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A computational framework for a moment-basedOsNd tight-binding atomistic method is presented, ana-
lyzed, and applied to the problem of electronic properties of deformed carbon nanotubes, whereN is the
number of atoms in the system. The moment-based approach is based on the maximum entropy and kernel
polynomial methods for constructing the electronic density of states from local statistical information about the
environment around individual atoms. Random-walk statistics are formally presented as the basis for several
methods to collect the moments of the density of states in a computationally efficient manner. The computa-
tional complexity and accuracy of these methods are systematically analyzed. Using these methods for the
problem of deformed carbon nanotubes, it is shown that the computational cost for some cases, per atom,
scales as efficiently asOsM log Md, whereM is the desired number of moments in the expansion of the density
of states. These methods are compared to other methods such as direct diagonalization and a Green’s function
approach.
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I. INTRODUCTION

Semiempirical tight binding is an atomistic modeling
method in which the total energy is assumed to be due to
bonding valence electronic interactions and repulsive inter-
actions primarily between nuclei. For regular, symmetric,
and even uniformly strained atomic scale structures, a tight-
binding model can be formulated in reciprocal space so that
the electronic structure and total energy are derived from a
basis as small as just a few atoms and their associated va-
lence electrons. If a structure is nonuniform due to strain,
defects, or impurities, for example, the tight-binding Hamil-
tonian in general should contain degrees of freedom for all
valence electrons associated with every atom in the structure.
Solving for the band structure and total energy using conven-
tional methods then requires a costly direct diagonalization
of the full Hamiltonian matrix that can scale as poorly as
OsN3d, whereN is the number of atoms in the system. Within
a tight-binding approximation, it is also possible to obtain
information about the local density of statessLDOSd from
the local structural environment around an atom. An infor-
mation theoretic approach can be used to reconstruct the
LDOS from its moments, or products of hopping integrals
connecting random walks starting and finishing on a particu-
lar atomf1–3g. Thus, based on a collection of statistical in-
formation about local atomistic structure, the LDOS can be
approximated, and the density of statessDOSd and the total
energy of the whole system, in turn, can be computed in an
OsNd manner. In this statistical approach, the accuracy is
dependent on the number of moments used in the approxi-
mation; sharp features of the DOS are poorly reproduced if

insufficient moments are used in the expansion, while the
total energy is well approximated with relatively few mo-
mentsf4g.

Two key components of the moments method for comput-
ing electronic structure and total energies aresid the compu-
tational algorithm used to construct the LDOS from the set
of moments, which can strongly affect the energy resolution
and accuracy, andsii d the computational algorithm for col-
lecting the moment data, which is typically the most costly
part of the technique and is likely the reason why the method
has seen relatively little use over the last decade. Typically,
the maximum entropy methodsMEMd is used to determine
the LDOS from the power moment data and assumes that the
correct LDOS can be determined by maximizing the infor-
mation theoretic entropy associated with all possible distri-
butions consistent with the moments dataf5,6g. The MEM
always yields a broadened approximation to the real DOS;
furthermore, because it is based on power moments, the
method suffers from problems with machine precision as the
moment data range over many orders of magnitude. The
other method, the kernel polynomial methodsKPMd, uses
Chebyshev moments generated from a set of orthogonal
polynomials to approximate the LDOSf7,8g. The Chebyshev
moment data are modulated by Gibbs damping factors to
reduce unphysical oscillations in the resulting LDOS. In gen-
eral, the KPM is more convenient and preferable for total
energy calculations while the MEM gives better energy reso-
lution for computing fine structure in the DOS. Extensive
work has been done over the last decade to compare these
methods, and to combine the best features of both in order to
more accurately compute electronic structuref8g.

Generating the moment data is the most costly step in
implementing a real-space, statistical tight-binding calcula-
tion that isOsNd. The power moments, for example, amount*Corresponding author. Email address: htj@uiuc.edu
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to the trace of the matrix generated by taking powers of the
Hamiltonian. This operation can be constructed in physical
space by delineating and summing all closed random walks
from a particular atom that move around the lattice collecting
products of the hopping integrals in the Hamiltonian. Thus,
without exploiting any symmetry in the lattice or sparsity in
the Hamiltonian, the brute force cost of collecting moments
would scale exponentially with the number of moments, or
OsNCMd, whereC is a constantù1 andM is the number of
moments calculated. To obtain acceptable accuracy in the
DOS often requires a moment expansion that includes more
than 1000 moments, so while the overall method can be
OsNd, the cost per atom is prohibitive. However, in addition
to symmetry and sparsity, information theoretic approaches
make it possible to greatly reduce the cost of delineating
random walks on lattices. For example, instead of the so-
called brute force approach of assembling moments from
random walks on the lattice, powers of the Hamiltonian can
be generated directly in a graph-theoretic approach. How-
ever, this approach scales asOsN2Md without exploiting any
symmetry or sparsity in the system; if a truncated subspace is
used where the subspace is chosen to be large enough to
support the full calculation of the moments, the cost can be
reduced toOsNM2d. Most information theoretic approaches
involve iterative convolution; using discrete fast Fourier
transformssDFFT’sd on lattices it is possible to reduce the
scaling toOsNM log Md depending on the system dimen-
sionality. In the work presented here, graph-theoretic and
convolution methods including DFFT approaches are ana-
lyzed in a unified framework for a variety of problems, with
specific examples given for deformed carbon nanotubes.

Carbon nanotubes are of interest for many applications
because of their high mechanical strength and stiffness and
desirable electrical propertiesf9g. Perhaps more importantly,
carbon nanotubes have strongly coupled mechanical and
electrical properties, and thus may be useful in applications
where strain-tunable electrical properties are needed. From a
modeling perspective, it is important to use methods that
consider both mechanical and electronic degrees of freedom
in a fully coupled way. Carbon nanotubes are part of the
class of materials known as fullerenes, which have been ex-
amined before as a case study for moment-basedOsNd tight-
binding calculationsf4g. The emphasis of the work presented
here is on using the method of moments to study the effects
of deformation on electronic properties; comparisons are
made to Green’s function methodssGFM’sd, and both the
KPM and MEM approaches are used to reconstruct the DOS
for a range of uniformly and nonuniformly deformed struc-
tures.

In the following section the basic orthogonal tight-binding
method of interest is outlined. Then the computational ap-
proach for determining the DOS and total energy using the
moment method is introduced, and both the KPM and MEM
are briefly described. Then a formal analysis of various
methods for collecting moment data is presented, and several
fast algorithms for collecting moment data are described in
detail. Most of the methods are convolution-based ap-
proaches that are generalized versions of the recursion rela-
tion used most often in the literature to generate Chebyshev

momentsf8g. It is shown that within this class of methods it
is also possible to build up large numbers of power moments
in a computationally efficient way. Application of the mo-
ment algorithms for both uniform and nonuniform lattices is
discussed. To illustrate these approaches, the effects of uni-
form and nonuniform deformation on the electrical proper-
ties of single wall carbon nanotubes are then computed.

II. COMPUTATIONAL FRAMEWORK FOR
MOMENT-BASED TIGHT BINDING

A. Tight-binding framework

A tight-binding atomistic modeling method assumes that
the total energy of the system is divided into separate parts
associated withsid repulsive interatomic interactions andsii d
the attractions due to bonding valence electron interactions,
so that

Etot = Erep+ Eelec, s1d

whereErep is a short range energy associated with repulsion
between nuclei as well as other interelectron repulsive ef-
fects, and the electronic portion of the energy,Eelec, contains
basic information regarding electronic properties.

The repulsive energyErep is generally given by a pair
potential or an environment-dependent pair functional. De-
tails of the repulsive term used in the analysis of carbon
nanotubes are given in the last section of this paper. The
electronic portion of the energy,Eelec, is defined as

Eelec= 2E
−`

Ef

EDsEddE, s2d

whereDsEd is the DOS andEf is the Fermi energy. The DOS
is considered to capture the basic electronic properties of the
system. From the DOS, many other properties including the
energy band gapEg can be extracted.

The tight-binding HamiltonianH, from which the DOS is
computed, consists of diagonal elements corresponding to
atomic orbital energies, and off-diagonal elements corre-
sponding to orthogonal two-center hopping parameters. For
the carbon nanotube analysis undertaken here, thesp3 Hamil-
tonian is given in detail in the final section of the paper. Once
the HamiltonianH is constructed, the DOS can be calculated
from the Hamiltonian by direct diagonalization. This method
is costly, with computational complexity ofOsN3d, so for
large systems it makes sense to consider methods with larger
cost per atom if better scaling with the total number of atoms
N is possible. This motivates the development of the method
of moments.

B. Constructing the DOS from the moments

1. Power-moment-based MEM

The power moments ofDsEd are defined as

mm = TrhHmj =E EmDsEddE. s3d

In Eq. s3d, the trace operation may be performed within only
the subsystem of interest. For example, if only the atomsor
orbitald i is of interest,mm=ki uHmuil.
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To generate power moments fromH using Eq.s3d, the
calculation amounts to taking powers of the matrixH. Tight-
binding Hamiltonians are usually sparse matrices, so there
are ways to reduce the complexity of the calculation; this is
the subject of the next section of the paper.

Once the power moments are computed theDsEd can in
principle be determinedf5g. However, since only a finite
number of moments can be generated from Eq.s3d, there are
an infinite number of possible forms ofDsEd consistent with
the finite number of moments. In the maximum entropy ap-
proximation, the information theoretic entropy associated
with all these possible forms ofDsEd is maximized to find
the most likely formf5g. The entropy is a functional ofDsEd,
described by

S= −E DsEdln DsEddE+ o
m=0

M

lmSE EmDsEddE− mmD ,

s4d

whereM is the number of moments calculated, andlm are
Lagrange multipliers. Functional variation with respect to the
unknownDsEd yields

dS

dDsEd
= 0 ⇒ DsEd = expS− l0 − o

m=1

M

lmEmD
=

1

Z
expS− o

m=1

M

lmEmD . s5d

The DsEd can be computed using Newton’s method of
iteration. Starting with initial valueslm

0 , a preliminaryDsEd
can be found from Eq.s5d. Using Eq. s3d, the respective
momentsm̂m can be calculated from the preliminaryDsEd,
which is then checked against momentsmm. The iteration
process continues until the error betweenmm and m̂m falls
within a certain limit. Unfortunately this process is compu-
tationally intensive, and the successive approximations to
DsEd are unacceptably oscillatoryf5g and limited by ma-
chine precisionf8g. This problem motivates the use of other
methods such as the KPM described in the next section.

2. Chebyshev-moment-based KPM

The kernel polynomial method is a linear Chebyshev ap-
proximation to the real DOS based on the Chebyshev mo-
ment data. To compute Chebyshev moments of the DOS, the
Hamiltonian must be rescaled according toH=aX+b, where
the magnitude of every eigenvaluexn of X falls between 0
and 1. ThenDsEd is rewritten asDsxd, and the Chebyshev
moments are defined asf8g

mm = TrhTmsXdj =E
−1

1

TmsxdDsxddx, s6d

whereTm, the Chebyshev polynomials of the first kind, are
defined byT0sXd=1,T1sXd=X, and the recurrence relation

TmsXd = 2XTm−1sXd − Tm−2sXd. s7d

As before, in Eq.s6d, the trace operation can be performed
for a subsystem of interest.

In generating Chebyshev moments through the recursion
equations7d, the computational effort comes mainly from the
portionXTm−1sXd, which is the same as the power moments.
In the following section algorithms for this step are formally
analyzed. It is shown that a method known as single step
iterative convolutionsSSICd can be used to generate both
Chebyshev and power moments using analogous recursion
relations. Furthermore, for the case of carbon nanotubes, the
methods are shown to scale asOsCM2d, where the constant
C is identified from the periodic structure of the nanotube.

The DOS can be exactly constructed from the Chebyshev
moments according to

Dsxd =
1

pÎ1 − x2Fm0 + 2o
m=1

`

mmTmsxdG . s8d

However, since only a finite number of moments is avail-
able, a factorgm

M is introduced to damp the Gibbs phenom-
enon. The available datam̂m are substituted for the moments
in Eq. s8d, and the DOS is written asf8g

DKsxd =
1

pÎ1 − x2F1 + 2o
m=1

M

m̂mgm
MTmsxdG , s9d

with

gm
M = o

v=0

M−m

avav+m, s10d

av =
Uvsld

Îo
v=0

M

Uv
2sld

. s11d

Here Uvsld are the Chebyshev polynomials of the second
kind.

3. MEM combined with KPM

To obtain the best approximation toDsEd, the MEM can
be used in combination with the same Chebyshev moments
used in the KPM. In fact, the Chebyshev moments are Fou-
rier integrals

mm =E
−1

1

TmsxdDsxddx=E
0

p

cossmfdDsfddf, s12d

where x;cossfd ,Tmsxd=cossmfd ,Dsxd=Dsfd /sinsfd. So
the DKsfd can be represented as

DKsfd =E
0

2p

dKsf − f0dDsf0ddf0, s13d

dKsfd =
1

2p
Fg0 + 2o

m=1

M

gm
M cossmfdG . s14d

To improve the energy resolution of the DOS a kernel
polynomial approximation forM 3K moments is sought
based on the availableM momentsf8g, where K is some
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integer. To avoid arbitrary extrapolation of the moment se-
ries, the MEM can be used here to provide the criterion. In
the method described by Silver and co-workersf8g, the rela-
tive entropy given by

S=E
0

p FDsfd − D0sfd − DsfdlnS Dsfd
D0sfd

DGdf s15d

is maximized. The iteration method is adopted which starts
from the initial DOSD0sfd, and D0sfd is the DKsfd from
the KPM in Eq.s13d with M moments.

Finally, once the DOS is known, many other electronic
properties can be extracted. First of all, given the number of
valence electrons,

Nval = 2E
−`

Ef

DsEddE, s16d

the Fermi energyEf can be calculated. Then the electronic
portion of energyEelec is computed from Eq.s2d. From the
DOS nearEf, it is straightforward to estimate the energy
band gapEg. In the following section, a detailed analysis of
fast methods for determining moments is presented. Then in
the last section it is shown that with the KPM alone it is
difficult to accurately evaluateEg for carbon nanotubes.
Even with fast methods for evaluating moments, the huge
amount of data needed leads to impractical computational
cost. Thus, the combined KPM and MEM approach is dem-
onstrated for both uniformly and nonuniformly deformed
single wall carbon nanotubes.

III. CALCULATING MOMENT DATA

A. Notation for random walk distributions
on an integer lattice

For an ensemble of atoms with an arbitrary number of
orbitals per atom, the process of collecting moment data to
determine the LDOS at a particular atom is identical to the
process of summing the costs of all possible closed weighted
random walks on a lattice, where the total cost of each ran-
dom walk is simply the product of individual hopping pa-
rameters associated with steps in the walk. This process is
formally analyzed here within the framework of efficient
random-walk statistics to introduce the use of convolution in
determining moments of the DOS.

Given a neighbor list and an ensemble of nodes, or atom
and orbital pairs, a random step is defined as a move from
one node to a randomly selected neighbor. A random walk is
a sequence of random steps starting from some initial node.
A random walk ofm steps is also called a random walk of
lengthm.

Node positions on the integer lattice are defined by the
coordinate vectorx=fx1, . . . ,xdg and the origin node is de-
fined by o=f0, . . . ,0g. For any pair of connected nodes, or
neighbors, the associated cost of hopping from one node to
the other is written ascsa,bd. The cost of a self-hop, or the
site energy in tight binding, is given bycsa,ad.

The value of a random walk is defined as the product of
the costs of each hop. For the case of a random walk of

lengthm starting at nodea and ending at nodex, the scalar
valued walk function is written aswmfa;xg. In general,x can
be left as a variable so that the functionwmfa;xg is evaluated
over all possible values ofx=fx1, . . . ,xdg and each value is
then placed in thefx1, . . . ,xdg entry of the d-dimensional
walk distribution arrayWmfa;xg, whered is the spatial di-
mensionality of the lattice. The lattice node coordinatex is
used as both the argument forwm and also the entry index
specifying the corresponding location inWm. When the con-
text is clear,Wm is used as a shorthand forWmfo;xg.

Although walk distributions are defined over the entire
lattice structure, it is often convenient to work with the finite
subset of the walk distribution that contains all the nonzero
information. In eachxi coordinate dimension ofWm, for fi-
nite values ofm, there is an index range, or minimal bound-
ing box, that captures all nonzero entries. If the index range
in the ith dimension is denoted byr i, then the minimal
bounding box is the portion ofWm defined byr13 ¯ 3 rd.
The dimensions of the minimal bounding box can be written
as the vector

dimsWmd = fur1u, . . . ,urdug s17d

whereur iu is used to denote the magnitude of the index range
in dimensioni. The minimal bounding box ofWm may still
contain zero valued entries, but it is the smallest region with
continuous index ranges in each dimension that contains all
nonzero entries ofWm. For example, on an unconstrained,
homogeneous, integer lattice, with starting nodea
=fa1, . . . ,adg

r i = hai − m,ai + mj for all i = h1, . . . ,dj, s18d

dimsWmd = f2m+ 1, . . . ,2m+ 1g, s19d

and there ares2m+1dd nodes in the minimal bounding box.

B. Methods for collecting random-walk distributions

In order to compare the various methods for collecting
random-walk distributions, or moment data, the homoge-
neous integer lattice is considered first. In this case the cost
of hopping between a pair of neighboring nodes is the same
across the entire lattice structure. Thus, for simplicity, the
value of each random walk does not need to be calculated
one step at a time because all random walks of lengthm will
have a value ofcm, wherec is the cost of each step. The
methods developed for enumerating random-walk distribu-
tions on this simple lattice will serve as the basis for ap-
proaching more complex structures. A brute force, recursive
algorithm is presented first, to establish a reference. Second,
the graph-theoretic approach is given, which leads to a set of
convolution-based techniques.

1. The brute force approach

This method is implemented recursively by starting from
a given node and calling a function from each of the node’s
neighbors with the walk length reduced by 1 after each round
of function calls. In thed-dimensional lattice, there are 2d
possible neighbors for each step. The recursive function thus
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makes one function call to get started and then 2d more calls
sone from each node neighbord for the remaining steps:
2, . . . ,m. This is a total of 1+s2ddm−1 function calls, making
the algorithm of complexityO(s2ddm−1).

2. The graph-theoretic approach

Within the minimal bounding box ofWm, nodesai are
indexed byi P h1, . . . ,Nj. The N3N adjacency matrixA is
defined by

Ai,j = csai,ajd. s20d

In an orthogonal tight-binding formulation, the adjacency
matrix is the Hamiltonian. Matrices of this form have the
property that for

s21d

the i , j entry of Am is the sum of the values of all walks of
lengthm that connect nodesai andaj. That is,

fAmgi,j = wmfai ;ajg. s22d

Thus, all the entries ofAm across rowi sor down columnid
can be used to fill in the entries ofWmfai ;xg. The number of
closed random walks for each lattice node can then be deter-
mined by reading the entries off the diagonal ofAm. That is,
the moments, or sums of closed random-walk costs, can be
obtained simply by taking powers of the Hamiltonian.

Given a node numbering system, this method can easily
be applied to inhomogeneous lattice structures with spatially
varying geometries. The matrixAm has more information
than just random-walk distributions from a single preselected
starting node; it contains the random-walk distributions from
anystarting node. This additional information can be used to
calculate quantities such as the number of random walks be-
tween nodes on opposite sides of an inhomogeneity in the
lattice.

3. Derivation of iterative convolution from the graph-theoretic
method

By selecting the row ofAm−1 that corresponds to nodea,
and the column ofA that corresponds to any nodex, Eq.s22d
can be used to express the matrix multiplication of Eq.s21d
as

wmfa;xg = o
b

wm−1fa;bgw1fb;xg s23d

where thed-dimensional summation overb covers every
node in the latticesthis is equivalently done by just summing
over the nodes in the minimal bounding box ofWm−1fa;xgd.
The equation considers all walks of lengthm−1 froma to all
possible intermediate nodesb, and then considers how to hop
from each one of these locations to the desired ending node
x. This covers all possible ways to walk froma to x in m
steps.

In the case of lattice homogeneity,csa,bd=cso,b−ad, and
thusw1fa;bg=w1fo;b−ag. From this relation Eq.s23d can be
rewritten as

wmfa;xg = o
b

wm−1fa;bgw1fo;x − bg. s24d

By considering all possible values ofx, the scalar equation
takes the array form

Wmfa;xg = o
b

wm−1fa;bgW1fo;x − bg s25d

which is readily identified as a convolution “inx,” because
the starting nodes of the quantities involved are constants
and the ending nodex is experiencing all possible shifts by
b. The weighting coefficientswm−1fa;bg are scalars and the
shifted masksW1fo;x−bg are d-dimensional arrays; the
equation sweeps the one-step masks over the values of the
previous distribution. By the definition of convolution this
equation is written as

Wmfa;xg = Wm−1fa;xg p W1fo;xg. s26d

The most general form of the convolution of two walk
distributions Wmfa;xg and Wnfb;xg on a homogeneous,
d-dimensional, integer lattice is

Wmfa;xg p Wnfb;xg = Wm+nfa + b;xg

, o
D=−`

`

wmfa;DgWnfb;x − Dg s27d

whereD=fD1, . . . ,Ddg and the summation isd dimensional.
The homogeneity of the lattice is what allows the starting
nodesa and b to be combined intosa+bd. If the minimal
bounding box dimensions of the involved walk distributions
are

dimsWmd = fp1, . . . ,pdg, s28d

dimsWnd = fq1, . . . ,qdg, s29d

then the resulting walk distribution is of dimension

dimsWm+nd = fp1 + q1 − 1, . . . ,pd + qd − 1g. s30d

The complexity of convolution between two distribution
arraysWm and Wn on a d-dimensional integer lattice when
computed using Eq.s27d is

complexityhWm p Wnj, sm,ndd = s2m+ 1dds2n + 1dd

< Osmdndd. s31d

Convolution can also be implemented using either of the
following Fourier transform relations:

Wm+n = F−1
„FsW̄1dm+n

…, s32d

Wm+n = F−1
„FsW̄mdFsW̄nd…, s33d

where a bar over a walk distribution indicates that the array
has been padded with zeros so that its dimensions are the

same as the resulting arrayWm+n, the power onW̄1 implies

exponentiating each term ofW̄1 individually, and the product
of the transforms is taken element by elementsand not by
matrix multiplicationd. These transforms can be implemented
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using the discrete fast Fourier transform for an even greater
performance boost.

In the context of random-walk enumerations for comput-
ing moments, all distributions with lengths from 1 tom are
of interest, and not just the distribution of walks of lengthm.
While the DFFT implementation of convolution achieves
better performance when pairs of large matrices are con-
volved, for example in the calculation ofWm* Wm, the cal-
culation of W1* Wm is more useful here because it corre-
sponds to building up a distribution one step at a time, and it
can be used iteratively to yield all the intermediate distribu-
tions. According to the definition of convolution, the com-
plexities of W1* Wm and Wm* Wm on a two-dimensional in-
teger lattice areOsm2d andOsm4d, respectively, but with the
DFFT method, they are reduced to complexityOsm log md
andOsm2 log md.

4. Single step iterative convolution

Based on the discussion in the previous section we intro-
duce the convolution-based method referred to as single step
iterative convolution. The distribution of a single step,W1, is
first identified. Then the distributionWm is calculated using
the iterative convolution according to

Wmfo;xg = Wm−1fo;xg p W1fo;xg. s34d

This process involvesm−1 convolutions, and has computa-
tional complexity

SSICsmd = s1,1dd + s2,1dd + s3,1dd + ¯ + sm− 1,1dd

s35d

<O„1d 3 1d + 2d 3 1d + ¯ + sm− 1dd 3 1d
… s36d

=O„1d + 2d + ¯ + sm− 1dd
… s37d

=5
OSmsm− 1d

2
D , d = 1,

OSmsm− 1ds2m− 1d
6

D , d = 2,

OXSmsm− 1d
2

D2C , d = 3,
6 s38d

<5Osm2d, d = 1,

Osm3d, d = 2,

Osm4d, d = 3.
6 s39d

5. Smallest prime iterative convolution

An alternative convolution-based method can be con-
structed by first determiningp, the smallest prime factor of
m. SSIC is used to generate the walk distributionWp, which
is then convolved with itselfm/p−1 times to get the desired
distribution Wm. The computational complexity of this
method, referred to as the smallest prime iterative convolu-
tion sSPICd, is given by

SPICsmd = SSICspd + sp,pdd + s2p,pdd + s3p,pdd + ¯

+ fsm/p − 1dp,pgd s40d

<pd+1 + pdpd + s2pddpd + s3pddpd + ¯ + sm/p − 1ddpdpd

s41d

=pd+1 + p2df1d + 2d + 3d + ¯ + sm/p − 1ddg s42d

=5
OXp2 + p2S sm/p − 1dsm/pd

2
DC , d = 1,

OXp3 + p4S sm/p − 1dsm/pds2m/p − 1d
6

DC , d = 2,

OXp4 + p6S sm/p − 1dsm/pd
2

D2C , d = 3,
6
s43d

<5Osm2d, d = 1,

Ospm3d, d = 2,

Osp2m4d, d = 3.
6 s44d

The p coefficients have been left in the complexity expres-
sions to show how strongly they may impact the computa-
tions. Even though them dependence of these expressions is
the same as in SSIC, SSIC performs more efficiently, espe-
cially in cases wherep is large.

6. Binary iterative convolution

The desired walk lengthm can be written in a normalized
sanÞ0d binary form as

m= o
i=0

n

ai 3 2i = san, . . . ,a0d2 s45d

where n= dlog2smde. The set of walk distributions
hW20, . . . ,W2nj is then generated by the recursive definition

W2kfo;xg = W2k−1fo;xg p W2k−1fo;xg s46d

where each walk distribution has the associated complexity

W2 = W1 p W1 → s1,1dd, s47d

W4 = W2 p W2 → s2,2dd, s48d

W8 = W4 p W4 → s4,4dd, s49d

A

W2n = W2n−1 p W2n−1 → s2n−1,2n−1dd. s50d

The total complexity for calculating this set is

s1,1dd + s2,2dd + s4,4dd + ¯ + s2n−1,2n−1dd

< Os12d + 22d + 42d + ¯ + s2n−1d2dd s51d

=Os20 + 22d + 24d + 26d + ¯ + 22dsn−1dd s52d
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=OSo
k=0

n−1

22dkD s53d

=OSo
k=1

n

s22ddk−1D s54d

=OS s22ddn − 1

22d − 1
D s55d

<Os22dsn−1dd s56d

=OXSm

2
D2dC . s57d

The desired walk distributionWm is then constructed by
convolving the distributions from the above set which have a
nonzero digit in the binary representation ofm. In the worst
case all bits are a “1.” This requires

W1 p W2 p W4 p ¯ p W2n−1 = s1,2dd + s3,4dd + s7,8dd + ¯

+ s2n−1 − 1,2n−1dd s58d

,s2,2dd + s4,4dd + s8,8dd + ¯ + s2n−1,2n−1dd. s59d

This is less complex than the above computations which are
required to generate the setW2,W4, . . . ,W2n. The overall per-
formance of this binary iterative convolutionsBICd thus
scales asO(sm/2d2d).

7. Comparative analysis

A summary of the computational complexities for the
walk distribution enumeration techniques in one, two, and
three dimensions is given in Table I. The brute force method
svery slowd, the SPIC method, and the BIC method do not
produce all intermediate distributions and are slower than the
SSIC method, which can generate the desired ensemble. The
DFFT method has the lowest order of complexity for gener-
ating a random walk of a specific length, but it is actually
slower than the SSIC when the full ensemble of random
walks or moment distributions is required. The SSIC method
is faster than the graph-theoretic method so it is the method

of choice for homogeneous lattice regions. The graph-
theoretic method is better suited for handling inhomogeneous
lattice structures that cannot be uniformly handled by convo-
lution. In the context of compiling moments for electronic
structure calculations, the SSIC, for power moments, is
equivalent to recursive methods for generating Chebyshev
moments. The graph-theoretic method describes the basic ap-
proach of forming powers of the Hamiltonian. The DFFT
method described here represents a type of approach that has
not been used previously to our knowledge in computing
moments for electronic structure applications.

C. Applying convolution methods to carbon nanotubes

1. Decomposition of the homogeneous, planar, hexagonal lattice

The hexagonal graphene lattice can be decomposed into
two triangular lattice layers. The two triangular lattice layers
can be viewed as integer lattices, as shown in Fig. 1, allow-
ing for use of the analysis from the previous sections.

The direction and magnitude of a single edge in each of
the integer lattices can be described by the lattice basis vec-
tors bx and by, respectively. The offset between the lattices
can then be written asbs. These quantities are shown in Fig.
2.

Any point on the hexagonal lattice is represented by the
coordinate

TABLE I. A summary of the computational complexities for the
integer lattice random-walk enumeration methods on one, two, and
three dimensions.

Method

Order of complexity

d=1 d=2 d=3

DFFT Osm log md Osm2 log md Osm3 log md
SSIC Osm2d Osm3d Osm4d
SPIC Osm2d Ospm3d Osp2m4d
BIC Osm2d Osm4d Osm6d
Graph Osm3d Osm6d Osm9d
Brute force Os2md Os4md Os6md

FIG. 1. Representation of the hexagonal graphene lattice as two
superimposed integer lattices.

FIG. 2. Relative positions of the basis vectors.
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x = fx,y,sg P Z2 3 h0,1j s60d

wheres denotes the layerseither 0 or 1d andx andy are the
lattice coordinates of the node on its layer. An arbitrary node
on layers is referred to asxs and the origin of this lattice is
defined asos=f0,0,sg. The corresponding Cartesian location
of any lattice point with respect too0=f0,0,0g and the right-
handed reference frame whereby is in they direction is

x̄ = xbx + yby + sbs P R2. s61d

The basis vectors corresponding to a hexagonal lattice with
unit side length are

bx = S 3/2

Î3/2
D, by = S 0

Î3
D, bs = S 1

Î3
D . s62d

2. Hexagonal lattice convolution

The SSIC method is the most suitable approach for com-
puting random-walk distributions on the integer lattice in
two and three dimensions, so hexagonal lattice convolution
will therefore be based on this approach. The notation
Wmf0,0;x,yg, which is the distribution of random walks
of length m starting at the origin on a two-dimensional
integer lattice, is now augmented to the form
Wmf0,0,t ;x,y,sg,Wmfot ;xsg, which is the distribution of
random walks of lengthm on layers when the origin is taken
as ot. The noncentrosymmetry of the hexagonal lattice re-
quires that both possible origin locations be considered.

The distribution of one-step random walks must first be
enumerated for hexagonal lattice convolution, as it was in
the SSIC method on the integer lattice. Figure 3 shows the
region of hexagonal lattice defined byh−1,1j3 h−1,1j
3 h0,1j. Here the origin on layer 0, from which one-step
walks are marked with black triangles, is the black node in
the black square; the origin on layer 1, from which one-step

walks are marked with gray triangles, is the gray node in the
gray square. All single steps from the layer 0 origin end on
layer 1, and single steps from the layer 1 origin end on layer
0. ThusW1fo0;x0g andW1fo1;x1g are both zero distributions.

The results are written as the walk distributions

W1fo0;x0g = 30 0 0

0 0 0

0 0 0
4, W1fo0;x1g = 30 0 0

1 0 0

1 1 0
4 ,

W1fo1;x0g = 30 1 1

0 0 1

0 0 0
4, W1fo1;x1g = 30 0 0

0 0 0

0 0 0
4 .

s63d

From these basic definitions a hexagonal lattice SSIC
method can be defined in the same way as for the integer
lattice. The random-walk distribution afterm+1 steps is ob-
tained by taking the distribution afterm steps and convolving
on the one-step distribution as defined in Eq.s63d. The re-
sulting hexagonal convolution is thus given by the equation

Wm+1fot;xsg = o
u=0

1

Wmfot;xug p W1fou;xsg. s64d

This equation is evaluated once fors=0 and once fors=1 to
get the walk distribution.

3. Convolution on a four-orbital, two-dimensional lattice

Random walks or moment distributions can also be col-
lected using the same methods for the general case in which
each atom or node has a four-orbitalsp3 basis more repre-
sentative of the real electronic structure of carbon. This can
be accomplished simply by adding one more integer valued
parameter to the coordinate system. Any node on the integer
lattice with four orbitals denoted byi =h0,1,2,3j can then be
represented by the coordinate

x = fx,y,ig P Z2 3 h0,1,2,3j. s65d

Level i of this arbitrary node is referred to asxi and the
origin of this lattice is defined asoi =f0,0,ig.

For any pair of atomsa andb, the total set of interactions
is represented by the cost functioncsai ,bjd, which describes
the cost of hopping fromai to bj. In a tight-binding model
this information is stored in the 838 Hamiltoniansor costd
matrix

Hsa,bd = FHa→a Ha→b

Hb→a Hb→bG s66d

where each subblock inHsa,bd is a 434 matrix whosesi , jd
entry is the hop cost of moving from orbital statei to orbital
state j for the corresponding atom pair given in the super-
script. The entries in each subblock map to the cost function
according to

fHa→agi,j = csai,ajd, fHa→bgi,j = csai,bjd, s67d

fHb→agi,j = csbi,ajd, fHb→bgi,j = csbi,bjd. s68d

FIG. 3. A portion of the hexagonal lattice showing the distribu-
tion of one-step walks from the two possible origin nodes. The
lattice coordinatesx and y are labeled along the edges and the
lattice coordinates is given in a corner of each layer. Black is used
for layer 0 and gray is used for layer 1.
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The tight-binding HamiltonianHsa,bd can be completely
general in form. Since interactions are reciprocalseach edge
has the same hop cost for moving in both directionsd Hsa,bd
is symmetric. If all atoms are internally the same, then the
self-energies are equal, orHa→a=Hb→b.

Finally, combining the two-layer decomposition of the
hexagonal latticess=h0,1jd with the four-orbital model
si =h0,1,2,3jd produces the node coordinate system

x = fx,y,s,ig P Z2 3 h0,1j 3 h0,1,2,3j s69d

for the four-orbital, two-dimensional, hexagonal lattice. In
shorthand notation, such an arbitrary node is written asxs,i
and the origin is written asos,i =f0,0,s, ig.

The set of 64 single hop masks is given by

W1fot,j ;xs,ig = 3 0 csot,j,as,id 0

csot,j,ds,id csot,j,os,id csot,j,bs,id
0 csot,j,cs,id 0

4 .

s70d

The set of eight iterative convolution equations is

Wm+1fot,j ;xs,ig = o
u=0

1

o
k=0

3

Wmfot,j ;xu,kg p W1fou,k;xs,ig.

s71d

This equation sums over all lattice layers and orbital levels
of the intermediate distributionWm, and then uses the single
hop masks and convolution to determine the contributions
made to the distribution for any lattice layers and orbital
layer i in the new walk distributionWm+1. Using this method
and notation, random walks for power momentssor Cheby-
shev momentsd can be efficiently collected on the graphene
lattice.

4. Handling chirality, vacancies, and interfaces

Hexagonal convolution as described in the previous sec-
tion can be used to enumerate walks on a single walled car-
bon nanotube, which is topologically equivalent to a rectan-
gular section of hexagonal lattice with one set of opposite
edges connected. A periodic boundary condition is imple-
mented for any walks that go beyond the connected opposite
edges, while any walks that go beyond the nonconnected
opposite edges, or ends of the nanotube, are ignored. This
implementation is also easily extended to include chirality.
When walks go beyond the opposite connected edges, they
are relocated onto the other side, but with a shift in lattice
coordinate along the nanotube axis equal to the chirality.
Thus any such structure can be defined by size and chirality
parameters.

Vacancies can also be handled by defining the set of one-
step hopsswhich is alsoW1d as a function of position. By
allowing the vacant nodes to be temporarily presentsthus
permitting use of the convolution methodd and then remov-
ing the incorrect additional walks that have been allowed on
the lattice, the homogeneity in the lattice is preserved for the
sake of computational performance. This is achieved by ze-
roing out the entries inWm that correspond to vacant nodes

after each iteration of convolution. As an example the integer
lattice is considered with a set of vacant nodes defined by

V = hfx,yg:x = ± 4 and uyu ø 5j. s72d

This set effectively restricts possible walks from the origin to
positions left and right. As the walk length increases, the
distribution is first bounded on the sides, then spreads verti-
cally, and finally “spills” out of the confined area. The walk
distribution after 50 steps is shown in Fig. 4.

For material interfaces the hop costs become functions of
lattice position. This can be handled by an exponentially
slow brute force method that varies its function calls by the
current node position. Alternatively, a hybrid, convolution-
based method can be created by partitioning the lattice into
regions, such that the overall walk distribution is calculated
by combining the walk distributions of the simpler subre-
gions. In particular, the lattice is separated into homogeneous
regions, where efficient convolution methods can be used,
and inhomogeneous regions, where the graph-theoretic
method can handle all possible inhomogeneous configura-
tions.

For example, if the lattice is composed of atoms of types
a andb, the following partition can be created on the lattice:
A, all atoms of typea that have only neighbors of typea; B,
all atoms of typeb that have only neighbors of typeb; C, all
remaining atoms. LatticesA andB are homogeneous andC
forms the interface between them. A similar partition of the
walk distributionWm is created. The walk distributionsWm

A,
Wm

B, Wm
C contain the entries ofWm only for the atoms inA, B,

or C, respectively, and zero entries elsewhere, yielding the
decomposition given by

Wm = Wm
A + Wm

B + Wm
C . s73d

To calculate the walk distributionWm+1 all random walks
of lengthm must be extended by a single step, by consider-
ing each node in the lattice and extending all random walks
that end at that node by one step. The results can be com-
bined as

Wm+1 = Wm+1
A + Wm+1

B + Wm+1
C . s74d

The contribution to each walk distribution afterm+1
steps is obtained by the convolution of them step distribu-
tion and the one-step mask. By extending random walks by

FIG. 4. sColor onlined Walk distribution after 50 steps on the
integer lattice with node vacancies as defined in Eq.s72d.
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one step in each region, the distributions may branch out to
nodes in neighboring regions. Nonhomogeneous regions can-
not be handled with convolution because the one-step mask
is not of constant value, so walk distributions in these re-
gions are determined directly by the graph-theoretic method.

IV. APPLICATIONS

To illustrate the methods described above, a convolution-
based tight-binding moments method is used to study de-
formed carbon nanotubes. A tight-binding model described
in f10g is used as a basis for the method. In this model the
repulsive energyErep is given by

Erep= o
i

fSo
j

fsr ijdD , s75d

wherer ij is the distance between atomsi and j , and

fsrd = f0Sd0

r
Dm

expHmF− S r

dc
Dmc

+ Sd0

dc
DmcGJ , s76d

fsxd = o
n=0

4

cnx
n, s77d

with f0=8.185 55 eV, m=3.303 04, mc=8.6655, dc
=2.1052 Å, d0=1.64 Å, c0=−2.590 976 511 819 1, c1
=0.572 115 149 861 9,c2=−1.789 634 990 399 6310−3, c3
=2.353 922 151 675 7310−5, c4=−1.242 511 695 515 87
310−7.

The tight-binding HamiltonianH has off-diagonal ele-
ments described by a set of orthogonalsp3 two-center hop-
ping parametersVsss=−5.0 eV,Vsps=4.7 eV,Vpps=5.5 eV,
Vppp=−1.55 eV, scaled with interatomic separationr accord-
ing to the function

ssrd = S r0

r
Dn

expHnF− S r

rc
Dnc

+ S r0

rc
DncGJ , s78d

with n=2.0, nc=6.5, rc=2.18 Å, r0=1.536 329 Å. The scal-
ing function ssrd and the pair potentialfsrd are cut off at
rcut=2.6 Å and go smoothly to zero at the cutoff distance
f10g. The on-site elements are the atomic orbital energies of
the corresponding atoms, given byEs=−2.99 eV andEp
=3.71 eV.

To analyze single walled carbon nanotubes using this
model, Chebyshev moments are found using a SSIC-based
method. Symmetry is exploited to treat the structure as a
one-dimensional system, instead of a fully two-dimensional
hexagonal lattice. According to Eq.s37d the computational
complexity is O(fMsM −1d /2gNbNc), where M is the total
number of moments calculated, andNb andNc are constants
associated with the nanotube geometry.Nb is the maximum
number of neighbor orbitals, which, for carbon nanotubes is
typically Nb=37.Nc is the number of orbitals within a nano-
tube of 2rcut length, as the minimal bounding length in-
creases by 2rcut for a single step.

By using the recursive rules for multiplying Chebyshev
polynomials,

T2m = 2TmTm − 1, s79d

T2m−1 = 2TmTm−1 − T1, s80d

only sM /2−1d convolutions need to be performed. So the
computational complexity can be further reduced to
O(fsM /2dsM /2−1d /2gNbNc). Therefore, to exactly evaluate
M Chebyshev moments, the CPU time of the method scales
asOsM2d, as in the more general case of SSIC discussed in
the previous section for either power moments or Chebyshev
moments.

The method is demonstrated for a zigzags10,0d carbon
nanotube under tension and torsionf11g and for a squashed
armchairs10,10d carbon nanotubef12g as shown in Fig. 5.

A. Tension

Figure 6sad presents the DOS near the Fermi energy for
different deformed zigzags10,0d carbon nanotubes, as evalu-
ated using several different methods. The initial structures
are formed by rolling up graphene sheets and then relaxing
using tight-binding molecular dynamicsf10g. For the un-
stretched structure, the DOS’s are presented from the KPM,
MEM scombined with the KPMd, and GFM. The GFM is
based on the Hamiltonian through the Green’s function given
by f13,14g

GsEd =
1

E + id − H
, s81d

and the DOS is in turn defined by

DsEd = −
1

p
Im GsEd. s82d

For the KPM and MEM results presented here, 1024 Cheby-
shev moments are used to construct the DOS. Compared to
the GFM results, the resolution of the KPM DOS is insuffi-
cient to estimate the band gap, while the MEM result is
significantly improved. The MEM result for the stretched
structure with 3.0% strain shows an enhanced band gap near
the Fermi energy. The total energies of unrelaxed and relaxed
zigzag s10,0d carbon nanotubes under different strains are
shown in Fig. 6sbd. Clearly, the relaxed structures have lower
total energy than the unrelaxed structures. The elastic strain
has increased the total energy of the system quadratically as

FIG. 5. Schematic illustrations of the zigzags10,0d carbon nano-
tube under tensionsad and torsionsbd; and the squashed armchair
s10,10d carbon nanotubescd.
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a function of strain, as expected from continuum theory. But
despite the increased DOS resolution of the combined MEM
approach, the total energy is computed less reliably using the
MEM. In Fig. 6scd, band gaps are presented for unrelaxed
and relaxed zigzags10,0d carbon nanotubes subjected to
varying strain. The values estimated from MEM are slightly
smaller than those from GFM. Without relaxing the struc-
tures the band gaps are overestimated.

B. Torsion

The DOS’s, total energies, and band gaps of zigzags10,0d
carbon nanotubes under torsion are also computed. Figure
7sad shows the DOS near the Fermi energy for three different
structures with k, or twist per unit length, equal to
0.00,0.06,0.08, respectively. Here, only the results from the
MEM are presented. With twist, the band gap near the Fermi
energy is enhanced first and then narrowed again; also, the
position of the band gap is shifted. The total energies of
unrelaxed and relaxed zigzags10,0d carbon nanotubes under
torsion, computed using the KPM, are presented in Fig. 7sbd.
As in the case of tension, the relaxed structures have lower
total energy than the unrelaxed structures, and the total en-
ergy of the system increases with strain. The band gaps of
unrelaxed and relaxed zigzags10,0d carbon nanotubes under

torsion are presented in Fig. 7scd. The results estimated from
the MEM are comparable with those from the GFM. As men-
tioned above, the band gap near the Fermi energy is en-
hanced and then narrowed.

C. Squashing

The two examples shown above are both periodic struc-
tures. To compare the moments methods for a structure with
broken symmetry, an armchairs10,10d carbon nanotube is
squashed by two tips of length 3.0 nm. Details of this prob-
lem can be found in Ref.f12g. In Fig. 8, the LDOS for one

FIG. 6. sColor onlined sad The DOS near the Fermi energy for
unstretched and stretched structures of zigzags10,0d carbon nano-
tube calculated with different methods. The total energysbd and
band gapscd of unrelaxed and relaxed zigzags10,0d carbon nano-
tubes under different strains.

FIG. 7. sColor onlined sad The DOS near the Fermi energy of
zigzags10,0d carbon nanotubes with different twists. The total en-
ergy sbd and band gapscd of unrelaxed and relaxed zigzags10,0d
carbon nanotubes under torsion.

FIG. 8. sColor onlined The LDOS for one atom in the squashed
part of an armchairs10,10d carbon nanotube from different
methods.
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atom, located in the middle of a squashed section of the
nanotube, is presented for both the GFM and MEM ap-
proaches. The LDOS of any other atom in the structure can
be calculated using the same methods. The GFM and MEM
results are clearly consistent with each other, yet the MEM
method is significantly less computationally demanding for
considering the local electronic structure of a single atom in
the structure.

V. DISCUSSION AND CONCLUSIONS

The computational complexity and accuracy of various
methods for collecting moments of the electronic DOS is
analyzed here with applications in studying electronic prop-
erties of deformed carbon nanotubes. Convolution-based
methods, including SSIC, are shown to be the most practical
methods for obtaining power moments, and of the same
complexity order as recursive methods for obtaining Cheby-
shev moments. A DFFT method for obtaining moments on a
uniform lattice is shown to have the most desirable compu-
tational complexity, scaling asOsM log Md for carbon nano-
tubes if the full symmetry of the quasi-one-dimensional
structure is taken into account.

While the number of power moments that can be used to
reconstruct the DOS is limited by machine precision, an es-
sentially unlimited number of Chebyshev moments can be
used. With the same number of moments, the ill-posed in-
verse problem of inferring a spectrum from Chebyshev mo-

ments is much better conditioned than from power moments.
As the Chebyshev polynomials are orthogonal to each other,
it is straightforward to generate the DOS from Chebyshev
moments using the KPM. The KPM approach gives accurate
deformed carbon nanotube total energies with 1024 Cheby-
shev moments, which is consistent with the results reported
in Ref. f8g for other systems. However, to accurately recon-
struct DOS for deformed carbon nanotubes, it is desirable to
combine the KPM with a MEM developed by Silveret al.
f8g. Both the moments methods and the GFM can be used to
obtain the DOS. A direct comparison of the computational
demands of the two methods is not practical, as they are
efficient for computing different results. Moments methods
are desirable for computing the DOS for specific atoms,
across the entire energy spectrum, while the GFM ap-
proaches may be more desirable for computing the DOS for
the entire system, but within a limited energy range. As an
example, moment-based tight binding is useful for studying
local electronic structure in disordered or nonuniformly de-
formed nanostructures such as the squashed carbon nanotube
considered here.
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