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Abstract

The structure–function relationship is critical to understanding the biologically relevant functions of protein structures. Various

experimental techniques and numerical modeling methods, normal mode analysis (NMA) in particular, have been employed to gain insight

into this relationship. Experimental methods are often unable to provide all the desired information and comprehensive modeling techniques

are often too computationally expensive. The authors build upon and optimize their cluster normal mode analysis (cNMA) tool, which uses

embedded rigid-bodies and harmonic potentials to capture the biologically significant, low-frequency, oscillations of protein structures.

cNMA represents atomic details with a scalable number of degrees-of-freedom, which can be chosen independent of structure size. This

representation overcomes the otherwise quadratic order memory requirements and cubic order computational complexity associated with

traditional all-atom NMA. cNMA is two orders of magnitude faster than traditional all-atom NMA when clustering by residue (very high

resolution) and in the more traditional application using a fixed number of clusters, cNMA computationally scales as OðnÞ, which is two

orders of complexity faster than all-atom NMA. cNMA is presented and very large example structures with up to 106 atoms are analyzed on a

notebook PC in the time scale of minutes/hours. The resulting mode shapes help identify biologically significant, conformational pathways.
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1. Introduction

X-ray crystallography yields atomic coordinates of

protein structures in their (near) equilibrium conformations,

which can be used to further understand the relationship

between protein structure and function. Experimentally

derived temperature factors [1] and Raman spectroscopy are

able to identify regions of the structure that experience

higher magnitudes of mobility. These techniques start to go

beyond the static information of the crystal structure, but

only provide magnitudes of motions, not directions. Regions

with high mobility do not necessarily indicate regions

containing conformational changes—rigid regions extend-

ing away from a hinge will experience maximal motion, but

the region of interest is really the hinge. Other experimental

methods, such as fluorescent resonance energy transfer and
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nuclear magnetic resonance can provide partial information

about large-amplitude protein motions [2–4], but the details

of the full dynamics are still incomplete.

Computational models have proved quite valuable in

gaining insights into the structure–function relationship,

particularly where the current experimental methods fall

short in either capability or level of detail. Molecular

dynamics provides a comprehensive picture, but is

computationally prohibitive for all but the smallest

structures due to the set of complex, coupled interactions,

required to represent such high degree of freedom (DOF)

structures. Consequently, the available computing power

limits such simulations to very short time scales.

Classical normal mode analysis (NMA) techniques,

based on very simple potential functions (see [5] for a

simplified protein model, and [6] for energy function

calculations along with a formulation of NMA equations)

have proved to be viable alternatives, as demonstrated in [7].

The scalar Gaussian network model [8] and the directional
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1 In Schuyler and Chirikjian [19], a-carbon traces are used to compare

cNMA results with all-atom NMA. With the improved performance of

cNMA, we now consider all atom representations and significantly larger

structures.
2 In Thomas et al. [21], a standard normal mode analysis in Cartesian

coordinates has been performed on the 2757 residue ATCase using a Cray

C98 supercomputer. The first 53 normal modes require 690 h of computa-

tion time.
anisotropic network model [9] have been employed with

great success in determining global motions. The Gaussian

network model is computationally cheap, but only produces

scalar magnitudes of displacement. The anisotropic network

model provides directional information, but at a prohibitive

computational cost for an all atom representation of all but

relatively small structures.

The MBO(N)D method presented in Chun et al. [10]

decomposes the structure into rigid and flexible bodies. NMA

is performed on the flexible bodies and the corresponding

modes are superimposed over the rigid motions of the body,

based on various frequency matching criterion.

Computational limitations have been reduced by the

usage of coarse-grained models [11]. In [12], the authors

consider varying lengths of sequential units of residues and

calculate corresponding radii of gyration to establish a

relationship between an appropriate interaction cutoff

distance and segment length. For varying levels of coarse

graining, an anisotropic network model is used to compute

atomic mean-square fluctuations, which compare favorably

with crystallographic temperature factor data. In particular,

as the model becomes coarser, the mean-square fluctuations

smooth out. The authors conclude that the slowest mode

shape is still adequately captured when the sequential

segments contain up to 10 residues each.

A major reason for efficiently, and accurately, calculating

slowmodes follows fromstatisticalmechanics,which dictates

that the harmonic motions around the equilibrium conforma-

tion contribute proportional to the inverse of their frequencies

(i.e. low-frequency motions contribute the most to the global

motion of the structure [13,14]). It has been well observed

that the biologically significant motions are characterized by

low-frequency, large-amplitude motions [14–17], in which

entire regions often move together. In contrast, the high-

frequency, localized vibrations, may be more related to

signal transmission and other internal processes [18].

The statistical dominance of slow modes along with their

biological significance has lead to the development of a

variety of efficient, low-frequency specific, NMA-based

methods; many of which are discussed in Hinsen [15]. For

example, a Fourier decomposition is used to represent the

vector field of atomic displacements. The frequency

parameter is constrained in order to capture the low-

frequency modes. The author also discusses Ca coarse

grained models which use simplified force fields. Such

models have been shown to reproduce temperature factor

data, thus supporting the concept of using simplified force

fields to calculate slow, collective motions. Hinsen [15] also

details a deformation analysis method which can be used to

identify rigid regions.

The dominance of low-frequency motions as dictated by

statistical mechanics and the successes of other NMA-based

techniques are the motivating factors for the development of

the rigid-body-based NMA technique, called cluster-NMA

(cNMA), which was originally presented as an a-carbon,

coarse grained method by Schuyler and Chirikjian [19]. In
the present paper, the core concepts of cNMA are reviewed.

A detailed comparison is made with the RTB method [20],

which is also a cluster-based NMA method, but as the

analysis shows, there are several fundamental characteristics

that set the methods apart. Finally, the newly optimized

cNMA method is applied at atomic resolution to a few very

large structures (up to 106atoms) to illustrate how the large

amplitude motions associated with biological function can

be accurately and efficiently computed from the purely

geometry-based model.
2. Review of cluster-NMA

The original presentation of cNMA is given by Schuyler

and Chirikjian [19], and its primary purpose is to show the

full derivation of cNMA, verify its accuracy through

comparison with classical, all-atom NMA, and show the

computational savings achieved on a set of sample

structures. The core concepts and notation of cNMA are

reviewed here1 and the reader is referred to [19] for

additional details and a more thorough literature review. In

particular, the reader should consult Bahar et al. [8] for the

formulation of the scalar Gaussian network model and

Atilgan et al. [9] for the directional anisotropic network

model. The theoretical successes, and computational

limitations,2 of these methods are the motivation for cNMA.

2.1. Coordinate system

Given a structure with n atoms it can be fully represented

in Cartesian coordinates by

s ¼ ½sT
1 ; . . . ; s

T
n �

T 2R3n (1)

where each atom is parameterized by its position in the

global coordinate frame as

si ¼ ½xi; yi; zi�T 2R3 (2)

where the superscript T is used to indicate the transpose.

Classical all-atom NMA is typically based on the displace-

ment experienced by the generalized coordinate s. Other
variables, such as torsion angles, can also be used, but they

also require OðnÞ parameters.

In cNMA, the structure is represented as N rigid bodies

(clusters of atoms). The structure’s conformation is thus

defined by the position and orientation of the N embedded

rigid bodies—or equivalently, the translational and rota-
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tional displacement relative to the crystal structure. The

translational displacement of cluster i is measured from

its center of mass, xi, relative to its starting position and is

given by

xiðtÞ ¼ xiðtÞ � xið0Þ (3)

The t parameter is used to indicate the original crystal

structure (t ¼ 0) and motions away from this equilibrium

state (t> 0). When it is understood that an arbitrary con-

formation is being discussed, tmay not be explicitly written.

The rotational displacement around the cluster’s center of

mass is defined by the rotation matrix RiðtÞ 2 SOð3Þ, where
SOð3Þ, is the special orthogonal group of rotations in three-

dimensional space. The three-parameter axis-angle vector,

giðtÞ, corresponding to the rotational displacement is defined

by the relation

RiðgiðtÞÞ ¼
4

exp ðJðgiðtÞÞÞ

¼ I3 þ
�
sin ðkgiðtÞkÞ

kgiðtÞk

�
½JðgiðtÞÞ�

þ
�
1� cos ðkgiðtÞkÞ

kgiðtÞk2
�
½JðgiðtÞÞ�2 (4)

where kgiðtÞk is the usual vector norm and the skew sym-

metric matrix function, J : R3 !R3�3, is defined by

Jð½a; b; c�TÞ ¼
0 �c b
c 0 �a
�b a 0

2
4

3
5 (5)

once again, the t parameter may be omitted from giðtÞ when
arbitrary conformations are being discussed.

Each cluster’s generalized coordinates are given by

di ¼ ½xT
i ; g

T
i �

T 2R6 (6)

and the whole structure’s generalized coordinates are the

stacked vector

d ¼ ½dT1 ; . . . ; dTN �
T 2R6N (7)

From these definitions, we can express the Cartesian

location of atom a in cluster i as

si;aðtÞ ¼ ½RðgiðtÞÞ�ðsi;að0Þ � xið0ÞÞ þ xið0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rotate about cluster’s center of mass

þ xiðtÞ|ffl{zffl}
translate

(8)

The rotation is applied to the atom’s position relative to its

cluster’s center of mass—hence the term si;að0Þ � xið0Þ,
which is equivalent to translating the cluster’s center of

mass to the origin before applying the rotation. The corre-

sponding cluster’s center of mass is then translated back to

its original position by adding back xið0Þ. Finally, the entire
cluster is translated by the displacement xiðtÞ.
2.2. cNMA interaction model

The protein structure is represented by a set of masses,

one located at each atomic position as specified by the

crystal coordinates. The atomic interactions are modelled by

a set of harmonic potentials that connect all pairs of atoms

within a cutoff distance of rc ¼ 5 Å. This system is typically

used for all-atom NMA.

Many coarse-grained NMA techniques reduce the

structure by representing groups of atoms by single point

masses (i.e. NMA on the a-carbon trace). This effectively

collapses all atoms of the group (and their interactions with

other atoms) onto a single position. In contrast, cNMA

represents groups of atoms as rigid-bodies, but maintains

individual atom positions and interaction contributions by

including translation and rotation parameters in the

coordinate system.

Even though these analysis techniques are designed to

capture the slow modes, the oversimplified structure

representation of some models distorts the geometry of

atomic interactions. In particular, forces acting on each atom

of a cluster under cNMA will determine the net rotational

motion of the cluster, whereas coarse-grained models which

use point mass representations for collections of atoms will

only be able to identify translation of the group of atoms, thus

neglecting an entire component of the structure’s motion.

In typical all-atom NMA, the network of atomic

interactions can be determined with a very straight forward

implementation by considering all pairs of atoms. ThisOðn2Þ
operation is insignificant because the Oðn3Þ eigenproblem

dominates the overall complexity. However, in the case of

cNMA, aswill be shown, the computational complexity of the

eigenproblem can be made independent of structure size

(constant complexity). This leaves the contact calculation

as a potential computation limiting step. In response, a

new method for calculating atomic pair interactions is

required—this material is presented in Appendix A.

It should be noted that, if desired, the masses of the model

can be scaled according to each specific atom type and the

potentials can be scaled according to the chemical properties

of the atoms involved in each interaction. However, since

low-frequency motions are of primary interest, unit masses

and a uniform potential are sufficient to capture the

structure’s global characteristics.

2.3. Equation of motion

For an arbitrary small structure motion, d, the associated
kinetic and potential energies can be approximated very well

as the quadratic expressions

T ¼ 1
2
ḋ
T
Mḋ (9)

and

V ¼ 1
2
dTKd (10)
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Table 1

Structure size cluster guidelines

Structure size Clustering method

� 100–750 residues Cluster by residue

� 750–5000 residues Cluster by domain

> 5000 residues Cluster by chain/unit
The complete derivation and closed form expressions for the

mass matrix, M, and stiffness matrix, K, are given in [19].

Lagrange’s equation directly produces the equation of

motion

Md̈þ Kd ¼ 0 (11)

whose solutions contribute to the harmonic motions around

the equilibrium conformation inversely proportional to their

corresponding frequencies.

2.4. Clustering guidelines

The cNMA parameterization is used for two main

reasons. First, when probing the structure–function relation-

ship, low-frequency, large amplitude, motions are of the

most interest. They exhibit large collective motions (i.e.

parameterization by rigid clusters is sufficient to capture

these motions). Second, the total number of degrees of

freedom is drastically reduced, thus providing a significant

enhancement of computational performance.

In [19], clustering was done evenly across a structure

while keeping the ends of helices at the cluster interfaces.

This construction was chosen because the favorable

hydrogen bonding characteristic of helices is well con-

served across conformational changes, especially under

low-frequency motions. In the present context clustering

is applied according to the structure size guidelines3

shown in Table 1. These guidelines are intended to keep

the total number of DOFs to no more than approximately

5000.

The computational complexity of assigning the clusters

is, at worst,OðnÞwhen clustering by residue, domain, chain,

or unit—simply iterate though all atoms and assign cluster

indices accordingly. If domains are pre-defined, then the

cluster assignments can be done in constant time. In addition

to assigning the cluster indices, each cluster’s initial

orientation and position must be calculated. By definition,

the initial orientation is set to the identity matrix (rotational

displacements are measured relative to this initial reference

frame). Each cluster’s initial position is set to its center of

mass as measured in the global coordinate frame. Since

every atom in the structure is in exactly one cluster, every

atom will be considered exactly once during the center of

mass calculations. Overall, the clustering assignments and

initialization is an OðnÞ process.
The cNMA examples presented in the following sections

show each of the three clustering methods mentioned in

Table 1.
3 As an alternative, cNMA resolution, as determined by cluster size, can

be varied across the structure to achieve higher resolution in areas of

particular functional interest and lower resolution over highly conserved

regions. This strategy minimizes computational costs while maintaining the

atomistic model. Amethod for varying resolution in the anisotropic network

model is presented in Kurkcuoglu et al. [22]. The same theory and

procedure holds for cNMA.
3. Comparison with RTB method

The RTB method presented in Tama et al. [20], and

implemented in CHARMM in Li and Cui [23], is an

accepted coarse-grained, NMA technique. It uses an

embedded rigid-body structure representation to circumvent

the diagonalization of the Hessian matrix, which is the

memory and computation limiting step of most NMA-based

methods. By pre-computing the rigid-body modes of each

block of consecutive residues, the Hessian is projected onto

a reduced DOF subspace. The reduction of a structure’s

representation space is common to many NMA-based

techniques, including cNMA. However, the way in which

this is accomplished almost completely defines the method

and has considerable impact on the remaining computations.

To illustrate this point and highlight the key operational

aspects of cNMA, a comparative analysis with the RTB

method is presented.

Major distinctions between the RTB method and the

cNMA method stem from the coordinate system choices.

Tama et al. choose to use a full Cartesian atomic repre-

sentation for the Hessian and then transform it into a reduced

DOF subspace. In contrast, the present authors start by

defining a rigid-body coordinate system and then formulate

the entire cNMA procedure in the inherently reduced

DOF representation (i.e. no transforms are necessary).

Even though both options produce valid models, this key

difference has many implications in the subsequent normal

mode calculations and mode shape analyses.

First, the projection matrix used in the RTB method is a

Cartesian representation of the clusters’ rigid-body motions

and its transform of the Hessian reshuffles the coordinate

system. The resulting eigenvectors (mode shapes) of the

reduced DOF Hessian must therefore be transformed back

into all-atom Cartesian coordinates in order to ‘‘see’’ the

modes. This extra transform is not computationally costly, but

it forces an all atom representation when it is not desired. In

contrast, the cNMA method maintains its coordinate system

throughout the computations. Since the coordinate system is a

natural reduced DOF representation, computational perfor-

mance is enhanced and cooperative motions are easily

identified directly from the cNMAmode shapes by comparing

the clusters’ translational and rotational components. Similar

translational components indicate regions that move together

and similar rotational components (i.e. the axis/angle vector

describing the rotation) indicate common hinge axes.

Second, the coordinate system of cNMA is designed to

describe rigid-body motions where atoms will experience
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Fig. 1. Illustration of which pairwise atomic interactions are required by

standard NMA (all sticks in B) and cNMA (only the sticks in B between

different colored atoms).

Table 3

Computation times for cNMA (clustering by domain) on calcium ATPase

Calculation Time (s)

Read in PDB file 59.9

Determine all contacts 29.5

Cluster representation 0.4

M ¼ mass matrix 0.7

K ¼ stiffness matrix 2.7

Q ¼ M�1=2KM�1=2 0.3

Determine eigenpairs of Q < 0.1

Transform modes back into cluster coords < 0.1

cNMA total 4.1
(linear) translations and (curvilinear) rotations. Mode shapes

can therefore be extrapolated under the cNMA method

without distorting local geometries, whereas the RTB

method will not maintain local geometries as Cartesian

representations of rotations are amplified. It is best not to use

significant extrapolation for pathway generation, but it does

serve as a valuable visualization tool.

Third, cNMA is computationally faster than the RTB

method. In Tama et al. [20], the RTB method is applied with

one residue per block to the 99 residue HIV-1 protease
Fig. 2. The four clusters/domains are given by the sets of residues:

A ¼ f1�40; 126�245g;N ¼ f360�604g; P ¼ f330�359; 605�737g, and
TM ¼ f41�125; 246�329; 738�994g. The pair of calcium ions, phosphor-

ylation site and ATP binding site are shown with space filling spheres and

labelled accordingly.

Table 2

Descriptions of some of the lowest non-rigid-body modes of calcium

ATPase with four domain cluster representation

Mode index Characterization

7 N rotates about axis perpendicular to

TMa and ‘‘closes’’ down on P

8 N rotates towards A about axis almost

parallel to TMa

9 N and A rotate away from each other about

axes parallel to TMa, fully exposing the face of P

10 A ‘‘closes’’ onto P by hinging around axis running

through A/P interface

14 P rocks forward into the crease between A and N

Notational shorthands: Single letters are used to refer to domains, TMa ¼
axis running down center of TM helix bundle.

Fig. 3. The GroEL/GroES complex is shown on the left with a blue ribbon

diagram. To illustrate how the seven chains on each level fit together, the

following chains are shown with space filling spheres: chain P from GroES

cap (yellow), chain A from upper GroEL ring (red), and chain N from lower

GroEL ring (green). On the right are cross sectional slices of the cap and

each seven chain ring.
(PDB ¼ 1HHP, structure from Spinelli et al. [24]) and the

265 residue triglyceride lipase (PDB ¼ 3TGL, structure

from Brzozowski et al. [25]) on a ‘‘common HP

workstation’’4 to obtain the slowest 50 modes of each

structure in 90 and 1056 s, respectively. Application of

cNMA5 to HIV-1 protease took only 8.9 s to calculate 594

modes and cNMA on triglyceride lipase only took 101.5 s to

compute 1590 modes. As an alternative, the slowest 50

modes are calculated with an iterative eigenvalue solver for

each structure under cNMA in 6.0 and 33.1 s, respectively.

The iterative method is less numerically stable than the full

eigenvalue solver, which is why it is not used in the

remainder of this paper, but it does allow for a more direct

comparison with the published computation times of the

RTB method. As these examples show, cNMA performs one

to two orders of magnitude faster than the RTB method on

these small to medium sized structures.
4 No other platform data is given.
5 All cNMA computations in this paper are performed on a notebook PC

with a 1.6 GHz Pentium 4M processor and 512MB RAM running

MATLAB 6.5.
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Table 4

Computation times for cNMA (clustering by chain) on the GroEL/GroES

complex

Calculation Time (s)

Read in PDB file 168.1

Determine all contacts 414.7

Cluster representation 3.0

M ¼mass matrix 4.5

K ¼ stiffness matrix 45.6

Q ¼ M�1=2KM�1=2 0.7

Determine eigenpairs of Q < 0.1

Transform modes back into cluster coords < 0.1

cNMA total 53.8
Finally, the RTB method uses consecutive residues to

define its clusters, whereas cNMA allows for any collection

of atoms to define a cluster. The consecutive residue

approach is simple in its application, but it has an inherent

flaw. As clusters increase in size, they will tend to form

elongated shapes, which are not nearly as rigid as more

compact regions. Consequently, methods such as the RTB

method must either limit cluster sizes to maintain an

accurate model (as described in [12]) or risk locking up

certain low-frequency motions. Further, the approach used

in cNMA allows for varying cluster sizes to maintain high

model resolution in regions of more structural/functional

significance, while allowing bulk regions to remain coarse.
4. cNMA examples

4.1. Cluster by residue: a simple example

Fig. 1 shows clustering by residue on a 33 atom, five

residue fragment with each residue shown in a different color.

Image A shows all 33 covalent bonds in the structure and

image B shows all 144 ‘‘sticks’’ between pairs of atoms

within 5 Å. Under standard NMA, each stick in B, represents

a contact and thus enters into the calculation of the stiffness

matrix. When using cNMA (and clustering by residue) only
Fig. 4. Amplified visualization of mode 7. The lower ring rotates in the opposite

expansion at the interface of the upper ring and the GroES cap.
the 91 contacts between atoms of different residues are

needed. These are easily identified in B, as the sticks with two

colors.

This simple example shows how cNMA, even when

applied at a very high resolution, can reduce the complexity

of the model. Standard NMA requires 33� 3 ¼ 99 DOFs,

whereas cNMA only requires 5� 6 ¼ 30 DOFs. In the

context of a cubic order eigenproblem, the reduction in

DOFs by a factor of more than 3 corresponds to a

computational performance factor of more than 35. In

addition to the smaller matrices required in the cNMA

equation of motion, the number of interactions has been

slightly reduced, thus quickening the computation of the

stiffness matrix. In larger structures, the cluster size can be

set to maintain a constant number of DOFs. Once again, the

total number of atomic interactions is also reduced, while

preserving all atomic geometry. These fundamental con-

cepts are common to all applications of cNMA.

4.2. Cluster by domain: calcium ATPase

The 994 residue calciumATPase (PDB ¼ 1EUL, structure

from Toyoshima et al. [26]) pumps Ca2þions across the

membrane of the sarcoplasmic reticulum against the

concentration gradient in muscles during contraction [27].

This process is accomplished by a sequence of calcium ion

bindings, ATP hydrolysis, and phosphorylation, which each

cause rearrangements of the four domains [28,29]. The

mechanical aspects of this process and the well-defined

domains make cNMA (with clustering by domain) an ideal

analysis tool.

Fig. 2 shows the positioning of the domains in the calcium

ion bound conformation. The bundle of ten transmembrane

a-helices is the largest domain (labelled as TM) and has a

pair of Ca2þ-binding sites defined by pockets of negatively

charged oxygen atoms. The first site is defined by the side-

chain oxygen atoms of Asn768;Glu771;Thr799;Asp800 and

Glu908. The second site is defined by the carbonyl oxygen

atoms of Val304, Ala305 and Ile307, and the side-chain oxygen

atoms of Asn796, Asp800 and Glu309. The other three domains
direction as the upper ring and the GroES cap. There is also a slight radial
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Fig. 5. Amplified visualization of mode 8. The lower ring rotates counter-clockwise about a radial axis perpendicular to the page and the upper ring and GroES

cap experience a slight shear to the right in the plane of the page. Mode 9 is related to this motion by an approximate 90 � rotation about the vertical axis.
(P, N andA) form the cytoplasmic headpiece, as referred to in

Toyoshima et al. [26]. The phosphorylation site is in domain

P at Asp351and the ATP binding pocket is in domain N and is

defined by Lys515 along with the supporting residues Phe487

and Lys492. These critical regions are part of the calcium ion

pump operation:
1. C
Fig

dire

pos
alcium ions bind to sites within the helix bundle and

cause conformational changes in TM.
2. T
his triggers the cytoplasmic headpiece to split open

[26,30], thus allowing ATP hydrolysis on domain N and

enzyme phosphorylation on domain P.
3. T
he phosphorylation causes conformational changes in

domain TM and the calcium ions are transferred across

the membrane.
. 6. Amplified visualization of mode 10. The lower ring stretches along a c

ction. Mode 11 is related to this motion by an approximate 51 � rotation about
ition.
CalciumATPase has 7673 atoms and thus requires 23,019

DOFs for all-atom NMA, whereas the low-frequency

analysis of cNMA with four domain clusters requires only

24 DOFs (the Ca2+ ions are not included in the analysis). A

summary of some of the cNMA non-rigid-body modes is

given in Table 2. Of particular interest are modes 9 and 10,

which show possible pathways for the opening and closing

of the cytoplasmic headpiece.

The computation times are shown in Table 3. The times

for reading in the PDB file and calculating the atomic

contacts are not included in the total cNMA computation

time listed because they must be done for every atomic

resolution normal mode analysis method. These two ‘‘set-

up’’ operations are OðnÞ, and do not compare to the Oðn3Þ
computational cost of the typical all-atom eigenpair
ross sectional direction and contracts in the perpendicular cross sectional

the vertical axis. This corresponds to a rotation of the seven chain ring by 1
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Fig. 7. Amplified visualization of mode 12. Symmetric radial breathing of the interface between the GroES cap and upper ring. The upper ring slightly twists

counter-clockwise while the cap and lower ring twist together slightly clockwise.

Table 5

Computation times for cNMA (clustering by unit and by chain) on the HK97

virus capsid

Calculation Time (s)

By chain By unit

Read in PDB file 9665.5

Determine all contacts 85350.0

Cluster representation 35.4 125.7

M ¼ mass matrix 68.6 68.9

K ¼ stiffness matrix 28253.5 14422.8

Q ¼ M�1=2KM�1=2 154.6 3.5

Determine eigenpairs of Q 265.9 0.9

Transform modes back into cluster coords 5.1 0.1

cNMA total 28783.1 14621.9

Note: The crystal structure in the PDB file is only given for a single seven

chain unit, the other 59 units are obtained by homogeneous transforms. The

time given in the table for reading in the structure is 60 times the time

required to read in the single seven chain unit.
calculation. However, as Table 3, and the examples to follow

show, the cNMA calculations actually take less time than

these traditional set-up costs—this represents a massive

savings in computational complexity.

4.3. Cluster by chain: GroEL/GroES complex

GroEL is a protein folding/unfolding chaperonin com-

plex composed of two rings, each with seven repeated

chains. These rings stack about a central axis to form a tube,

which can be capped by the seven chain GroES [31], see

Fig. 3, for a ribbon representation and cross-sectional views

of the GroEL/GroES complex (PDB ¼ 1AON, structure

fromXu et al. [32]). Most of the functionally significant sites

are located on the interior channel walls and at the ends of

the cylinder [33]. The central channel acts as an environment

which helps facilitate proper folding [34]. It is suggested that

some incorrectly folded structures are recognized by their

exterior hydrophobic regions [32]. The central channel of

the chaperonin can bind these regions and manipulate the

target structure out of the incorrect fold before discharging

the structure into the surrounding environment to naturally

complete its fold [31].
Fig. 8. Single seven chain unit (left) that when reproduced 60 times by

symmetric transforms gives the complete virus capsid (right).
This 8015 residue complex has 58,667 atoms—well

beyond a personal computer’s capacity for all-atom NMA.

In Keskin et al. [35], the authors use an a-carbon trace to

make the computations feasible. The authors state, the first

40 modes, a mere 0.1% of the 24,045 element mode set,

contribute � 75% of the overall dynamics. The desired

number of low-frequency modes can be determined one at a

time (i.e. it is not necessary to compute all 24,045 modes

only to use the first 10), but the computations still require the

manipulation of matrices and vectors of dimension 24,045.

The multi-chain construction makes the complex well

suited for cNMA. The 21 chains are modelled using 126

DOFs. The cNMA computation times are shown in Table 4,

and visualizations6 of the four lowest frequency families of
6 Note: All mode shape visualizations in this paper are amplified to

achieve RMS displacements on the order of 10 Å. These extrapolations

go beyond the small-motion assumptions of the model and are only

intended to ease visualization of mode direction.
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Fig. 9. Eigenvalue spectrum for cNMA on virus capsid clustered by chain.
mode shapes are shown in Figs. 4–7. Families 1 and 2

exhibit contortions of the central cavity which may be

critical in binding incorrectly folded proteins to the

hydrophobic sites on the inner channel walls and physically

manipulating them out of the incorrect fold. Family 3

shows orthogonal stretching/contracting of the lower ring

opening. Family 4 shows radially symmetric expansion

of the upper ring/GroES cap interface coupled with

extension of the cap away from the main structure along

the central axis.
Fig. 10. Breathing motion along two perpendicular axes, each running from the c

cluster by chain modes: 7, 8).

Fig. 11. Breathing motion along two perpendicular axes from the center of the cap

vertices (cluster by unit modes: 9, 11 ; cluster by chain modes: 9–11).
4.4. Cluster by chain: virus capsid HK97

Fig. 8 shows the icosahedral virus capsid HK97

(PDB ¼ 1FH6, structure from Helgstrand et al. [36]), which

is created from 60 repetitions of a seven chain unit [37]. This

structure is chosen for analysis because its size (903,420

atoms) will test the computational performance of cNMA

and its symmetry will allow us to compare the motions of

cNMA with the motions calculated by other symmetry

constrained methods [38].Without the symmetry it would be

nearly impossible to attempt all-atom NMA on a personal

computer.

In this section we consider two different clustering

approaches: one cluster per seven chain unit and one cluster

per chain. Clustering by unit requires 60 clusters using 360

DOFs and clustering by chain requires 420 clusters using

2520 DOFs. Calculation times for both of these clustering

schemes are shown in Table 5. In comparison, all-atom

NMA on this 903,420 atom structure would require

2,710,260 DOFs!

As a consequence of the symmetry we obtain families of

motions, each with a common frequency of oscillation.

Fig. 9 shows a plot of the eigenvalue (squared frequency)

spectrum for cNMA when clustering by unit. The plateau

regions correspond to modes of the same ‘‘family’’ of

symmetry related motions. A representative of each of the

first four families is shown in Figs. 10–13 .
enter of the capsid though opposite edges (cluster by unit modes: 7, 8, 10 ;

sid, one running though opposite edges and the other axis through opposite
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Fig. 12. Breathing motion along three evenly spaced axes around the ‘‘equator’’, each running from the center of the capsid though opposite edges (cluster by

unit modes: 12–15 ; cluster by chain modes: 15, 16).

Fig. 13. Breathing motion along three evenly spaced axes around the ‘‘equator’’, each running from the center of the capsid though opposite vertices (cluster by

unit modes: 16; cluster by chain modes: 12–14).
Table 6 shows the absolute values of taking the dot

product of each of the first 12, non-rigid modes when

clustering by unit with each of the first 10, non-rigid modes

when clustering by chain. It is important to keep in mind that

due to the rotational symmetry of the capsid, the mode

ordering is arbitrary within each motion family. In order to

compare the motions generated by each clustering scheme,

one must consider sub-blocks of the decomposition matrix
Table 6

Decomposition of Cartesian representation of modes when clustering by unit ov

By unit By chain

7 8 9 10 11

7 0.7776 0.6127 0.0005 0.0002 0.0000

8 0.6127 0.7776 0.0003 0.0003 0.0000

9 0.0000 0.0003 0.0185 0.9471 0.2875

10 0.0000 0.0001 0.0715 0.2881 0.9444

11 0.0006 0.0000 0.9872 0.0031 0.0738

12 0.0000 0.0000 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000 0.0000 0.0000

14 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.0000 0.0000 0.0000 0.0000 0.0000

16 0.0000 0.0000 0.0000 0.0000 0.0000

17 0.0000 0.0000 0.0000 0.0000 0.0000

18 0.0000 0.0000 0.0000 0.0000 0.0000

0.9899 0.9899 0.9899 0.9899 0.9899

The largest value in each column is underlined and the vector 2-norm of each 1
as defined by the motions of each family. The first 10 non-

rigid modes, when clustering by chain, include motions up to

the third plateau. To get a full decomposition we must

consider all cluster-by-chain modes up to, and including, the

third plateau. This requires 12 cluster-by-unit modes—

hence the uneven number of rows and columns in Table 6.

The very high underlined values in each column of

Table 6, show a correspondence between each cluster-by-
er Cartesian representation when clustering by chain

12 13 14 15 16

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.8294 0.4792

0.0000 0.0000 0.0000 0.1059 0.2738

0.0000 0.0000 0.0000 0.5221 0.8168

0.0000 0.0000 0.0000 0.0000 0.0000

0.0059 0.6239 0.7643 0.0000 0.0000

0.4481 0.6793 0.5579 0.0000 0.0000

0.8790 0.3504 0.2793 0.0000 0.0000

0.9867 0.9867 0.9867 0.9857 0.9857

2 element column is written at the bottom.
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chain mode and some cluster by unit mode. The vector

norms under each column, all approaching a value of 1, show

that each of the first 10, non-rigid, cluster-by-chain modes is

almost entirely captured by the set of the first 12, non-rigid,

cluster-by-unit modes. These numerical results precisely

show that the low-frequency mode shapes are relatively

insensitive to the chosen cluster size.
5. Conclusion

Classical all-atom NMA is dominated by the Oðn3Þ
computation of the eigenproblem and the Oðn2Þ memory

requirements [15]. cNMA overcomes these obstacles by

using an OðnÞ method for representing arbitrarily large

protein structures in a reduced DOF coordinate system that

is designed to capture the low-frequency, biologically

significant motions. Even for the very high resolution case

of clustering by residue, cNMA exhibits two orders of

magnitude worth of computational savings over classical

NMA, as seen in Fig. 14. The computational performance

can also be evaluated by observing that the series of

computations associated with cNMA for each of the

example structures takes about an order of magnitude less

time than it takes to simply read in the PDB files and

determine contacts. In other words, in the very high

resolution (cluster-by-residue) application of cNMA, the

computational complexity still scales as Oðn3Þ, but

significant computational performance improvements are

still evident.

In the more common application of cNMA, one would

fix the number of desired modes (i.e. the lowest 50 will be

more than sufficient for most applications) and either use

uniform cluster sizes across the entire structure or finely

cluster the regions of interest, leaving a few larger clusters

for the remaining bulk of the structure. In either case, the
Fig. 14. Comparison of computation times between all-atomNMA (circles)

and cNMA (squares) as a function of structure size. Even in this high

resolution application of cNMA with clusters defined by residue, the

computational savings factor approaches two orders of magnitude.
dimensions of the equation of motion are no longer a

function of the overall structure size and consequently, the

cubic scaling of the eigenproblem is reduced to a constant.

Further, by using the OðnÞ approach for calculating atomic

interactions, as discussed in Appendix A, the entire cNMA

method operates at a computational complexity ofOðnÞ. Not
only is this two orders of complexity faster than traditional

all atom NMA, but also the compact cluster representation

enables cNMA to escape the overwhelming memory

requirements that often cripple other methods.
Appendix A. Interaction algorithms

Constructing the network of harmonic potentials by

considering all possible pairs of atoms is very inefficient

because an expensive distance calculation7 is made between

all pairs of atoms, when in fact, there is a limited number of

contacts for each atom. The two alternative methods,

referred to as box and voxel, are both based on discretizing

Cartesian space and then using simple coordinate compar-

isons to reduce the number of distance calculations to a local

neighborhood of candidates around each atom.

In the box method, there is a single iteration through the n

atoms. For atom i, we calculate the relative x coordinate

position of each of the n� i atoms with larger indices

(considering only larger indices eliminates ‘‘double count-

ing’’). From this data we keep only the atoms that are within

the cutoff distance of atom i in the x coordinate dimension.

This set is further reduced by making similar comparisons in

the y and then the z coordinate dimensions—effectively

trimming Cartesian space down to a box of edge length 2rc
centered at atom i. Since the sphere of radius rc, centered at

atom i, fits entirely in this box, all atoms within the cutoff

distance of atom i (with index greater than i), are contained

by the box. The Cartesian distance is computed only for this

subset. The box method requires Oðn2Þ comparisons and

OðnÞ vector norms.

The voxel method partitions Cartesian space into voxels

(volume elements) with edge length rc. Each voxel is

identified by 3 integer coordinates. Each atom’s voxel

coordinates are computed and a lookup table is created by

storing the voxel coordinates with each atom index and by

storing each atom’s index with the voxel coordinate. In a

second iteration through the atoms, we consider atom i and

all atoms within the 3� 3� 3 voxel region centered

around the voxel of atom i. The lookup table provides the

atom indices contained in each neighboring voxel. Finally,

the vector norm is used to calculate the distance to each

candidate atom. This method requires OðnÞ computations

to create the lookup table and OðnÞ vector norm

calculations.
7 Calculating the distance between two points in Cartesian space using

the vector norm requires three multiplications, two additions, and one

square root.
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At first glance the voxel method appears to be the best

choice for all cases. However, there is a subtlety which gives

the computational advantage to the box method for

structures below a threshold size. In the box method, a

box of edge length 2rc is created specifically for each atom.

The volume of space with candidate atoms is thus 8r3c . The
voxel method uses a single partitioning for all computations

(thus saving on ‘‘setup’’ costs), but as a consequence, 27

voxels of edge length rc must be considered for each atom—

a candidate volume of 27r3c . Even though both methods

require OðnÞ vector norm calculations, the box method

operates on candidate volumes which are more than three

times smaller than the corresponding volumes used by the

voxel method. For structures with fewer than 12,500 atoms,

the vector norm calculations on the additional volume of the

voxel method are more computationally significant than the

Oðn2Þ comparisons required by the box method. Conversely,

for structures with more than 12,500 atoms, the voxel

method performs more efficiently.

The computational advantage shifts to the voxel method

as structure size increases, thus the computational complex-

ity of calculating atomic contacts scales as OðnÞ. The

threshold value has been used to determine the optimal

algorithm for the computations associated with each sample

structure presented in this paper.
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