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Normal mode analysis of proteins: a comparison of rigid
cluster modes with Cα coarse graining
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Abstract

The ability to infer dynamic motions from an equilibrium (static) conformation of a protein can be essential in establishing structure–
function relationships. In particular, the low-frequency motions are of functional interest because statistical mechanics predicts these
motions will have the largest amplitudes. In this paper, we address the computational cost of normal mode analysis (NMA) applied
to a Cα-based elastic network model (Cα-NMA) and present a new coarse-grained rigid-body-based analysis (cluster-NMA). This new
method represents a protein as a collection of rigid bodies interconnected with harmonic potentials. This representation produces reduced
degree-of-freedom (DOF) equations of motion (EOMs) which, even in the case of large structures (103+ residues), enables the computation
of normal modes to be done on a desktop PC. We present the complete theory and analysis of cluster-NMA and also include its application
to a variety of structures. The results of the new method are compared with Cα-NMA and it is shown that cluster-NMA produces very
good approximations to the lowest modes at a fraction of the computational cost.
© 2003 Elsevier Inc. All rights reserved.

Keywords:Normal mode analysis; Protein mechanics; Rigid-body motion; Coarse grain; Cluster-NMA; Conformational transition

1. Introduction

The search for inherent links between protein structure
and function is a driving force behind the development of
accurate and computationally efficient methods for describ-
ing the complex motions attainable by protein structures.
X-ray crystallography can provide snapshots of protein
structures in (near) equilibrium conformations.1 Other ex-
perimental methods such as fluorescent resonance energy
transfer (FRET) and nuclear magnetic resonance (NMR)
can provide partial information about large-amplitude
protein motions[2–4]. Dynamical simulations of protein
structures can provide crucial insights into their function
which are not easily obtained experimentally. It has been
observed that the low-frequency, large-amplitude motions
are most closely related to protein function[5–8] whereas
the high-frequency localized vibrations may be more in-
volved in signal transmission and other internal processes
[9]. Computational models (normal mode analysis (NMA)
in particular) enable one to derive these desired dynamic
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1 Due to thermal fluctuations a protein structure adopts a range of
conformations about its thermal equilibrium[1].

motions from the static conformations obtained from crys-
tallography and are thus an essential tool in gaining insight
into the structure–function relationship.

Molecular dynamics (MD) simulations rely on atomic de-
tails to predict the evolution of conformations of protein
structures based on the interactions between all pairs of
atoms. These simulations can be computationally prohibitive
due to the high number of degrees-of-freedom (DOFs) re-
quired to capture motions of large structures and the com-
plicated force calculations required at each iteration.

As a first level of simplification, consider the basic
structure of any protein. A protein is comprised of a
polypeptide backbone with amino acid residues extending
from the alpha-carbon (Cα) of each peptide unit. Since the
peptide-bonded backbone remains connected in all confor-
mations (short of denaturing the protein), it is often useful
to focus on the backbone structure knowing that each side
chain must closely follow its corresponding Cα. Bahar et al.
[10] present a scalar model, called the Gaussian network
model (GNM), which produces magnitudes of individ-
ual residue displacements consistent with experimentally
derived quantities including X-ray crystallographic tem-
perature factors[7], hydrogen exchange free energies[11],
and the order parameters from NMR-relaxation measure-
ments[12]. While these results validate the use of simple

1093-3263/$ – see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S1093-3263(03)00158-X



2 A.D. Schuyler, G.S. Chirikjian / Journal of Molecular Graphics and Modelling xxx (2003) xxx–xxx

elastic networks, they do not produce displacement direc-
tions. Atilgan et al.[13] present the anisotropic network
model (ANM) which builds on the GNM by including pa-
rameters for displacement directions. Similarly, Kim et al.
[14,15] use Cα-NMA, in which the interactions between
residues in contact are modelled with harmonic potentials,
to produce three-dimensional displacements. While these
methods are much faster than all-atom simulations, they are
still computationally expensive for very large structures.

Cα-NMA, as mentioned above, is one of the highest res-
olution coarse-grained models (one Cα per grain). It uses
the Cartesian displacements of each Cα to define the con-
formational displacement relative to the initial conformation
[16]. Coarser-grained models have been employed to cap-
ture large-amplitude motions. For example, coarse-graining
methods have been employed by[17], in which the full pro-
tein structure is projected onto a reduced DOF subspace.
The hybrid method MBO(N)D, as presented in[18], makes
use of varying grain sizes to achieve desired levels of res-
olution according to the mobility and functional interest of
each region within the structure.

Hinsen[5] uses a Fourier basis to capture a uniform vec-
tor field of displacements. This reduced degree-of-freedom
model effectively captures the lowest modes, but has a num-
ber of limitations which are inherent to a Fourier basis: it
is not well suited for capturing translational motion, period-
icity of the basis set must be accounted for, displacements
given in the basis coordinates do not have physical meaning.

Central to every modelling method is the choice of pa-
rameterization. In general, higher DOF parameterizations
allow more complex motions to be captured (at a signif-
icant computational cost), while lower DOF parameteri-
zations can impose unrealistic conformational constraints.
The choice of parameterization allows the user to attain
the desired combination of computational performance and
motion resolution. This trade-off can be adjusted within a
given structure so that regions of interest can be modelled
with higher resolution than other regions of less importance.
In this paper, we present a low DOF parameterization that
produces low-frequency motions consistent with Cα-NMA,
which in turn has shown strong agreement with all-atom
NMA and MD simulations[5,10,19].

An n residue structure requires 3n parameters for full
resolution Cα-NMA. We refer to this as the standard
parameterization,2 as it serves as our basis for compari-
son. This results in a computational complexity ofO(n3).3

However, as mentioned above, the modes of interest are
the low-frequency, large-amplitude motions and not the

2 Another common parameterization uses the internal torsion angles
(φ, ψ). This requiresO(n) parameters as well.

3 There are other methods besides Gaussian elimination that are men-
tioned in [20] that can reduce the exponent as low as 2.376. However,
these methods typically require a complicated initialization and can have
numerical stability problems. As a result NMA (a matrix multiplica-
tion/inversion dependent calculation) is commonly considered to have
complexityO(n3).

high-frequency localized vibrations (i.e. one is typically not
interested in all 3n modes).4 We bypass these issues with
clustering algorithms to identify subsets of residues that
form rigid clusters and thus move as rigid units under the
modes of interest.

When multiple conformations are known, as in the case
of lactoferrin (PDB: 1LFG and 1LFH), the structure can be
clustered by identifying sets of residues that experience min-
imal RMS deviation (after optimal alignment of each can-
didate cluster). For all structures there are algorithms such
as the pebble game[21] that count DOF constraints in a
network of contacts. Proteins can also be clustered by sec-
ondary structure elements. In all cases, clustering effectively
filters out the high-frequency modes and enables one to use
a low DOF parameterization to more efficiently calculate the
global modes.

The rest of this paper is organized as follows. In
Section 2.1, the Cα elastic network model is reviewed. In
Section 2.2, the central points of clustering algorithms are
discussed and cluster notation is introduced. InSection 2.3,
the parameters necessary to capture the motions of this sys-
tem of rigid bodies are defined. InSections 2.4 and 2.5, the
stiffness and mass matrices are obtained from the quadratic
expressions for the potential and kinetic energies of the
system. InSection 2.6, the mode shapes are extracted from
the equation of motion (EOM) and projected onto the struc-
ture. This process requires a change of coordinates, the
Gram–Schmidt orthonormalization process, and a low mode
“unmixing” algorithm. In Section 3, cluster-NMA is ap-
plied to a variety of structures. Computational performance
and mode accuracy are analyzed. InSection 4, a summary
analysis is given.

2. Method

2.1. Review ofCα-NMA

Since cluster-NMA will be compared to Cα-NMA, the
Cα model [13,14], is briefly reviewed here for complete-
ness. Structures are represented as a system of point masses
located at each Cα position with a network of connecting
springs. Conformational changes are viewed as displace-
ments of each Cα in the structure. The vector of generalized
coordinates isσσσ = [σσσT

1 , . . . ,σσσ
T
n ]T, whereσσσi ∈ R

3 is the dis-
placement of residuei and R

d denotes thed-dimensional
space of real valued vectors.

The 3n×3n mass matrix and stiffness matrix in this model
are defined by constructing ann×n array of 3×3 matrices.
The mass matrix sub-blocks are of the form

[Ms]i,j =
{
miI3, for i = j

03, for i �= j
(1)

4 There are iterative methods for determining a partial set of eigenpairs,
but these often require initial guesses and can often have numerical
stability problems. For these reasons, we still classify the eigenproblem
asO(n3).
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Fig. 1. Comparison between experimentally and theoretically derived temperature factor data for lactoferrin (PDB: 1LFH).

wheremi is the mass of residuei, I3 is the 3× 3 identity
matrix, and 03 is the 3× 3 zero matrix. The stiffness matrix
sub-blocks are defined by

[Ks]i,j =




−ki,j
(rrri − rrrj)(rrri − rrrj)

T

‖rrri − rrrj‖2
, for i �= j

−∑i−1
r=1Kr,i −

∑n
c=i+1Ki,c, for i = j

(2)

where rrri is the Cartesian location of residuei and the
inter-residue interactions are determined by the simple5

spring constant expression

ki,j =
{

1 ‖rrri − rrrj‖ ≤ r

0 ‖rrri − rrrj‖ > r
(3)

These interactions can be further modified by enforcing
a maximum contact number. This constraint is achieved
by iteratively disconnecting the furthest neighbor from the
residue with the most contacts until no residues have more
than the allowed maximum. The resulting EOM is

Msσ̈σσ + Ksσσσ = 000 (4)

The Cα-NMA model can be used to produce theoretical
temperature factor data, which compares favorably with the
experimentally derived quantity. For example,Fig. 1 shows
such calculations for lactoferrin. The two plots are very sim-
ilar with the largest differences occurring near peak val-
ues where the theoretical model occasionally over-estimates.

5 In place of this discrete function, one can use continuous functions
that produce a more Lennard–Jones-like potential. Regardless of what
function is used, this formalism remains valid for small motions around
equilibrium. We will use the binary function for simplicity of presentation.

The data is optimally aligned by choosing a single scaling
parameter that corresponds to the single spring constant in
the elastic network. With this parameter, we minimize the
least-square error between the experimental data and the the-
oretically derived temperature factor. This analysis follows
as given in[13].

2.2. Clustering and system setup

A clustering algorithm is primarily used to reduce the
number of DOFs in the protein structure to speed up the
modal analysis. Since, as demonstrated by the pebble game
[21], there exists such an algorithm that performs in the worst
case inO(n2) operations (and more typically inO(n)), it is
not necessary to concern ourselves with optimizing a clus-
tering algorithm. In this paper, a helix-based clustering algo-
rithm is used. Energetically favorable helix geometries tend
to hold shape, especially during the low-frequency motions
of interest. The helix boundaries are used to form an ini-
tial partition on the structure. A target cluster size is used to
evenly (as possible) partition up the remaining residues and
any helices that are larger than the target size. The end goal
of this method is to achieve a uniform cluster size specified
by the target size and have the helix boundaries aligned with
the cluster interfaces. This straightforwardO(n) method is
used for the examples given in this paper.

The following notation accommodates any choice of clus-
tering algorithm. Let such an algorithm produce a set ofN

rigid clusters

C = {C1, . . . , CN} (5)
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where all residues are in exactly one cluster (i.e. the par-
tition is complete and disjoint). The time varying global
frame positions of the residues in clusteri are deno-
ted as

Ci(t) = {rrri,1(t), . . . , rrri,N(i)(t)} (6)

whererrri,α ∈ R
3 is used to represent the Cartesian position

of residueα in cluster i with the range of cluster indices
given byi ∈ [1, . . . , N] and the range of residue indices in
clusteri given byα ∈ [1, . . . , N(i)]. In subsequent sections,
position and orientation of these clusters are calculated.
This brings us to the possibility of a special case: the triv-
ial cluster. Any cluster that does not have at least three
non-collinear residues is not uniquely orientable. To handle
this situation, we choose to break all trivial clusters into
their constituent residues and reassign each to the cluster
that has the most residues in contact with the candidate
residue.

2.3. Defining parameters

Coordinates of protein structures are obtained from the
protein data bank[22] and define the reference conforma-
tion. The translational and orientational motions of clusters
are measured with respect to this conformation. Any confor-
mation is thus parameterized by 6N DOFs (i.e. 3 DOFs for
translational motion and 3 DOFs for orientational motion
for each of theN clusters).

2.3.1. Translational displacement
The translational movement of each cluster is monitored

by the motion of its center of mass

xxxi(t) = 1

m̄i

N(i)∑
α=1

mi,αrrri,α(t) (7)

wheremi,α is the mass of residueα of clusteri andm̄i is the
mass of clusteri. The translational displacement parameter
is thus defined as

χχχi(t) = xxxi(t) − xxxi(0) (8)

which gives the displacement of the center of mass ofCi(t),
wheret = 0 corresponds to the crystal structure.

2.3.2. Orientational displacement
As with the translational displacement, orientational dis-

placement is measured relative to the initial conformation.
This is equivalent to assigning an identity reference frame to
each cluster (i.e. it is considered aligned with the base frame
at time 0) and then monitoring the displacement from this
orientation. To parameterize this motion, let clusteri have an
orientation ofRi(t), which is an element of the set of 3× 3
rotation matrices. The orientational displacement parameter,
γγγi(t), is defined by its relation to the rotation matrix,Ri(t),

in the expression6

Ri(t) = eJ(γγγi(t))

Ri(t) = I3 +
(

sin(‖γγγi(t)‖)
‖γγγi(t)‖

)
[J(γγγi(t))]

+
(

1 − cos(‖γγγi(t)‖)
‖γγγi(t)‖2

)
[J(γγγi(t))]

2

Ri(t)=�R(γγγi(t))

(10)

where‖γγγi(t)‖ is the usual vector norm.

2.3.3. Generalized coordinate
From the previous two sections we can now define our

cluster pose parameter as

δδδi(t) =
(
χχχi(t)

γγγi(t)

)
∈ R

6 (11)

and our system generalized coordinate as

δδδ(t) =




δδδ1(t)

...

δδδN(t)


 ∈ R

6N (12)

2.4. Derivation of stiffness matrix

In Section 2.4.1, the location of an arbitrary residue under
an arbitrary cluster motion is determined. This result pro-
vides the locations of all spring endpoints. InSection 2.4.2,
the displacement across an arbitrary spring is determined.
From this quantity, the potential energy of the system is di-
rectly calculated. InSection 2.4.3, algebraic manipulations
are performed to achieve a representation where the poten-
tial energy equation is quadratic inδδδ.

2.4.1. Arbitrary residue location
In Ci the springs that branch out to other clusters (which

are the springs that contribute to the potential energy of
the system) are numbered. This produces the set of spring
endpoints in global frame coordinates

Si(t) = {sssi,1(t), . . . , sssi,M(i)(t)} (13)

whereM(i) is the number of springs that have exactly one
endpoint inCi.

Consider the position of an arbitrary spring endpoint,
sssi,α(t), under an arbitrary cluster motion,δδδi(t). Its position

6 This equation uses the skew-symmetric matrix function,J , to
map elements ofR3 onto elements of SK(3), which is the set of
3 × 3 skew-symmetric matrices. This function is given byJ(γγγi) =
 0 −(γγγi)z (γγγi)y

(γγγi)z 0 −(γγγi)x

−(γγγi)y (γγγi)x 0


 , where γγγi =


 (γγγi)x

(γγγi)y

(γγγi)z


 (9)

The parameterγγγi(t) is the Rodrigues vector. Its magnitude is the corre-
sponding angle of rotation ofRi(t) and its direction is the axis of rotation.
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is given by

sssi,α(t) = [R(γγγi(t))](sssi,α(0) − xxxi(0)) + xxxi(0)︸ ︷︷ ︸
rotate residue about its cluster′s center of mass

+ χχχi(t)︸︷︷︸
translate residue

(14)

In Eq. (14), the cluster is shifted so that its center of mass
moves to the global frame’s origin, then the rotation is ap-
plied, then the cluster’s center of mass is shifted back to its
original position, and finally the cluster is translated by an
amountχχχi(t). The order of these operations is determined
by how the pose parameters have been defined.Fig. 2 is a
2D representation of the quantities involved.

Since the oscillatory motions of a system about its equi-
librium conformation are being modelled, small motions are
assumed. The first-order approximation of Rodrigues’ for-
mula inEq. (10)is used to obtain

sssi,α(t)≈ [I3 + J(γγγi(t))](sssi,α(0) − xxxi(0)) + xxxi(0) + χχχi(t)

= sssi,α(0) + [I3,−J(sssi,α(0) − xxxi(0))]

(
χχχi(t)

γγγi(t)

)
(15)

�=sssi,α(0) + [Qi,α]δδδi(t)

2.4.2. Displacement across arbitrary spring
Consider any spring in the network and, byEq. (15), let

its endpoints be given in global frame coordinates by

sssi,α(t) = sssi,α(0) + [Qi,α]δδδi(t) (16)

sssj,β(t) = sssj,β(0) + [Qj,β]δδδj(t) (17)

The square of the change in length of this spring from its
value at equilibrium is

d2
i,α,j,β(t)

�=(‖sssi,α(t) − sssj,β(t)‖ − ‖sssi,α(0) − sssj,β(0)‖)2

=


‖(sssi,α(0) − sssj,β(0))︸ ︷︷ ︸

aaa

+ ([Qi,α]δδδi(t) − [Qj,β]δδδj(t))︸ ︷︷ ︸
bbb

‖ − ‖sssi,α(0) − sssj,β(0)︸ ︷︷ ︸
aaa

‖




2

= ‖aaa + bbb‖2 + ‖aaa‖2 − 2‖aaa + bbb‖‖aaa‖ ≈ (2‖aaa‖2 + 2ababab+ ‖bbb‖2) − 2

(
‖aaa‖ + ababab

‖aaa‖ + bbbT[I − Y(aaa)]bbb

2‖aaa‖

)
‖aaa‖ (18)

= bbbT[Y(aaa)]bbb

which uses the definition

Y(aaa) = aaaaaaT

‖aaa‖2
(19)

By defining the quantities

∆∆∆i,j(t) =
(
δδδi(t)

δδδj(t)

)
∈ R

12 (20)

and

Qi,α,j,β = [Qi,α − Qj,β] ∈ R
3×12 (21)

the expression

[Qi,α]δδδi(t) − [Qj,β]δδδj(t) = Qi,α,j,β∆∆∆i,j(t) (22)

Fig. 2. This 2D representation shows the relationship between all quantities
used to describe the position ofsssi,α(t). Eq. (14)can be derived from this
figure by summing all vector quantities along the shaded path.

is obtained. The squared spring displacement is rewritten as

d2
i,α,j,β(t)

= (Qi,α,j,β∆∆∆i,j(t))
T[Y(sssi,α(0) − sssj,β(0))]︸ ︷︷ ︸

Yi,α,j,β

(Qi,α,j,β∆∆∆i,j(t))

= ∆∆∆T
i,j(t)[Q

T
i,α,j,βYi,α,j,βQi,α,j,β]︸ ︷︷ ︸

Si,α,j,β

∆∆∆i,j(t) (23)

The matrixS, which is related to the desired stiffness matrix,
K, is symmetric:

Si,α,j,β

=




Yi,α,j,β

Ji,αYi,α,j,β

−Yi,α,j,β

−Jj,βYi,α,j,β

∣∣∣∣∣∣∣∣∣

[Ji,αYi,α,j,β]T

−Ji,αYi,α,j,βJi,α

Yi,α,j,βJi,α

−Jj,βYi,α,j,βJi,α

∣∣∣∣∣∣∣∣∣

−[Yi,α,j,β]T

[Yi,α,j,βJi,α]T

Yi,α,j,β

Jj,βYi,α,j,β

∣∣∣∣∣∣∣∣∣

−[Jj,βYi,α,j,β]T

[Jj,βYi,α,j,βJi,α]T

[Jj,βYi,α,j,β]T

−Jj,βYi,α,j,βJj,β




(24)

2.4.3. Extraction of stiffness matrix
The system’s potential energy is determined by summing

over all spring contributions. This is achieved by considering
all cluster pairs followed by all springs connecting each pair.
The resulting expression is

V(t)=1

2

N−1∑
i=1

N∑
j=i+1

∆∆∆i,j(t)
T


M(i)∑

α=1

M(j)∑
β=1

ki,α,j,βSi,α,j,β




︸ ︷︷ ︸
κi,j

∆∆∆i,j(t)

(25)
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where the spring constants are defined by

ki,α,j,β =
{

1 ‖sssi,α(0) − sssj,β(0)‖ ≤ r

0 ‖sssi,α(0) − sssj,β(0)‖ > r
(26)

A maximum contact number can also be imposed.
∆∆∆i,j is a stacked vector of two cluster displacements (δδδi

andδδδj). The summation indices inEq. (25)allow for multiple
appearances of each. We seek the matrixK that produces
the equation

V(t) = 1
2δδδ(t)

TKδδδ(t) (27)

Eq. (24)shows the symmetry ofSi,j,α,β andEq. (25)shows
that κi,j is formed by summing a collection of symmetric
matrices. This allows theR6×6 sub-matrices ofκi,j to be
defined as

κi,j =
[
Ai,j Bi,j

BT
i,j Ci,j

]
(28)

From the potential energy expression it can be determined
where the sub-blocks ofκi,j belong inK. The expansion

∆∆∆T
i,jκi,j∆∆∆i,j = δδδT

i Ai,jδδδi + δδδT
j Ci,jδδδj + 2δδδT

i Bi,jδδδj (29)

leads to the expression

Kr,c =



[∑N
j=r+1Ar,j

]
+

[∑c−1
i=1 Ci,c

]
, r = c

[Br,c], r �= c
(30)

whereK is defined as

K =




K1,1 · · · K1,N

...
. . .

...

KN,1 · · · KN,N


 ∈ R

6N×6N (31)

2.5. Derivation of the mass matrix

2.5.1. General formulation
The mass matrix is derived from the quadratic expression

for the kinetic energy. The kinetic energy of a collection of
rigid clusters can be written as the sum of contributions from
translational and rotational kinetic energies. The desired ex-
pression is of the form

T(t) = Ttrans(t) + Trot(t) = 1
2δ̇δδ(t)

TMδ̇δδ(t) (32)

To solve forM in the above equation, consider the kinetic
energy of a single cluster. In block form, the expression
becomes

Ti(t) = 1

2
(χ̇χχi(t)

T, γ̇γγi(t)
T)

[
Mi,trans 03

03 Mi,rot

]
︸ ︷︷ ︸

Mi

(
χ̇χχi

γ̇γγi

)

= 1
2χ̇χχi(t)

TMi,transχ̇χχi(t) + 1
2γ̇γγi(t)

TMi,rotγ̇γγi(t)

(33)

The sub-blocks of the mass matrix are determined by solving
the following equations
1
2m̄i‖ẋxxi(t)‖2 = 1

2χ̇χχi(t)
TMi,transχ̇χχi(t) (34)

1
2ωωωi(t)

TIi(t)ωωωi(t) = 1
2γ̇γγi(t)

TMi,rotγ̇γγi(t) (35)

whereωωωi is the angular velocity of clusteri. The moment of
inertia matrix of clusteri with respect to the center of mass
of clusteri is defined by

Ii =
N(i)∑
α=1

mi(r̂rr
T
i,αr̂rri,αI3 − r̂rri,αr̂rr

T
i,α) (36)

where the residue coordinates are given with respect to their
corresponding cluster’s center of mass in the crystal structure
asr̂rri,α = rrri,α(0) − xxxi(0).

2.5.2. Translational contribution
To solveEq. (34)for Mi,trans, recall thatχχχi(t) = xxxi(t) −

xxxi(0) and thusχ̇χχi(t) = ẋxxi(t). This relation produces the first
result

1

2
m̄i‖ẋxxi(t)‖2 = 1

2
χ̇χχi(t)

T[m̄iI3]χ̇χχi(t)

⇒Mi,trans=


 m̄i 0 0

0 m̄i 0

0 0 m̄i


 (37)

2.5.3. Rotational contribution
The rotational term is slightly more complicated. Since

the generalized coordinate parameterizes orientation withγγγi,
we need to relatėγγγi to the angular velocity vector,ωωωi, by
using the “right Jacobian”,7 Ji, in the expression

ωωωi(t) = [Ji(γγγi(t))]γ̇γγi(t) (38)

where

Ji(γγγi(t))= I3 −
(

1 − cos(‖γγγi(t)‖)
‖γγγi(t)‖2

)
[J(γγγi(t))]

+
(‖γγγi(t)‖ − sin(‖γγγi(t)‖)

‖γγγi(t)‖3

)
[J(γγγi(t))]

2 (39)

Based on the small motion approximation and the desire to
have a constant valued mass matrix, the Jacobian is evaluated
at the initial configuration. This gives the simple relation

ωωωi(t) ≈ [Ji(γγγi(0))]γ̇γγi(t) = γ̇γγi(t) (40)

which can be used to write the rotational kinetic energy in
the form

1
2ωωωi(t)

TIiωωωi(t) ≈ 1
2γ̇γγi(t)

TIiγ̇γγi(t) ⇒ Mi,rot ≈ Ii (41)

2.5.4. Final form
Assembling the sub-blocks ofM as derived in the previous

two sections yields the final expression for the mass matrix

7 The right Jacobian relatesωωωi(t) and γ̇γγi(t) in body-fixed coordinates
and the left Jacobian relates the quantities in space-fixed coordinates. For
the right Jacobian, one usesIi as defined inEq. (36). For the left Jacobian,
one usesI ′

i (t) = [Ri(t)][Ii][Ri(t)]T whereRi(t) relates body and space
frames. For small orientational motion,Ri(t) ≈ I3 and I ′

i (t) ≈ Ii(t). See
[23] (p. 130) for derivation of both Jacobians.
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M =




Mi 06 · · · 06

06
. . .

. . .
...

...
. . .

. . . 06

06 · · · 06 MN


 , where

Mi =
[
m̄iI3 03

03 Ii

]
(42)

2.6. Mode shape extraction

The derivations of the previous sections produce the equa-
tion

Mδ̈δδ + Kδδδ = 000 (43)

Statistical mechanics dictates that this is an equation whose
harmonic solutions contribute to the equilibrium motions of
the protein with amplitudes proportional to the inverse of
their frequencies.

2.6.1. EOM solution
The following manipulations are performed to produce

the mode shapes ofEq. (43).

1. Multiply on the left by8 M−1/2 ⇒ M1/2δ̈δδ + M−1/2

Kδδδ = 000
2. Define the coordinate:yyy = M1/2δδδ ⇒ ÿyy +

M−1/2KM−1/2︸ ︷︷ ︸
S̄=S̄T

yyy = 000

3. Calculate the eigenpairs ofS̄ asS̄V̄ = V̄ D̄ (the columns
of V̄ are the eigenvectors of̄S and the diagonal matrix
D̄ has the corresponding eigenvalues).

4. The column vectors ofV = M−1/2V̄ are the mode shapes
transformed back intoδδδ coordinates. We refer to the
kth mode as(δδδ)k = [(δδδ1)

T
k , . . . , (δδδN)

T
k ]T where(δδδi)k =

[(χχχi)
T
k (γγγi)

T
k ]T is the motion of clusteri under modek.

5. For each mode shape,(δδδ)k, project the cluster motions
onto the protein structure using

rrri,α(t)= [R((γγγi)k(t))](rrri,α(0) − xxxi(0))

+xxxi(0) + (χχχi)k(t) (44)

Call the set of corresponding Cα displacementsVp =
{vvvp

k}.
6. The mode shapes in̄V form an orthonormal set of modes.

After the transformation of step 4, and the projection
of step 5,Vp is no longer orthonormal. To resolve this
we perform the Gram–Schmidt orthogonal process. The
resulting set of orthonormal mode shapesVc = {vvvc

i } is
obtained by iteratively applying

vvvc
i = vvv

p
i − ∑i−1

k=1(vvv
p
i vvv

c
k)vvv

c
k

‖vvvp
i − ∑i−1

k=1(vvv
p
i vvv

c
k)vvv

c
k‖

(45)

8 Note: The calculation ofM−1/2 is not computationally limiting be-
cause the known structure ofM enables anO(n) implementation.

2.6.2. “Unmixing” and decomposition analysis
To simplify the following expressions letnc = 6N (the

number of cluster-NMA modes),ns = 3n (the number of
standard-NMA modes), andd be the dimension of the space
used to describe all Cα displacements (note:d = ns, but
separate variables are used to make other comparisons more
apparent). Let the cluster-NMA mode shapes (after the op-
erations ofSection 2.6.1have been performed) be given by

Vc = [vvvc
1, . . . , vvv

c
nc

] ∈ R
d×nc (46)

and let the standard-NMA mode shapes (the harmonic so-
lutions of Eq.(4)) be given by

Vs = [vvvs
1, . . . , vvv

s
ns

] ∈ R
d×ns (47)

Since the mode shapes ofVs are orthonormal (and they
spanR

d) the motions ofVc can be uniquely decomposed
overVs as

Di,j = |vvvc
i vvv

s
j| ⇒ D = |[Vc]

T[Vs]| ∈ R
nc×ns (48)

The entries ofD measure the alignment of the corresponding
cluster and standard modes. This matrix can be broken into
block form as shown inFig. 3.

By assumption, the cluster mode shapes should be com-
posed of, and limited to, only the low standard-NMA mo-
tions. Accordingly, the desired mode shapes are defined as

ṽvv
c
i =

m∑
j=1

αi,jvvv
c
j = [Vm

c ]αααi (49)

for i ∈ [1, . . . , m] where m is the bound on the num-
ber of included cluster modes. The undetermined weight-
ing coefficients,αi,j, are represented in vector form asαααi =
[αi,1, . . . , αi,m]T. The firstm cluster modes are the column
vectors ofVm

c .
It is important to note thatVc hasnc linearly independent

mode shapes. In practice, we choosem < nc, thus the mode
shapes produced byEq. (49)will be (by definition) contained
within the span of the lowestm cluster modes. Since the
lowest m cluster modes are dominantly composed of the
lowestm standard modes, the resulting set ofm unmixed
mode shapes will more accurately reflect the desired mode
shapesandmode ordering.

Fig. 3. Block representation ofD. The sub-blocks correspond to the
decompositions. RR: rigid cluster modes over rigid standard modes. RF:
rigid cluster modes over flexible standard modes. FR: flexible cluster
modes over rigid standard modes. FF: flexible cluster modes over flexible
standard modes.
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The constraint ofEq. (49)is equivalent to the change of
coordinatesσσσ = [Vm

c ]ααα. Application of this transform to the
energy equations of the point mass model yields

Tc = 1

2
σ̇σσTMsσ̇σσ = 1

2
α̇ααT[Vm

c ]TMs[V
m
c ]︸ ︷︷ ︸

M′
s

α̇αα (50)

Vs = 1

2
σσσTKsσσσ = 1

2
αααT[Vm

c ]TKs[V
m
c ]︸ ︷︷ ︸

K′
s

ααα (51)

which produces them dimensional equation

M ′
sα̈αα + K′

sααα = 000 (52)

This equation represents the EOM for the structure, but
rather than using aσσσ parameterization, theααα parameteriza-
tion is used so that the undetermined coefficients ofEq. (49)
can be recovered.

SinceMs andKs are used in the unmixing process it must
be stated that the creation of these 3n × 3n matrices does
not defeat the purpose of cluster-NMA. We are not solving
for the mode shapes of this full system—we are only us-
ing Ms andKs in matrix multiplication with much smaller
dimensioned matrices.9 Calculation of these matrices does
not impose any limitations on memory or computational
complexity above that which is already required by the
cluster-NMA method.

Returning toEq. (52), the change of coordinateβββ =
[M ′

s]
1/2ααα yields

β̈ββ + [M ′
s]

−1/2[K′
s][M

′
s]

−1/2︸ ︷︷ ︸
Ω=ΩT

βββ = 000 (53)

Let the eigenvectors ofΩ beVβ, which are then transformed
back intoααα coordinates as

Vα = [M ′
s]

−1/2[Vβ]
�=[vvvα1, . . . , vvv

α
m] ∈ R

m×m (54)

The undetermined coefficients as defined inEq. (49), are thus
obtained withαααi = vvvαi yielding the unmixed mode shapes

ṽvv
c
i = [Vm

c ]αααi → Ṽm
c = [Vm

c ][Vα] ∈ R
d×m (55)

After this process, the set of unmixed mode shapes inṼm
c

is not orthonormal—thus, the Gram–Schmidt orthonormal-
ization process is applied again. The final set of motions is
defined aŝVm

c = [v̂vvc
1, . . . , v̂vv

c
m] and the decomposition matrix

is now given byD = |[V̂m
c ]T[Vs]|.

9 A quick computational complexity verification: Let there be at most
z non-zero entries in each row (or column) ofKs. The first matrix
multiplication for computingK′

s is: [Vm
c ]TKs, which isO(3nmz) ≈ O(n).

The second matrix multiplication: [result][Vm
c ] is O(3nm2) ≈ O(n). The

overall computational complexity is thusO(n). By the same argument
with z = 1, we get the computational complexity of computingM ′

s as
O(n).

3. Application of cluster-NMA to various protein
structures

In this section, we apply a high- and low-resolution
helix-based clustering algorithm as described inSection 2.2.
Cluster-NMA is tested on a sample set of 12 protein
structures ranging in size from 85 to 1287 residues. An
even coarser cluster-NMA is performed on lactoferrin
(691 residues) by clustering by domain. Finally, a very
coarse cluster-NMA is performed on the 8015 residue
GroEL/GroES complex. The range in structure size and clus-
ter resolutions is chosen so that computational savings and
mode accuracy of cluster-NMA can be more fully probed.

The sample set of 12 structures range in size from 85
to 1287 residues and represent a wide range of confor-
mations. All residue interactions are defined by a distance
cut-off of 12 Å and a maximum contact number of 20.
For cluster-NMA, the helix-based clustering method is ap-
plied to the helices, as identified in the PDB files. The
high-resolution cluster-NMA is calculated with a target clus-
ter size of 3 and a minimum cluster size of 3. The lower
resolution analyses are performed with a target cluster size
of 10 and a minimum cluster size of 5. In both cases, the
lowest 26 modes are unmixed with the lowest 10 non-rigid
modes expected to show strong alignment with their corre-
sponding standard modes. The parameters and computation
times are given inTable 1.

We now consider two specific structures whose mode de-
compositions are representative of the result types produced
by high-resolution cluster-NMA. Each data table shows the
upper left 10× 10 block of FF. The most aligned stan-
dard mode with each cluster mode is given in bold (i.e.
one bold value per row). The vector norm of each column
is also given below the corresponding column. The vector
norms indicate how well each standard mode (correspond-
ing column) is captured by the lowest 10 non-rigid cluster
modes.

Table 2shows a decomposition with excellent alignment
values, perfect mode ordering over the lowest 10 non-rigid
modes, and almost perfect column vector norms. This almost
ideal decomposition is produced by 8 of the 12 example
structures.

The worst decomposition of all sample structures is shown
in Table 3. The alignment values are still excellent over
the lowest five non-rigid modes, but modes 12 and 13 have
merged in almost equal parts and modes 14 and 15 have
swapped in order. Since cluster-NMA identifies mode shapes
by frequency on a constrained version of the full structure,
standard modes with similar frequencies may occasionally
disrupt the ordering of the cluster modes.

If the global motions are of interest, then the mode swap-
ping and mode merging are not of importance because, as
indicated by the column vector norms, each standard mode
is still very well captured by only the set of the lowest 10
non-rigid cluster modes. If the desired application requires
exact mode shapes then the cluster-NMA mode shapes
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Table 1
Set of sample structures comparing the lower- and higher-resolution cluster-NMA results

PDB Size Cα-NMA Cluster-NMA (t = 3, m = 3) Cluster-NMA (t = 10, m = 5)

Time Clusters Time Ratio Clusters Time Ratio

1A32 85 1.3 24 6.7 0.19 8 6.6 0.24
1CLL 144 3.3 45 11.2 0.29 14 11.7 0.40
1AKY 218 9.2 66 19.0 0.49 19 19.6 0.62
1A54 321 25.7 98 35.1 0.73 29 31.4 1.01
3ICD 414 50.6 129 54.9 0.92 35 45.8 1.28
1DDT 523 94.6 159 81.4 1.16 50 64.2 1.72
1LFH 691 209.2 214 150.1 1.39 64 91.4 2.62
1E18 779 296.5 234 188.9 1.57 76 149.1 2.42
1H3N 814 323.9 248 212.4 1.53 76 155.1 2.52
1RUX 884 420.0 280 275.2 1.53 81 144.8 3.14
1EUL 994 568.9 304 340.0 1.67 93 166.0 3.79
1EPW 1287 1223 402 683.1 1.79 124 233.5 5.45

All computations are done in MATLAB 12.1 on a 1.6 GHz Intel Pentium 4M with 512 MB of RAM.

Table 2
Decomposition matrix for PDB: 1EUL

Cluster Standard

7 8 9 10 11 12 13 14 15 16

7 0.9996 0.0246 0.0040 0.0052 0.0025 0.0049 0.0040 0.0020 0.0000 0.0005
8 0.0244 0.9991 0.0222 0.0096 0.0141 0.0105 0.0084 0.0064 0.0026 0.0056
9 0.0043 0.0218 0.9988 0.0363 0.0033 0.0085 0.0075 0.0068 0.0058 0.0044

10 0.0053 0.0097 0.0352 0.9971 0.0018 0.0567 0.0157 0.0049 0.0068 0.0096
11 0.0035 0.0152 0.0029 0.0071 0.9938 0.0969 0.0313 0.0087 0.0088 0.0008
12 0.0055 0.0101 0.0099 0.0537 0.0994 0.9886 0.0872 0.0124 0.0121 0.0099
13 0.0034 0.0065 0.0094 0.0206 0.0228 0.0880 0.9936 0.0141 0.0236 0.0236
14 0.0018 0.0053 0.0058 0.0059 0.0104 0.0098 0.0124 0.9894 0.1180 0.0610
15 0.0001 0.0039 0.0056 0.0036 0.0061 0.0164 0.0187 0.1229 0.9791 0.1296
15 0.0005 0.0052 0.0044 0.0100 0.0047 0.0053 0.0225 0.0433 0.1289 0.9807

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0.9999 0.9999 0.9998 0.9995 0.9992 0.9991 0.9986 0.9982 0.9950 0.9915

This decomposition has very strong alignment values and exact mode ordering.

can be refined by using an iterative power method with
Ks. Such a method typically starts with an initial vector
(the candidate cluster-NMA mode shape) and iterates un-
til the resulting sequence of vectors converges. With the

Table 3
Decomposition matrix for PDB: 1AKY

Cluster Standard

7 8 9 10 11 12 13 14 15 16

7 0.9960 0.0029 0.0266 0.0019 0.0363 0.0175 0.0087 0.0032 0.0030 0.0028
8 0.0032 0.9899 0.0477 0.0701 0.0058 0.0565 0.0242 0.0308 0.0062 0.0108
9 0.0280 0.0396 0.9878 0.0418 0.0150 0.0776 0.0160 0.0085 0.0271 0.0128

10 0.0041 0.0512 0.0229 0.9391 0.1995 0.2226 0.0736 0.0313 0.0142 0.0304
11 0.0320 0.0196 0.0043 0.2146 0.9530 0.0940 0.1045 0.0265 0.0282 0.0037
12 0.0188 0.0176 0.0587 0.0547 0.1523 0.6159 0.7341 0.1365 0.0522 0.0221
13 0.0021 0.0597 0.0438 0.1862 0.0519 0.6736 0.6307 0.1274 0.0674 0.1072
14 0.0030 0.0051 0.0303 0.0190 0.0330 0.0557 0.0349 0.2519 0.8992 0.2252
15 0.0002 0.0202 0.0166 0.0182 0.0070 0.1114 0.0458 0.7129 0.3036 0.5128
16 0.0047 0.0399 0.0197 0.0490 0.0248 0.1591 0.0754 0.4238 0.0564 0.6275

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0.9971 0.9952 0.9931 0.9876 0.9885 0.9705 0.9814 0.8881 0.9555 0.8489

Modes 12 and 13 have merged and modes 14 and 15 have swapped order. The italic values highlight the parts of modes 12 and 13 that are correctly
ordered, even though the larger (bold value) in each of these rows is off the diagonal.

newly refined, normalized mode shape,v̂vv, the correspond-
ing eigenvalue is easily obtained withλ̂ = ‖[Ks]v̂vv‖. The set
of refined mode shapes can then be reordered according to
their refined eigenvalues.
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Fig. 4. Plot showing the ratio between Cα-NMA and cluster-NMA computation times as a function of structure size for lower- and higher-resolution
cluster-NMA.

We now reconsider lactoferrin with a domain-based clus-
tering. The five clusters are defined as{1–91,250–320},
{92–249}, {321–332}, {333–436,594–691}, and{437–593}.
This 30 DOF model uses less than 1.5% as many DOFs
as the all Cα model. The mode decomposition matrix, as
expected, is not as tight as those seen in higher-resolution
cluster-NMA. However, this very coarse model still captures
the global motion very well. The corresponding column vec-
tor norms over the lowest 10 modes are 0.98, 0.99, 0.98,
0.97, 0.96, 0.94, 0.93, 0.90, 0.86, 0.61.

The final example structure we consider is the GroEL/
GroES complex (PDB: 1AON). This structure is composed
of 14 repeating chains of 524 residues and 7 repeating chains
of 97 residues. Clustering by chain requires 126 DOFs which
is approximately 0.5% as many DOFs as required by the
all Cα model. By using the all Cα model computation times
from Table 1, we can extrapolate out to determine that all
Cα NMA on the GroEL/GroES complex would take ap-
proximately 77 h (neglecting the substantial memory limi-
tations). The cluster-NMA took less than 3 h, for a savings
factor of approximately 26.5. The mode shapes satisfacto-
rily agree with other qualitative descriptions in the literature
[24].

We now address computational performance.Fig. 4shows
the ratio of NMA computation times (Cα/cluster) as a func-
tion of structure size for the higher- and lower-resolution
clusterings fromTable 1. The linear plot for the lower res-
olution case indicates that cluster-NMA performs an entire
order of magnitude better than all Cα NMA.

4. Conclusions

At the core of cluster-NMA is the rigid-body represen-
tation of the protein structure. This simultaneously reduces
the number of DOFs and confines the structure to the
space of low-frequency motions. Typically, NMA compu-
tational performance is limited by theO(n3) eigenproblem.
Cluster-NMA circumvents this limitation by using anO(n)
transformation to project the structure into a reduced DOF
representation. The eigenproblem is then performed in
this smaller space and the results are transformed back to
the full DOF representation with a finalO(n) transforma-
tion.

To make exact comparisons of various mode shapes at
residue resolution the transformation back to full DOF rep-
resentation is necessary. However, if only mode visualiza-
tion is of interest the second transformation is not necessary.
The protein structure can be represented by its set of rigid
clusters which do not need to be shown in full residue detail
(their outer surfaces are sufficient). The mode shapes of the
reduced DOF representation directly specify the transla-
tional and rotational motion of each cluster and thus serve
as an efficient normal mode or global mode visualization
tool.

In this paper, cluster-NMA is applied uniformly at vary-
ing levels of resolution over the entirety of each of the 12
sample structures. In application, it may only be desirable
to study the dynamics of smaller regions within a large
structure. In such cases, clustering can be made fine in the
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regions of interest and very coarse elsewhere (i.e. spend
the DOFs only on the regions of interest). This flexibility
of application greatly enhances the computational perfor-
mance of cluster-NMA, as seen in the coarse clustering of
lactoferrin and the GroEL/GroES complex.

Cluster-NMA can be effectively used to capture motions
consistent with the low mode shapes of an all Cα model.
Cluster-NMA also very accurately captures the span of the
low-frequency standard modes as indicated by the high col-
umn vector norms (even in the case of mode swapping and/or
merging). These results make cluster-NMA an ideal tool for
efficiently calculating global harmonic motions of very large
structures about an equilibrium conformation.
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