After obtaining the arclength of lines using methods de-
scribed in the previous section, it remains for us to determine
the rigid-body motion of a frame fixed to the image plane
relative to the space-fixed reference frame. We assume here
ZSiéi—Z(Sisj+siSj)cosﬁij +ZSij+aijéi+bijéj=2dijdij _ that the corresppndenc_e k_)etween points in Fhe two-poin_t sets
7) has been establishedpriori, and we seek to find the relative

rigid-body motion that will best match the two sets of points
The right-hand side follows from the fact thaf is a con- in the sense of least squared error. This is what we call the
stant. We can assemble the three equations of the form in Egqtatic rigid-body motion estimation problem with priori

(7) as correspondencE~1’ In the context of computer vision and
) image analysis, many other related pose determination/
J(s)s=w. (8)  estimation problems have been studied extensitfef}:

. o Consider two sets ofi points in R® denoted agx;} and
The problem does not dictate the behaviordgfin the  ry1 Here{x,} is a set of intersection points with respect to

mathematical model. However, if we specify the space-fixed reference frame afyd} describe the same
o points with respect to the frame fixed in the image plane, and
dij = (dij) measurea dij , the correspondence«y; is assumed for ail=1,...n.

The goal is to find the rigid-body motiorR(b) such that
where (@ij) measureadenotes the Euclidean distance between(y;} is moved to fit in the “best” way to{x;}. One way to
theith andjth fiducial points in the image plane, then iterat- define the best fit is as the minimization of the weighted
ing Eq. (8) with the simple update rule mean-square error,

n

— -1
AT FALTEOWO. E2(R.b)="3, wilx — (Ry+ b, ©
converges to the solution as long as de#0 and ||w|| is =t
small for all values of encountered during the iterations.  The weightsw; satisfyw;>0 and=!"_,w;=1, and were set
This method can be extended with a slight modification toto be equal to X in our computer implementation.
cases where more than three lines are involved. For instance, Note that this problem can be stated as not only a general
if nlines are considered(n—1)/2 constraint equations are three-dimensiona(3-D)—3-D pose estimation but a simple
obtained in the form of Eq6). The update rule in this case 2-D-2-D pose estimation because we know in advance all
is the n points exist in a plane. However, solving the 2-D—2-D
pose estimation problem requires another coordinate frame
S(t+At)=s(t) +At(ITI) LI Tw(t). on the image plane and the relative rigid-body motion be-
tween the new frame and space-fixed reference frame is as-
sumed already established. We review here Haralick's ap-
rE)'roach of rigid-body motion for the 3-D-3-D pose

The execution of this method with a number of different
input data can be used to generate a look-up table that co
ta;‘nshthe \éalueds of co&rgspovr:/qtlr??hto eachfstt:]t otf |bn|puihdata, estimation probleri’
WRICh aredy,, das, anddyg. VWIth the Use ot the table, IEre — payyiting Eq.(9) with the constrainR™R=1 using La-
is no need to perform the computations in real time. Equally : . :

: grangian multipliers results in
spaced values aof;,, d,3, andd,3 are generated first, and

the computations are executed off line to obtain the values of n 3 3

s. Given measured values df,, d,3, andd,3, the corre- EXRb)=>, > Wi(Xij—ijYi—bj)erz \(rfr—=1)
sponding values 0§ can be interpolated from the look-up R =t

table. +2N4r Fp+ 20513+ 26l ol 3, (10)

This look-up table method was implemented by using _ _—_— B T
three-dimensional linear interpolation that is essentially thVhere Xi=[Xi1,Xiz,xis]", R=[r1,rz,rsl, b=[by,by,bs]",
three-dimensional extension of the following equation of2NdA1,....\e are the Lagrangian r?ultlpl|grs. _
one-dimensional linear interpolation: Taking the partial derivatives &“(R,b) in Eq. (10) with

respect to each componentlwaind setting the derivatives to
f(uy)—1f(uq) zero yields
—W(U—Ul)Jrf(Uﬁ- |
21 wi(X;—Ry;—b)=0.

f(u)

Due to limited disk space and time for the generation of the

table, a 5x50x50 table was used. However, this method By defining

did not show any advantage in speed over the on-line com- SN ST iy,
putation method, despite a very small table size. Thus we y— % Ve %
omitted this method from further tests in Sec. IV. 2o Wi i 1Wi
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the translation vectob, is obtained: 1. Gradient descent (algorithm 2a)

b=x—Ry. (11 The cost function defined in Eq13) is a function of

After substituting Eq(11) into Eq. (10), we take the par- rigid-body motion, i.g., a rotation matri®, and atranslatiqn
tial derivatives ofE?(R,b) with respect to the components of vector,b. By employing a 44 homogeneous transformation

eachr; and set the partial derivatives to zero. By rearranging"atrix;

the results and defining ( R b)
H(R,b)= ,
) N1 As s (RO={ g 4
A:izl V==Y, A= Xs N2 N, the cost functiorC(R,b) can be denoted as a function tef
R As g Ag i.e., f(H).

B B The cost function, Eq(13), can be rewritten as
and B:[bl ,b21b3]1 Wherebj :Ein=1Wi(Xij _X])(yl _y), Xj f(H)éC(R,b)

=3, wix;; /= ,w;, an equation,

n
T TA —

ART+RIA=B, = (1 =viv)(pi—x)I?
is acquired. =1

By observing thaR B is symmetric and taking the singu- n
lar value decomposition @, i.e.,B=USV', the solution for => [l0=vv)p;— (Ry;+b)]|?
the rotation matrixR, is obtained: =1

R=VUT. (12

n
| | | =2, [p[(1=2vv+vivivv)pi = 2p[ (1= 2v,v]
Applying Eqg.(12) to Eq.(11) yields the translation vectob, i=1
+VivivivRY; = 2p (1 =2viv] +viv{viv] )b
B. Minimization over position and orientation
(Algorithms 2a and 2b ) +(Ry)T(1=2v,v{ +v;v] viv]Ry; + 2(Ry;) (1

The goal here is to determine the rigid-body motion that —2v;v! +vivivivhb+bT(1 = 2v,v] +v,vvivT)b].
will place a frame of reference attached to the plane in such o
a way that the fiducial points are made to come as close as Defining
possible to the lines in space from which they arose. 5 S ¢
Given the line defined by the positignand unit direction H-(1+ eEi)=( T ) ,
vectorv, and given a point in space we calculate the Eu- o1
clidean distance between the line and point by minimizing

the cost function, R andb in the expression fof (H) are replaced by andc,

respectively, ag(H (I + €E;)). As described in Sec. II B, the
c(s)=|p+sv—x|?=[p—x[*+2sv-(p—x) +5°. minimum is reached by calculating the differential operators
Settingdc/ds=0, we see that the minimizing value sfis ~ and updating.
Smin=—V+(p—X), and so the vector pointing from to the
closest point on the line is

h=(p—x)—[Vv-(p—X)]V, 2. Partial closed-form analytical solution followed

which we can write as by gradient descent (algorithm 2b)

The algorithm explained in Sec. Il B can be simplified by
solving eitherX*f(H)=0 or X-f(H)=0 fori=4,5,6 for the
Given n lines, we can then seek to minimize the costthree components of translation vector,

function, For example, combining equationiiLf(H)zo for i

h=(p=x)=wWT(p=x)=(1=wW")(p—X).

n =4,5,6 yields the following equation:
C(Rb)=2, [l =i (pi =) (13) n
Zl (b+Ry;—p) (1 —2v;v +v;vviv[) =0T,
where
If we solve this equation fob, we obtain
Xi=Ry;+b, )
n _

andy; is the position vector of théh fiducial point relative b={z (1= 2vvT +vvivv)
to a frame fixed to the image plane. Whereas Haralick's =1 e

method could be used to solve f& andb in Eq. (9), it
cannot be directly applied to Eq13). Hence, we use the
methods of Sec. Il B.

X - (14

n
Z;l (1 =2viv{ +viv{viv]) (p; — Ry;)
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Sinceb is determined in Eq(14) as a function of rotation may be required. This step could be replaced by finding the

parameters, the gradient descent method can be done &uler angles or Cayley parameters that best approximate

SO(3) rather thanSE(3) with three parameters instead of R(t), then replacér(t) with the resulting rotation matrix.

six parameters. Hence, faster execution of the algorithm can We note that if the actual rotation matrix is close to being

be expected. the identity matrix(as will be the case when the image plane
is close to cutting the cage straight)pthen only one itera-
tion may be required.

C. Rate linearization of position and orientation o N . )

(algorithm 3 ) D. Minimization over position, orientation,

. ) ) and arclengths (algorithm 4 )
Instead of minimizing a scalar cost function with respect

to rigid-body motion, we can formulate the problem as find-  Given the coordinatey;} of fiducials in the image plane,
ing the rigid-body trajectory(R(t),b(t)) such thatx;(t)  We can simultaneously solve for the position and orientation

=R(t)y; +b(t) drives each of the vectors, of a reference frame attached to the image plane and the
T arclengthgs;} as follows:
[1=vivi 1(pi —xi(1))= (1), (15 We observe that
to zero, wheregy; denotes the coordinates of thk fiducial in pi+siv,=Ry;+b. (17

the image plane. If this can be accomplished, it means that

each of the fiducial marks is driven to its corresponding rod-6t US assume that we have an initial guess for the orienta-
of the three-dimensional stereotactic frame. tion of the frame attached to the image plane, and that the

Note that the matrix[I—wv'] is not invertible since actual orientation is not very different than this initial guess.

IM|=1 implies that the matrixv" has an eigenvalue equal to €N we write
unity, which corresponds to eigenvectarMaking the sub- R=Ry(1+ Q).
stitution x;(t) =R(t)y;+b(t) in Eq. (15 and rearranging
terms, we see that

[1=vivi Ipi—[1 = ViV 1(Ry; + b) = &(1).

We now take the derivative of both sides with respect tof
artificial time, and observe thgt andv; are constant vec-
tors. If, in addition, we observe that pi= —SiVi t Royi— Ro(YiXw) +b.

Here Q= —Q7 has entries that are small. The vectoris
defined, such that

wXx=X,

or any xe R3. This means we can rewrite E(L7) as

RYF RRTRyi=wX(Ryi)= —(Ry;) X, By definingY; to be the matrix such that;x=y;Xx for
everyx e R3, it follows that we can write the following linear
wherew=vect(RR"), then we can write the time derivative €quation:

of Eq. (15) as S
[1-vv] [mat(Ry;),— 1 [e",b"]"=4. (16) Pi—Royi=[0,...,0,—V;,0,....0,=RoY; 1 ]| @,
b

Here we use the notation=vect(N) andN=matr(n) if N is
the skew-symmetric matrix such thiitx=nXx for everyx

e R®. We have also used the fact tHRR" is always skew
symmetric wherRe SO(3).14
If we force & to zero by defining Stacking these equations on top of each otheri fol,...n
“ results in a system of (8 X (n+6) scalar equations in
a=-ad, _ +6 parametergn arclengths and 6 rigid-body motion pa-
for some positive constant, thenw andb can be solved for rameters This can be solved in the least-squares sense using
at each value of time along the way by inverting the over-a pseudoinverse.
constrained system resulting from concatenating(E6). for
i=1,2,..n. Once this is done, the values bft) andR(t)  IV. EXPERIMENTAL RESULTS AND DISCUSSION
can be updated using the rules

where

S:[Sl,...,si ,...,Sn]T.

The algorithms described in the previous section were
b(t+At)=b(t)+A b(t) implemented in Matlab. The input data to the algorithms are
2-D coordinates of the centroids of fiducial marks, as they
are found in a cross-sectional image. The algorithms assume
R(t+At)=[1+At mat(w(t))]R(t). that the image already has been processed, and hence the

. . . centroid locations of fiducial marks have been extracted and
Since the rotational updates have the potential to cause ; . . .
. . . : matched with the rods. The image processing software typi-

R(t) to stray from being a rotation matrix, the occasional

renormalization cally hasa priori knowledge of the gross initial orientation
' and the geometric description of the fiducial frame, which is
R(H)—R(t)(RT(H)R(1)) Y2 usually sufficient for the determination of correspondence. In

and
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difficult cases some operator input can be required, in the 14

form of a few mouse clicks. Solving the correspondence

problem as part of the numerical minimization would be 12r

more elegant, but would also require significantly more pro- y

cessing time. We will explore this option in future work. \B\E\m
In our experiments, we used actual patient data acquired

in 1995 and 1996 on a General Electric CT Scanner at the |

George Washington University Hospital. For stereotactic reg- | 2

istration Kelly and BRW head frames were used. The images

were processed and contoured with a clinically commis- I

sioned stereotactic navigation systé@WST Linac Knife -5 Algorithm 1

v5.2), which was developed and maintained at the George 1213221223"

Washington University Hospital. -A- Algorithm 4
The locations of fiducial marks were determined in the o2 > s s

following manner: The images were thresholded by setting Number of rods

the window and level paramete_rs u_ntil all noise and .artifaCtSFle. 6. Error measures defined in E38) are displayed for each algorithm.

dlsgppeared from around_the fiducial rOdS'_ In e_ach Image, &,q input was synthetic data with 0.2 mm amplitude of noise.

sufficiently large contour line around each fiducial mark was

drawn such that it completely surrounded the fiducial mark

with some black margin. Because of the prior thresholding, o
the pixel values in the black margin were guaranteed to b&rage deviation in the Kelly frame data was 0.097 mm and

zero. The software calculated the centroid of the interior ofn€ average deviations in the two sets of BRW frame data
the contour line, which was considered as the center of th@ere 0.267 and 0.111 mm. Therefore the average deviation
fiducial mark. When the GWST Linac Knife system was Of the real CT data was about 0.15 mm. _
commissioned, this function was also carefully tested on a VWe also examined the sensitivity of our algorithms to
large number of CT and MRI images and with various ‘Noise” added to fiducial locations. In addition to real CT
threshold settings. Background noise, when there was anglata, 40 synthetic datasets were generated by transforming
was effectively removed by simple thresholding. The typicalthe reference frame from the identity. The synthetic data cov-
pixel size in a stereotactic case was around 0.5 mm, thgred a large range of rigid-body motions25° around each
diameter of a fiducial rod was 5 mm, and each fiducial markotation axis. The case of zero noise represents ideal input
contained at least 75 pixels. This convinced us that thélata, in which case the residual registration error originates
GWST Linac Knife system calculated the centroids of fidu-SOlely from the algorithm and its implementation. The am-
cial marks in a fairly consistent and accurate manner. NevPlitude of noise was kept constant while its direction was

ertheless, the quality of the input data was analyzed retrg@ndomized. All the algorithms were tested at six different
spectively. noise amplitudes, from 0 to 0.5 mm with the increment of

Two sets of real CT data for the BRW franié3 image 0.1 mm. We also included simulated cases when fewer than

slices eachand one set of real CT data for the Kelly frame @ll the fiducial rods were available for registration, and ana-
(10 image sliceswere used in our experiments. The imagelyzed the combined effect of no?se and missing fidupials.
size and FOMV(Field of View) for both the BRW and Kelly In order to compare the resistance of the algorithms to
frames were 512512 pixels and 34.5 mm, respectively. The N0ise, a distance metric &K(3) (three-dimensional rigid-

thickness of image slices was 3 mm for the BRW frame 5P0dy motion groupwas used. We applied a metric, which
mm for the Kelly frame. measures the error of a local frargg= (R,,b,) from a ref-

In each clinical case, a series of consecutive slices werrence frame; =(Ry,b,) as*
acquired. The head of the patieftith the head frame 9n 2) = 5 5
was fixed firmly to the scanner bed. Consequently, the loca- 9s&3)(91.92)= VLA(dsqa)(R1,R))*+ (dga(by, by) ),18
tions of a given fiducial rod found in the full series must fit a T _ . (18
straight line and the extent of deviation from this line is aWhere dsqs)(Ri,Rz)= \/6—? traceR,R;) is a distance
good measure of the “noisiness” of our input data. The av-metric onSQ(3) (the three-dimensional rotation grouand

3
T

o
B o

Error measure {mm)
g
q

o
=

o
)
T

TaBLE |. Error measure¢mm) of algorithms for synthetic data with 0.2 mm  TasLE Il. Error measuregsmm) of algorithms for synthetic data with 0.5 mm

noise. noise.
Algorithms 6 rods 7 rods 8 rods 9 rods Algorithms 6 rods 7 rods 8 rods 9 rods
1 1.0423 0.9664 0.9394 0.9130 1 3.6891 2.6835 2.5864 1.9823
2b 1.3813 1.2023 1.0983 1.0243 2b 1.7523 1.6563 1.5994 1.5733
3 0.8834 0.7284 0.6255 0.6095 3 1.9784 1.8924 1.7714 1.7044
4 0.7774 0.7754 0.6754 0.6494 4 1.9744 1.7764 1.6424 1.6254
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FiG. 7. Error measures defined in E38) are displayed for each algorithm. Fic. 8. Error measures defined in H48) are displayed for each algorithm.
The input was synthetic data with 0.5 mm amplitude of noise. The input was real CT data.

dgs(by,by)=|b;—b,|| is the Euclidean distance between frameg; in Eq.(18) is the frame in the case of complete data
pointsb; andb,. HereL is a measure of length that makes (nine rods. As a result of this test, algorithms 3 and 4 are the
the units of orientational and translational displacementsnost robust to missing fiducials. Table Il also indicates that
compatible. The radius of a fiducial rod, 2.5 mm, was usedilgorithm 1 is the most sensitive to missing fiducials in real
for this value. Other suitable error metrics have also beel€T data. However, note that the distance measure in the
discussed by Pafk and Chirikjian and Zhod® worst casealgorithm 1 with 6 rods onlyis still only about
Table | and Fig. 6 display the error measures for synthetid pixel (0.5 mm. The robustness of the algorithms to miss-
data with 0.2 mm amplitude of noise for each algorithm.ing fiducials is also observed in Tables | and Il, except algo-
Table Il and Fig. 7 also show the error measures for syntheticithm 1 for 0.5 mm noise.
data but the amplitude of noise is 0.5 mm. The reason for Table IV and Fig. 9 display the running speed of the al-
selecting 0.2 and 0.5 mm for the amplitude of noise is thagorithms for the real CT data. The speed was measured first
the average deviation in the real CT data is about 0.15 mnn FLOPs(Floating Point Operationsand then was normal-
and the amplitude of 0.5 mm is considered to be an extremized to the value of the fastest case, which was found to be
case. Here the reference framgin Eq. (18) is the frame in  algorithm 4 with 6 rods. Algorithm 4 outperforms other al-

the case of synthetic data with zero noise. gorithms. Algorithm 2b is the slowest method because the
When 0.2 mm noise was applied, Algorithm(&te lin-  convergence needs a significant number of iterations. The
earization of position and orientatipand algorithm 4mini-  average running time of algorithm 4 for real CT data with 6

mization over position, orientation, and arclengtositper-  rods was 0.3236 s in a Matlab implementation on a Windows
formed algorithm 1(solving a system of polynomigland  PC with a Pentium Il 366 MHz processor and 64 MB RAM.
algorithm 2b(gradient descent method with partial closed-  Algorithms 2b, 3, and 4 require the rotation matrix to be
form solution. Since algorithm 2b runs faster than algorithm initialized before starting iteration. Hence, the sensitivity of
2a, only numerical results with algorithm 2b are listed inthose algorithms to initial guesses was also investigated.
tables and figures. When 0.5 mm noise was applied, algoFhirty initial rotation matrices were generated for simula-
rithm 2b was found to be the best performing method. How-ions in a similar way the synthetic input data was generated.
ever, its advantage over algorithms 3 and 4 is not significantTen rotation angles from-50° to +50° with the increment
Considering that 0.2 mm noise is close to the noise in thef 10 were selected, and then three rotation axes were com-
real data, algorithms 3 and 4 are the least sensitive methodisned. It was observed that algorithm 4 is not affected by the
to realistic noise. initial rotation matrix. The influence of the initial guess on

Table Il and Fig. 8 show the error measures for the reahlgorithms 2b and 3 is negligible if the rotation angle is in
CT data for each algorithm. In this experiment, the reference

TaBLE IV. Speed of algorithms for real CT dataormalized to the fastest

TaBLE Ill. Error measuregmm) of algorithms for real CT data. case, algorithm 4 with 6 rogls
Algorithms 6 rods 7 rods 8 rods 9 rods Algorithms 6 rods 7 rods 8 rods 9 rods
1 0.5454 0.4889 0.4515 0.0 1 2.0949 3.9164 5.8671 7.9421
2b 0.5218 0.4569 0.3693 0.0 2b 80.1786 143.5839 176.7634 199.9542
3 0.2323 0.2285 0.1384 0.0 3 4.5768 7.3586 8.8758 10.5977
4 0.2369 0.2150 0.1413 0.0 4 1.0000 1.2335 1.5577 1.8806
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200 - ' tions. The average running time of the fastest algorithm is
180k ] 0.3236 s for six fiducial lines in real CT data in a Matlab
ol implementation. The program was not optimized for
speed.
g Mor ’ The immediate field of use of these algorithms is frame-
"g’.un - 1 based stereotactic navigation, as applied in radiosurgery and
2 1ol | functional neurosurgery. Perhaps even more importantly, the
= algorithms appear to be applicable in problems where dex-
E @ : 1 terous robotic end-effectors need to be registered to CT im-
2 | B Algor!thm 1 | . . . . . _
80 -6~ Algorithm 2b ages in an intraoperative scenario. Currently, there is a com
ol = i | prehensive research program at the Johns Hopkins
University in robotically assisted needle placement, with a
or o current focus on prostafespine®'***and kidney* applica-
Egg: S: p tions. We will be implementing and testing the performance
Number of rods of our registration methods in clinical test bed applications in

. L , he near future.
Fic. 9. The running speed of each algorithm is displayed with the number o}

rods. Results were normalized to the fastest case, which is algorithm 4 with
6 rods.
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