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We present several numerical algorithms for six-degree-of-freedom rigid-body registration of line
fiducial objects to their marks in cross-sectional planar images, such as those obtained in CT and
MRI, given the correspondence between the marks and line fiducials. The area of immediate
application is frame-based stereotactic procedures, such as radiosurgery and functional neurosur-
gery. The algorithms are also suitable to problems where the fiducial pattern moves inside the
imager, as is the case in robot-assisted image-guided surgical applications. We demonstrate the
numerical methods on clinical CT images and computer-generated data and compare their perfor-
mance in terms of robustness to missing data, robustness to noise, and speed. The methods show
two unique strengths:~1! They provide reliable registration of incomplete fiducial patterns when up
to two-thirds of the total fiducials are missing from the image; and~2! they are applicable to an
arbitrary combination of line fiducials without algorithmic modification. The average speed of the
fastest algorithm is 0.3236 s for six fiducial lines in real CT data in a Matlab implementation.
© 2002 American Association of Physicists in Medicine.@DOI: 10.1118/1.1493777#
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I. INTRODUCTION

In this paper, we present several numerical methods for r
body coregistration of line fiducials and their correspond
cross-sectional image, such as a CT or MRI image slice.
work originates from frame-based stereotactic procedu
such as stereotactic radiosurgery and functional neuro
gery. Traditional stereotactic registration algorithms have
excellent track record in these applications, where the fra
is rigidly fixed to the patient and only preoperative imagi
is used. At the same time, however, classic registration m
ods begin to show their limits when used outside the scop
their original design. In this paper we discuss new challen
for frame-based stereotactic registration and present alte
tive computational methods to solve those problems.

Stereotactic head frames have been used for over two
cades. Initial applications were intracranial neurosurgery
radiosurgery.1–3 The methodology has been further extend
for extracranial radiotherapy applications,4–7 and then re-
cently for robotically assisted surgery.8,9 Popular registration
algorithms follow the theme described by Brown1 and many
years later by Susil10 and Masamune.9 Classic stereotactic
fiducial frames are composed of nine fiducial rods, which
arranged in three N-shaped motifs. Some of the freque
used stereotactic fiducial frames are shown in Fig. 1. Th
head frames are highly redundant fiducials that provide
bustness against image processing errors. The streng
these registration systems is the ability to achieve concur
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registration and target definition from a single image sl
using a simple calculation with a closed formula. The p
neers of stereotaxy~Brown, Kelly, Leksell et al.!1–3 were
successful in maximizing accuracy while still minimizin
computational complexity. These registration systems h
served reliably in classic applications where the frame is
idly attached to the body and the imaging protocol is stric
controlled in a preoperative session. Emerging intraopera
imaging, however, presents new challenges.

Classic registration methods uniformly fail when the p
tern of fiducials is incomplete, i.e., when certain rods a
missing from the cross-sectional image. This problem
always been present in frame-based stereotactic naviga
but it became critical with the advance of fast imaging sc
ners, allowing for intraoperative stereotactic navigation.
these applications, the stereotactic frame is not necess
attached to the patient, allowing for greater maneuverabi
As a result, the fiducial frame can move outside the field
view during the procedure, causing fiducial rods to be mi
ing from the image. In robotically assisted surgery, the e
effector of a robot can be registered to the scanner usin
rigid body fiducial frame attached to the end-effector. Sus10

suggested a miniature version of a stereotactic head fra
Masamune8,9 built the first clinically applicable embodimen
of Susil’s prototype. Susil’s device and Masamune’s dev
are displayed in Figs. 2~a! and 2~b!, respectively. Early ex-
perience with Masamune’s device revealed11 that the incom-
pleteness of data tends to be a chronic problem because
18818…Õ1881Õ11Õ$19.00 © 2002 Am. Assoc. Phys. Med.
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FIG. 1. Some of the frequently used
stereotactic fiducial frames.~a! BRW
CT. ~b! BRW MRI. ~c! Kelly CT.
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common for the robot to accidentally move the fiduc
frame out of the field of view, causing the image slice
become incomplete for registration. Figure 3 illustrates
image of Masamune’s device with an incomplete numbe
fiducial rods. Traditional methods cannot handle this pr
lem without acquiring extra images, which costs time a
exposes the patient to unnecessary radiation.

Classic registration algorithms must be ‘‘reinvented’’ ea
time when the geometric description of the frame~shape,
assembly of rods, etc.! changes. This is particularly inconve
nient when one needs to go through several prototypes
new design. Image-guided robots must often work in tig
spaces like inside the gantry of a CT, where there may no
sufficient room for a conventional fiducial device compos
of a triplet of V- or N-shaped planar motifs.

The foregoing problems could be eliminated by a com
tational method that is invariant to the number and assem
of fiducials in the stereotactic frame. In this generic scena
conventional fiducial devices like the Brown
Roberts–Wells1 or Kelly2 head frames in Fig. 1 are un
formly handled, and incomplete scans also fit in the fram
work.

There are additional requirements for a new registrat
method. Very importantly, it must be resistant to noise in
input data. One of the inputs to the registration algorithm
the two-dimensional coordinates of the fiducial marks in
cross-sectional image. This information is produced by
image processing program that is not the subject of this
vestigation. It is conceivable that the locations of fiduc
marks are not exactly identified in the medical images, du
suboptimal imaging and image processing techniques. Th
errors are considered to be ‘‘noise’’ in the input to the reg
tration algorithm.
Medical Physics, Vol. 29, No. 8, August 2002
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As we mentioned earlier, in many applications a sing
slice must be sufficient for full~six degrees-of-freedom! reg-
istration. Other works have been performed with other cr
ria in mind. For instance, Zylkaet al.12 assumed that all the
image slices have been acquired without motion of the h
frame between image slices~all slices were parallel!, and
they registered the lines from the 3-D volume of image d
to the head frame. They, however, did not solve the prob
of registering planar point patterns to lines in space; the
fore their approach is not applicable to single-slice-ba
registration.

The algorithms sought must also run reasonably fast
order to be useful in intraoperative applications. Compu
tion time longer than one second would be prohibitive.

The mathematical problem in this paper is basically
register a planar image in space, given a set of known li
in space, given a pattern of points in the plane, and give
correspondence between the lines and points. Figure 4
plays Masamune’s device when seven intersection points
generated in an image plane. While the problem of regis
ing one set of points to another has received a lot of att
tion, the general problem of registering points to lines h
not been studied as extensively.14 There are two variants o
this problem that are addressed here. In the first, we
interested in finding the equation of the plane. If we kno
this, then the planar registration of one planar set of point
the other can be performed afterward. In the second form
lation of the problem, a frame of reference is attached to
intersecting plane, and we solve for the position and ori
tation of this frame in three-dimensional space. Hence, in
first approach two three-parameter problems are solved
quentially, while in the second approach one six-parame
problem is solved.
ic
FIG. 2. Stereotactic localizers mounted on robot
needle drivers.~a! Susil’s device.~b! Masamune’s de-
vice.
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We present several algorithms for both mathematical
proaches. We demonstrate the numerical methods on clin
CT images and computer-generated data. We compare
performance in terms of robustness to missing data, rob
ness to noise, and speed. We implemented our algorithm
Matlab programs to prove the computational feasibility.

II. MATHEMATICAL BACKGROUND AND NOTATION

In this section we review the fundamental mathematics
lines in space and rigid-body motions to the extent neede
formulate and solve the registration problems presented
in this paper.

A. Parametric description of lines in space

The position of points in three-dimensional space are
noted with vectorsx5@x1 ,x2 ,x3#TPR3, where the super-
script T denotes the transpose of a vector or a matrix. A l
in space is defined by the position of any point throu

FIG. 3. Example of incomplete data with the Masamune’s device.

FIG. 4. Seven points (P12P7) are generated by intersecting the ima
plane.
Medical Physics, Vol. 29, No. 8, August 2002
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which the line passes, together with a unit vector specify
the direction of the line. In parametric form, a line is give
by the equation

x~s!5p1sv, ~1!

where s is the distance along the line measured from
point p, andv is the unit vector specifying the direction o
the line. Given multiple lines,x1(s1),...,xn(sn), the ith will
be defined by the vectorspi andvi .

B. Review of rigid-body kinematics

A spatial rigid-body motion consists of a rotation and
translation which act on a position vector as

x85Rx1b,

where x, x8, bPR3 and RPSO(3) ~the three-dimensiona
rotation group!. The pairg5(R,b)PSO(3)3R3 describes
both motion of a rigid body and the relationship betwe
reference frames fixed in space and in the body. Furtherm
motions characterized by a pair (R,b) could either describe
the behavior of a rigid body or of a deformable object u
dergoing a rigid-body motion during the time interval fo
which this description is valid.

Consider a rigid-body motion that moves a referen
frame originally coincident with the ‘‘natural’’ space-fixe
frame ~I,0! to (R1 ,b1). Now consider a relative motion o
the frame (R2 ,b2) with respect to the frame (R1 ,b1). That
is, given any vectorx defined in the terminal frame, it will
look like x85R2x1b2 in the frame (R1 ,b1). Then the same
vector will appear in the natural frame as

x95R1~R2x1b2!1b15R1R2x1R1b21b1 .

The net effect of composing the two motions~or changes
of reference frame! is equivalent to the definition

~R3 ,b3!5~R1 ,b1!+~R2 ,b2!,~R1R2 ,R1b21b1!. ~2!

From this expression, we can calculate the motion (R2 ,b2)
that for any (R1 ,b1) will return the body-fixed frame to the
space-fixed frame. All that is required is to solveR1R25I
andR1b21b150 for the variablesR2 andb2 and givenR1

and b1 . The result isR25R1
T becauseR215RT for R

PSO(3) andb252R1
Tb1 . Thus, we denote the inverse of

motion as

~R,b!215~RT,2RTb!. ~3!

This inverse, when composed either on the left or the ri
side of (R,b), yields ~I,0!.

The set of all pairs (R,b), together with the operation+, is
denoted asSE(3), which is the three-dimensional rigid-bod
motion group. It is often convenient to represent elements
this group using 434 homogeneous transformation matrice

H~R,b!5S R b

0T 1D .

Left and right differential operatorsX̃i
L and X̃i

R for i
51,...,6 acting on functions onSE(3) are defined in analogy
with the definition of the partial derivative~or directional
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derivative! of a complex-valued function ofRN-valued argu-
ment. For small displacements from the identity,I, along or
about a coordinate axis, the homogeneous transforms re
senting infinitesimal motions look like

Hi~e!,exp~eẼi !'I 1eẼi ,

where i 51,2,3 andi 54,5,6, respectively, correspond to r
tations or translations forx, y, andz axes and

Ẽ15S 0 0 0 0

0 0 21 0

0 1 0 0

0 0 0 0

D ; Ẽ25S 0 0 1 0

0 0 0 0

21 0 0 0

0 0 0 0

D ;

Ẽ35S 0 21 0 0

1 0 0 0

0 0 0 0

0 0 0 0

D ; Ẽ45S 0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

D ;

Ẽ55S 0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

D ; Ẽ65S 0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

D .

Given that elements ofSE(3) ~viewed as homogeneou
transforms! are parametrized asH5H(q), whereq is a six-
dimensional array of rotation and translation parameters,
ferential operators take the form

X̃i
Rf ~H !5 lim

e→0

1

e
@ f „H+Hi~e!…2 f ~H !#

5
d f„H+~ I 1tẼi !…

dt
U

t50

, ~4!

X̃i
L f ~H !5 lim

e→0

1

e
@ f „Hi

21~e!+H…2 f ~H !#

5
d f„~ I 2tẼi !+H…

dt
U

t50

. ~5!

SinceH andHi(e) are 434 matrices, we henceforth drop th
‘‘ +’’ notation since it is understood as matrix multiplication

If we want to analytically minimize a function of rigid
body motion,f (H), we set

X̃i
Rf ~H !50

or

X̃i
L f ~H !50,

for i 51,...,6 and solve the resulting six equations. If we w
to minimize f (H) numerically, we do gradient descent b
using a numerical approximation to Eq.~4! or Eq. ~5!. For
example, if for small values ofe,
Medical Physics, Vol. 29, No. 8, August 2002
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X̃i
Rf ~H !'

1

e
@ f „H•Hi~e!…2 f ~H !#,

is negative, then this indicates that this is a favorable dir
tion in which to update the rigid-body motion asH→H"(I
1eẼi). If it is positive, then update asH→H"(I 2eẼi). If it
is close to zero, then do not update in this direction. T
process is repeated by cycling through values of subscri
until a minimum is reached.

III. NUMERICAL METHODS

A. Solving a system of polynomials „algorithm 1 …

The technique presented in this section uses Eq.~1! to
find the plane in space in which the image must lie. After t
plane is found, existing point-to-point registration techniqu
are used to determine the rigid-body motion between fram

1. Determination of the image plane in space

Suppose we are given a head frame with three fidu
lines and three corresponding fiducial points in the pla
image. The problem of finding the location of the ima
plane in space can be solved by simultaneously satisfy
three constraint equations of the form

ixi~si !2xj~sj !i25di j
2 , ~6!

for ( i , j )P$(1,2),(1,3),(2,3)%. In general, if more than three
fiducials are used, this problem is overdetermined, so only
approximate solution is possible. As shown in Fig. 5,xi(si)
is a position vector of a point on theith line that is defined by
the positionpi and unit directionvi . Heresi is the arclength
from pi to xi(si) and di j is the Euclidean distance betwee
xi(si) andxj (sj ).

This set of equations will, in general, be a second-or
polynomial insi andsj of the form

si
222sisj cosu i j 1sj

21ai j si1bi j sj5di j
2 1ci j .

The constantsai j , bi j , u i j , andci j all come from the geom-
etry of the problem and cosuij5vi "vj .

The approach we take is to iteratively solve the system
polynomials by assuming that each of the parameters

FIG. 5. Mathematical parameters of a line.
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vary with ‘‘artificial’’ time. We make an initial guesssi(0)
~in practice, this guess corresponds to the plane whose
mal is the axis of the head frame with a value ofci j that
causes this plane to cut the head frame in half!.

Then we take the time derivative to get

2si ṡi22~ ṡisj1si ṡj !cosu i j 12sj ṡj1ai j ṡi1bi j ṡj52di j ḋi j .
~7!

The right-hand side follows from the fact thatci j is a con-
stant. We can assemble the three equations of the form in
~7! as

J~s!ṡ5w. ~8!

The problem does not dictate the behavior ofḋi j in the
mathematical model. However, if we specify

ḋi j 5~di j !measured2di j ,

where (di j )measureddenotes the Euclidean distance betwe
the ith andjth fiducial points in the image plane, then itera
ing Eq. ~8! with the simple update rule

s~ t1Dt !5s~ t !1Dt J21
„s~ t !…w~ t !,

converges to the solution as long as det(J)Þ0 and uuwuu is
small for all values ofs encountered during the iterations.

This method can be extended with a slight modification
cases where more than three lines are involved. For insta
if n lines are considered,n(n21)/2 constraint equations ar
obtained in the form of Eq.~6!. The update rule in this cas
is

s~ t1Dt !5s~ t !1Dt~JTJ!21JTw~ t !.

The execution of this method with a number of differe
input data can be used to generate a look-up table that
tains the values ofs corresponding to each set of input da
which ared12, d23, andd13. With the use of the table, ther
is no need to perform the computations in real time. Equa
spaced values ofd12, d23, andd13 are generated first, an
the computations are executed off line to obtain the value
s. Given measured values ofd12, d23, and d13, the corre-
sponding values ofs can be interpolated from the look-u
table.

This look-up table method was implemented by us
three-dimensional linear interpolation that is essentially
three-dimensional extension of the following equation
one-dimensional linear interpolation:

f ~u!5
f ~u2!2 f ~u1!

u22u1
~u2u1!1 f ~u1!.

Due to limited disk space and time for the generation of
table, a 50350350 table was used. However, this meth
did not show any advantage in speed over the on-line c
putation method, despite a very small table size. Thus
omitted this method from further tests in Sec. IV.
Medical Physics, Vol. 29, No. 8, August 2002
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2. Determination of rigid-body motion

After obtaining the arclength of lines using methods d
scribed in the previous section, it remains for us to determ
the rigid-body motion of a frame fixed to the image pla
relative to the space-fixed reference frame. We assume
that the correspondence between points in the two-point
has been establisheda priori, and we seek to find the relativ
rigid-body motion that will best match the two sets of poin
in the sense of least squared error. This is what we call
static rigid-body motion estimation problem witha priori
correspondence.15–17 In the context of computer vision an
image analysis, many other related pose determinat
estimation problems have been studied extensively.18–21

Consider two sets ofn points inR3 denoted as$xi% and
$yi%. Here$xi% is a set of intersection points with respect
the space-fixed reference frame and$yi% describe the same
points with respect to the frame fixed in the image plane, a
the correspondencexi↔yi is assumed for alli 51,...,n.

The goal is to find the rigid-body motion (R,b) such that
$yi% is moved to fit in the ‘‘best’’ way to$xi%. One way to
define the best fit is as the minimization of the weight
mean-square error,

E2~R,b!5(
i 51

n

wi ixi2~Ryi1b!i2. ~9!

The weightswi satisfywi.0 and( i 51
n wi51, and were set

to be equal to 1/n in our computer implementation.
Note that this problem can be stated as not only a gen

three-dimensional~3-D!–3-D pose estimation but a simpl
2-D–2-D pose estimation because we know in advance
the n points exist in a plane. However, solving the 2-D–2
pose estimation problem requires another coordinate fra
on the image plane and the relative rigid-body motion b
tween the new frame and space-fixed reference frame is
sumed already established. We review here Haralick’s
proach of rigid-body motion for the 3-D–3-D pos
estimation problem.20

Rewriting Eq.~9! with the constraintRTR5I using La-
grangian multipliers results in

E2~R,b!5(
i 51

n

(
j 51

3

wi~xi j 2r j
Tyi2bj !

21(
j 51

3

l j~r j
Tr j21!

12l4r1
Tr212l5r1

Tr312l6r2
Tr3 , ~10!

where xi5@xi1 ,xi2 ,xi3#T, R5@r1 ,r2 ,r3#, b5@b1 ,b2 ,b3#T,
andl1 ,...,l6 are the Lagrangian multipliers.

Taking the partial derivatives ofE2(R,b) in Eq. ~10! with
respect to each component ofb and setting the derivatives t
zero yields

(
i 51

n

wi~xi2Ryi2b!50.

By defining

x̄5
( i 51

n wixi

( i 51
n wi

, ȳ5
( i 51

n wiyi

( i 51
n wi

,
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the translation vector,b, is obtained:

b5 x̄2Rȳ. ~11!

After substituting Eq.~11! into Eq. ~10!, we take the par-
tial derivatives ofE2(R,b) with respect to the components o
eachr i and set the partial derivatives to zero. By rearrang
the results and defining

A5(
i 51

n

~yi2 ȳ!~yi2 ȳ!T, L5S l1 l4 l5

l4 l2 l6

l5 l6 l3

D ,

and B5@b1 ,b2 ,b3#, wherebj5( i 51
n wi(xi j 2xj )(yi2 ȳ), xj

5( i 51
n wixi j /( i 51

n wi , an equation,

ART1RTL5B,

is acquired.
By observing thatRB is symmetric and taking the singu

lar value decomposition ofB, i.e.,B5USVT, the solution for
the rotation matrix,R, is obtained:

R5VUT. ~12!

Applying Eq.~12! to Eq.~11! yields the translation vector,b.

B. Minimization over position and orientation
„Algorithms 2a and 2b …

The goal here is to determine the rigid-body motion th
will place a frame of reference attached to the plane in s
a way that the fiducial points are made to come as clos
possible to the lines in space from which they arose.

Given the line defined by the positionp and unit direction
vectorv, and given a point in spacex, we calculate the Eu-
clidean distance between the line and point by minimiz
the cost function,

c~s!5ip1sv2xi25ip2xi212sv•~p2x!1s2.

Settingdc/ds50, we see that the minimizing value ofs is
smin52v"(p2x), and so the vector pointing fromx to the
closest point on the line is

h5~p2x!2@v"~p2x!#v,

which we can write as

h5~p2x!2vvT~p2x!5~ I 2vvT!~p2x!.

Given n lines, we can then seek to minimize the co
function,

C~R,b!5(
i 51

n

i~ I 2vivi
T!~pi2xi !i2, ~13!

where

xi5Ryi1b,

andyi is the position vector of theith fiducial point relative
to a frame fixed to the image plane. Whereas Haralic
method could be used to solve forR and b in Eq. ~9!, it
cannot be directly applied to Eq.~13!. Hence, we use the
methods of Sec. II B.
Medical Physics, Vol. 29, No. 8, August 2002
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1. Gradient descent (algorithm 2a)

The cost function defined in Eq.~13! is a function of
rigid-body motion, i.e., a rotation matrix,R, and a translation
vector,b. By employing a 434 homogeneous transformatio
matrix,

H~R,b!5S R b

0T 1D ,

the cost functionC(R,b) can be denoted as a function ofH,
i.e., f (H).

The cost function, Eq.~13!, can be rewritten as

f ~H !,C~R,b!

5(
i 51

n

i~ I 2vivi
T!~pi2xi !i2

5(
i 51

n

i~ I 2vivi
T!@pi2~Ryi1bi !#i2

5(
i 51

n

@pi
T~ I 22vivi

T1vivi
Tvivi

T!pi22pi
T~ I 22vivi

T

1vivi
Tvivi

T!Ryi22pi
T~ I 22vivi

T1vivi
Tvivi

T!b

1~Ryi !
T~ I 22vivi

T1vivi
Tvivi

T!Ryi12~Ryi !
T~ I

22vivi
T1vivi

Tvivi
T!b1bT~ I 22vivi

T1vivi
Tvivi

T!b#.

Defining

H"~ I 1eẼi !5S S c

0T 1D ,

R andb in the expression forf (H) are replaced byS andc,
respectively, asf „H(I 1eẼi)…. As described in Sec. II B, the
minimum is reached by calculating the differential operat
and updatingH.

2. Partial closed-form analytical solution followed
by gradient descent (algorithm 2b)

The algorithm explained in Sec. III B can be simplified b
solving eitherX̄i

Rf (H)50 or X̄i
L f (H)50 for i 54,5,6 for the

three components of translation vector,b.
For example, combining equationsX̃i

L f (H)50 for i
54,5,6 yields the following equation:

(
i 51

n

~b1Ryi2pi !
T~ I 22vivi

T1vivi
Tvivi

T!50T.

If we solve this equation forb, we obtain

b5F(
i 51

n

~ I 22vivi
T1vivi

Tvivi
T!G21

3F(
i 51

n

~ I 22vivi
T1vivi

Tvivi
T!~pi2Ryi !G . ~14!
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Sinceb is determined in Eq.~14! as a function of rotation
parameters, the gradient descent method can be don
SO(3) rather thanSE(3) with three parameters instead
six parameters. Hence, faster execution of the algorithm
be expected.

C. Rate linearization of position and orientation
„algorithm 3 …

Instead of minimizing a scalar cost function with respe
to rigid-body motion, we can formulate the problem as fin
ing the rigid-body trajectory„R(t),b(t)… such that xi(t)
5R(t)yi1b(t) drives each of the vectors,

@ I 2vivi
T#„pi2xi~ t !…5di~ t !, ~15!

to zero, whereyi denotes the coordinates of theith fiducial in
the image plane. If this can be accomplished, it means
each of the fiducial marks is driven to its corresponding
of the three-dimensional stereotactic frame.

Note that the matrix@ I 2vvT# is not invertible since
ivi51 implies that the matrixvvT has an eigenvalue equal t
unity, which corresponds to eigenvectorv. Making the sub-
stitution xi(t)5R(t)yi1b(t) in Eq. ~15! and rearranging
terms, we see that

@ I 2vivi
T#pi2@ I 2vivi

T#~Ryi1b!5di~ t !.

We now take the derivative of both sides with respect
artificial time, and observe thatpi and vi are constant vec
tors. If, in addition, we observe that

Ṙyi5ṘRTRyi5vÃ~Ryi !52~Ryi !Ãv,

wherev5vect(ṘRT), then we can write the time derivativ
of Eq. ~15! as

@ I 2vivi
T#@matr~Ryi !,2I #@vT,ḃT#T5ḋi . ~16!

Here we use the notationn5vect(N) andN5matr(n) if N is
the skew-symmetric matrix such thatNx5nÃx for everyx

PR3. We have also used the fact thatṘRT is always skew
symmetric whenRPSO(3).14

If we force di to zero by defining

ḋi52adi ,

for some positive constanta, thenv andḃ can be solved for
at each value of time along the way by inverting the ov
constrained system resulting from concatenating Eq.~16! for
i 51,2,...,n. Once this is done, the values ofb(t) and R(t)
can be updated using the rules

b~ t1Dt !5b~ t !1D ḃ~ t !

and

R~ t1Dt !5@ I 1Dt matr„v~ t !…#R~ t !.

Since the rotational updates have the potential to ca
R(t) to stray from being a rotation matrix, the occasion
renormalization,

R~ t !→R~ t !„RT~ t !R~ t !…21/2,
Medical Physics, Vol. 29, No. 8, August 2002
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may be required. This step could be replaced by finding
Euler angles or Cayley parameters that best approxim
R(t), then replaceR(t) with the resulting rotation matrix.

We note that if the actual rotation matrix is close to bei
the identity matrix~as will be the case when the image pla
is close to cutting the cage straight on!, then only one itera-
tion may be required.

D. Minimization over position, orientation,
and arclengths „algorithm 4 …

Given the coordinates$yi% of fiducials in the image plane
we can simultaneously solve for the position and orientat
of a reference frame attached to the image plane and
arclengths$si% as follows:

We observe that

pi1sivi5Ryi1b. ~17!

Let us assume that we have an initial guess for the orie
tion of the frame attached to the image plane, and that
actual orientation is not very different than this initial gues
Then we write

R5R0~ I 1V!.

Here V52VT has entries that are small. The vectorv is
defined, such that

vÃx5Vx,

for any xPR3. This means we can rewrite Eq.~17! as

pi52sivi1R0yi2R0~yiÃv!1b.

By definingYi to be the matrix such thatYix5yiÃx for
everyxPR3, it follows that we can write the following linea
equation:

pi2R0yi5@0,...,0,2vi ,0,...,0,2R0Yi ,I #F s
v

b
G ,

where

s5@s1 ,...,si ,...,sn#T.

Stacking these equations on top of each other fori 51,...,n
results in a system of (3n)3(n16) scalar equations inn
16 parameters~n arclengths and 6 rigid-body motion pa
rameters!. This can be solved in the least-squares sense u
a pseudoinverse.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The algorithms described in the previous section w
implemented in Matlab. The input data to the algorithms
2-D coordinates of the centroids of fiducial marks, as th
are found in a cross-sectional image. The algorithms ass
that the image already has been processed, and henc
centroid locations of fiducial marks have been extracted
matched with the rods. The image processing software t
cally hasa priori knowledge of the gross initial orientatio
and the geometric description of the fiducial frame, which
usually sufficient for the determination of correspondence
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difficult cases some operator input can be required, in
form of a few mouse clicks. Solving the corresponden
problem as part of the numerical minimization would
more elegant, but would also require significantly more p
cessing time. We will explore this option in future work.

In our experiments, we used actual patient data acqu
in 1995 and 1996 on a General Electric CT Scanner at
George Washington University Hospital. For stereotactic r
istration Kelly and BRW head frames were used. The ima
were processed and contoured with a clinically comm
sioned stereotactic navigation system~GWST Linac Knife
v5.2!, which was developed and maintained at the Geo
Washington University Hospital.

The locations of fiducial marks were determined in t
following manner: The images were thresholded by sett
the window and level parameters until all noise and artifa
disappeared from around the fiducial rods. In each imag
sufficiently large contour line around each fiducial mark w
drawn such that it completely surrounded the fiducial m
with some black margin. Because of the prior thresholdi
the pixel values in the black margin were guaranteed to
zero. The software calculated the centroid of the interior
the contour line, which was considered as the center of
fiducial mark. When the GWST Linac Knife system w
commissioned, this function was also carefully tested o
large number of CT and MRI images and with vario
threshold settings. Background noise, when there was
was effectively removed by simple thresholding. The typi
pixel size in a stereotactic case was around 0.5 mm,
diameter of a fiducial rod was 5 mm, and each fiducial m
contained at least 75 pixels. This convinced us that
GWST Linac Knife system calculated the centroids of fid
cial marks in a fairly consistent and accurate manner. N
ertheless, the quality of the input data was analyzed re
spectively.

Two sets of real CT data for the BRW frame~43 image
slices each! and one set of real CT data for the Kelly fram
~10 image slices! were used in our experiments. The ima
size and FOV~Field of View! for both the BRW and Kelly
frames were 5123512 pixels and 34.5 mm, respectively. Th
thickness of image slices was 3 mm for the BRW frame
mm for the Kelly frame.

In each clinical case, a series of consecutive slices w
acquired. The head of the patient~with the head frame on!
was fixed firmly to the scanner bed. Consequently, the lo
tions of a given fiducial rod found in the full series must fit
straight line and the extent of deviation from this line is
good measure of the ‘‘noisiness’’ of our input data. The a

TABLE I. Error measures~mm! of algorithms for synthetic data with 0.2 mm
noise.

Algorithms 6 rods 7 rods 8 rods 9 rods

1 1.0423 0.9664 0.9394 0.9130
2b 1.3813 1.2023 1.0983 1.0243
3 0.8834 0.7284 0.6255 0.6095
4 0.7774 0.7754 0.6754 0.6494
Medical Physics, Vol. 29, No. 8, August 2002
e
e

-

d
e
-
s
-

e

g
s
a

s
k
,
e
f
e

a

y,
l
e

k
e
-
v-
o-

5

re

a-

-

erage deviation in the Kelly frame data was 0.097 mm a
the average deviations in the two sets of BRW frame d
were 0.267 and 0.111 mm. Therefore the average devia
of the real CT data was about 0.15 mm.

We also examined the sensitivity of our algorithms
‘‘noise’’ added to fiducial locations. In addition to real C
data, 40 synthetic datasets were generated by transform
the reference frame from the identity. The synthetic data c
ered a large range of rigid-body motions,625° around each
rotation axis. The case of zero noise represents ideal in
data, in which case the residual registration error origina
solely from the algorithm and its implementation. The a
plitude of noise was kept constant while its direction w
randomized. All the algorithms were tested at six differe
noise amplitudes, from 0 to 0.5 mm with the increment
0.1 mm. We also included simulated cases when fewer t
all the fiducial rods were available for registration, and an
lyzed the combined effect of noise and missing fiducials.

In order to compare the resistance of the algorithms
noise, a distance metric onSE(3) ~three-dimensional rigid-
body motion group! was used. We applied a metric, whic
measures the error of a local frameg25(R2,b2) from a ref-
erence frameg15(R1,b1) as14

dSE~3!
~2! ~g1 ,g2!5AL2

„dSO~3!~R1 ,R2!…21„dR3~b1,b2!
2
…,
~18!

where dSO(3)(R1 ,R2)5A622 trace(R1
TR2) is a distance

metric onSO(3) ~the three-dimensional rotation group! and

FIG. 6. Error measures defined in Eq.~18! are displayed for each algorithm
The input was synthetic data with 0.2 mm amplitude of noise.

TABLE II. Error measures~mm! of algorithms for synthetic data with 0.5 mm
noise.

Algorithms 6 rods 7 rods 8 rods 9 rods

1 3.6891 2.6835 2.5864 1.9823
2b 1.7523 1.6563 1.5994 1.5733
3 1.9784 1.8924 1.7714 1.7044
4 1.9744 1.7764 1.6424 1.6254
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dR3(b1,b2)5ib12b2i is the Euclidean distance betwee
pointsb1 andb2. HereL is a measure of length that make
the units of orientational and translational displaceme
compatible. The radius of a fiducial rod, 2.5 mm, was us
for this value. Other suitable error metrics have also b
discussed by Park22, and Chirikjian and Zhou.23

Table I and Fig. 6 display the error measures for synth
data with 0.2 mm amplitude of noise for each algorith
Table II and Fig. 7 also show the error measures for synth
data but the amplitude of noise is 0.5 mm. The reason
selecting 0.2 and 0.5 mm for the amplitude of noise is t
the average deviation in the real CT data is about 0.15
and the amplitude of 0.5 mm is considered to be an extre
case. Here the reference frameg1 in Eq. ~18! is the frame in
the case of synthetic data with zero noise.

When 0.2 mm noise was applied, Algorithm 3~rate lin-
earization of position and orientation! and algorithm 4~mini-
mization over position, orientation, and arclengths! outper-
formed algorithm 1~solving a system of polynomials! and
algorithm 2b~gradient descent method with partial close
form solution!. Since algorithm 2b runs faster than algorith
2a, only numerical results with algorithm 2b are listed
tables and figures. When 0.5 mm noise was applied, a
rithm 2b was found to be the best performing method. Ho
ever, its advantage over algorithms 3 and 4 is not signific
Considering that 0.2 mm noise is close to the noise in
real data, algorithms 3 and 4 are the least sensitive meth
to realistic noise.

Table III and Fig. 8 show the error measures for the r
CT data for each algorithm. In this experiment, the refere

FIG. 7. Error measures defined in Eq.~18! are displayed for each algorithm
The input was synthetic data with 0.5 mm amplitude of noise.

TABLE III. Error measures~mm! of algorithms for real CT data.

Algorithms 6 rods 7 rods 8 rods 9 rods

1 0.5454 0.4889 0.4515 0.0
2b 0.5218 0.4569 0.3693 0.0
3 0.2323 0.2285 0.1384 0.0
4 0.2369 0.2150 0.1413 0.0
Medical Physics, Vol. 29, No. 8, August 2002
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frameg1 in Eq. ~18! is the frame in the case of complete da
~nine rods!. As a result of this test, algorithms 3 and 4 are t
most robust to missing fiducials. Table III also indicates th
algorithm 1 is the most sensitive to missing fiducials in re
CT data. However, note that the distance measure in
worst case~algorithm 1 with 6 rods only! is still only about
1 pixel ~0.5 mm!. The robustness of the algorithms to mis
ing fiducials is also observed in Tables I and II, except alg
rithm 1 for 0.5 mm noise.

Table IV and Fig. 9 display the running speed of the
gorithms for the real CT data. The speed was measured
in FLOPs~Floating Point Operations! and then was normal
ized to the value of the fastest case, which was found to
algorithm 4 with 6 rods. Algorithm 4 outperforms other a
gorithms. Algorithm 2b is the slowest method because
convergence needs a significant number of iterations.
average running time of algorithm 4 for real CT data with
rods was 0.3236 s in a Matlab implementation on a Windo
PC with a Pentium II 366 MHz processor and 64 MB RAM

Algorithms 2b, 3, and 4 require the rotation matrix to
initialized before starting iteration. Hence, the sensitivity
those algorithms to initial guesses was also investiga
Thirty initial rotation matrices were generated for simul
tions in a similar way the synthetic input data was genera
Ten rotation angles from250° to 150° with the increment
of 10 were selected, and then three rotation axes were c
bined. It was observed that algorithm 4 is not affected by
initial rotation matrix. The influence of the initial guess o
algorithms 2b and 3 is negligible if the rotation angle is

FIG. 8. Error measures defined in Eq.~18! are displayed for each algorithm
The input was real CT data.

TABLE IV. Speed of algorithms for real CT data~normalized to the fastes
case, algorithm 4 with 6 rods!.

Algorithms 6 rods 7 rods 8 rods 9 rods

1 2.0949 3.9164 5.8671 7.9421
2b 80.1786 143.5839 176.7634 199.9542
3 4.5768 7.3586 8.8758 10.5977
4 1.0000 1.2335 1.5577 1.8806
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the range of@220,20#°. Therefore, the identity matrix can b
recommended for the initial rotation matrix. Note that
most clinical cases, we try to align the patient close to t
orientation.

All experiments considered, algorithm 4 performed t
best among the four methods. Algorithm 3 is our seco
best.

V. CONCLUSIONS

In this paper, we presented two families of numerical
gorithms for registration of rigid line fiducial objects to the
marks in cross-sectional planar images, such as CT or M
We demonstrated the methods in actual CT data and in
thetic data simulating real-life noise. Two broad categories
algorithms were discussed:~1! methods that first seek th
parameters describing the image plane, and then reg
within that plane; and~2! methods that register the plan
points to the three-dimensional fiducials directly. The tw
best performing algorithms, algorithms 3 and 4, both belo
to the second category.

An important strength of these numerical methods is
ability to handle incomplete fiducial patterns. They are s
ficiently robust to handle as few as six fiducials out of nin
in contrast to traditional registration methods that require
presence of all nine fiducial rods. Theoretically only as f
as three nonparallel fiducial rods should be sufficient for r
istration. Our future work will include tests of our algorithm
in such extreme cases.

Another strength of our algorithms is their applicability
an arbitrary combination of line fiducial patterns without r
quiring modification of the algorithm. For example, we r
the same registration programs for BRW and Kelly ster
tactic head frames, without any algorithmic modificatio
The geometrical definition of the individual fiducial rods w
simply input data to our algorithms.

All tested algorithms~and not just the two winners! are
resistant to noise in the input data. The running time of
algorithms is also affordable, even in intraoperative appli

FIG. 9. The running speed of each algorithm is displayed with the numbe
rods. Results were normalized to the fastest case, which is algorithm 4
6 rods.
Medical Physics, Vol. 29, No. 8, August 2002
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tions. The average running time of the fastest algorithm
0.3236 s for six fiducial lines in real CT data in a Matla
implementation. The program was not optimized f
speed.

The immediate field of use of these algorithms is fram
based stereotactic navigation, as applied in radiosurgery
functional neurosurgery. Perhaps even more importantly,
algorithms appear to be applicable in problems where d
terous robotic end-effectors need to be registered to CT
ages in an intraoperative scenario. Currently, there is a c
prehensive research program at the Johns Hop
University in robotically assisted needle placement, with
current focus on prostate,8 spine,9,11,13and kidney11 applica-
tions. We will be implementing and testing the performan
of our registration methods in clinical test bed applications
the near future.
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