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A computational framework for a moment-bas&¢N) tight-binding atomistic method is presented, ana-
lyzed, and applied to the problem of electronic properties of deformed carbon nanotubes,Nwvisetiee
number of atoms in the system. The moment-based approach is based on the maximum entropy and kernel
polynomial methods for constructing the electronic density of states from local statistical information about the
environment around individual atoms. Random-walk statistics are formally presented as the basis for several
methods to collect the moments of the density of states in a computationally efficient manner. The computa-
tional complexity and accuracy of these methods are systematically analyzed. Using these methods for the
problem of deformed carbon nanotubes, it is shown that the computational cost for some cases, per atom,
scales as efficiently @8(M log M), whereM is the desired number of moments in the expansion of the density
of states. These methods are compared to other methods such as direct diagonalization and a Green’s function
approach.
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I. INTRODUCTION insufficient moments are used in the expansion, while the
Semiempirical tight binding is an atomistic modeling m;arlltg[rx]argy is well approximated with relatively few mo-

meth_od in which the tota_l energy 1s assumed to b_e d_ue o Two key components of the moments method for comput-
bonding valence electronic interactions and repulsive inter:

actions primarily between nuclei. For regular, symmetric, '3 electronic structure and total energies @yahe compu-
P y : gular, sy ‘tational algorithm used to construct the LDOS from the set

ﬁir;\%iiveggggﬂr:*ybséﬁ?rii|Z:2dmliﬁ ‘:‘ggilerzg:f;ur;fé 20“?r?a_f moments, which can strongly affect the energy resolution
9 P P nd accuracy, andi) the computational algorithm for col-

the _electronlc structure and total energy are derlved_ from ?ecting the moment data, which is typically the most costly
basis as small as just a few atoms and their associated v

lence electrons. If a structure is nonuniform due to strainFjlzirt of the tech_nique_and is likely the reason why the m_ethod
defects, or impurities, for example, the tight-binding Hamil_has seen relatively little use over the last decade. Typically,

tonian in general should contain degrees of freedom for alihe maximum entropy metho@MEM) is used to determine

: . ; he LDOS from the power moment data and assumes that the
valence electrons associated with every atom in the Strucwr%‘orrect LDOS can be determined by maximizing the infor-

S_olvmg for the band structure and total energy using Conveny  tion theoretic entropy associated with all possible distri-
tional methods then requires a costly direct diagonalization

of the full Hamiltonian matrix that can scale as poorly asblmonS gonS|stent with the momeqts d_é5a6]. The MEM
O(N3), whereN is the number of atoms in the system. Within always yields a broade_ne_d approximation to the real DOS;

T o o . ' . furthermore, because it is based on power moments, the
a tlght—plnd|ng approximation, It Is also possible to Obtalnmethod suffers from problems with machine precision as the
information about the Ipcal density of stat@DOS) ffo”." moment data range over many orders of magnitude. The
the .Iocal struct.ural environment around an atom. An mfor-Other method, the kernel polynomial methGdPM), uses
mation theor_etlc approach can be used to reconstruct t hebyshev moments generated from a set of orthogonal
LDOS ffom Its moments, or p_roducts pf. hqpplng 'ntegr.alspolynomials to approximate the LD($3,8]. The Chebyshev
connecting random walks starting and finishing on a particu

. P I i ing f
lar atom[1-3]. Thus, based on a collection of statistical in- moment data are modulated by Gibbs damping factors to

. L reduce unphysical oscillations in the resulting LDOS. In gen-
formation about local atomistic structure, the LDOS can be pny 9 g

. . eral, the KPM is more convenient and preferable for total
approximated, and the denS|t_y of sta(eS) and the tOta.‘I energy calculations while the MEM gives better energy reso-
energy of the whole system, in turn, can be computed in a

. L ition for computing fine structure in the DOS. Extensive
O(N) manner. In this statistical approach, the accuracy 'Svork has been done over the last decade to compare these

dependent on the number of moments used in the approXiethods, and to combine the best features of both in order to
mation; sharp features of the DOS are poorly reproduced if,, o accurately compute electronic struct[8e

Generating the moment data is the most costly step in
implementing a real-space, statistical tight-binding calcula-
*Corresponding author. Email address: htj@uiuc.edu tion that isO(N). The power moments, for example, amount
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to the trace of the matrix generated by taking powers of thenomentd8]. It is shown that within this class of methods it
Hamiltonian. This operation can be constructed in physicals also possible to build up large numbers of power moments
space by delineating and summing all closed random walkes a computationally efficient way. Application of the mo-
from a particular atom that move around the lattice collectingment algorithms for both uniform and nonuniform lattices is
products of the hopping integrals in the Hamiltonian. Thusdiscussed. To illustrate these approaches, the effects of uni-
without exploiting any symmetry in the lattice or sparsity in form and nonuniform deformation on the electrical proper-
the Hamiltonian, the brute force cost of collecting momentsties of single wall carbon nanotubes are then computed.
would scale exponentially with the number of moments, or

O(NCM), whereC is a constant=1 andM is the number of Il. COMPUTATIONAL FRAMEWORK FOR

moments calculated. To obtain acceptable accuracy in the MOMENT-BASED TIGHT BINDING

DOS often requires a moment expansion that includes more A. Tight-binding framework

than 1000 moments, so while the overall method can be
O(N), the cost per atom is prohibitive. However, in addition

to symmetry and sparsity, information theoretic approaChegssociated withi) repulsive interatomic interactions afid)

make it possible to greatly reduce the cost of dellneatlnqhe attractions due to bonding valence electron interactions,
random walks on lattices. For example, instead of the SO, that
called brute force approach of assembling moments from

random walks on the lattice, powers of the Hamiltonian can Etot = Erep* Ecleo (1)
be generated directly in a graph-theoretic approach. How- hereE. | hort iated with Isi
ever, this approach scales @8N°M) without exploiting any Wherét, IS a short range eneérgy associated with repulsion

L . between nuclei as well as other interelectron repulsive ef-
symmetry or sparsity in the system; if a truncated subspace

. cts, and the electronic portion of the enerfy,, contains
used where the subspace is chosen o be large enough Eegsic information regarding electronic properties.

support the full czalculation of the moments, _the cost can be The repulsive energy.., is generally given by a pair
_reduced_toO(l_\lM )- Most |_nfo.rmat_|on th_eoretlc approach(_as potential or an environmegt-dependent pair functional. De-
involve iterative ,convolutl_on, using dls_crete fast I:Our'ertails of the repulsive term used in the analysis of carbon
tran_sforms(DFFTs) on lattices Itis possible to reduge the nanotubes are given in the last section of this paper. The
spahn_g toO(NMlog M) depending on the system dw_nen— glectronic portion of the energi. ., is defined as
sionality. In the work presented here, graph-theoretic an
convolution methods including DFFT approaches are ana-
lyzed in a unified framework for a variety of problems, with
specific examples given for deformed carbon nanotubes.
Carbon nanotubes are of interest for many applicationsvhereD(E) is the DOS and; is the Fermi energy. The DOS
because of their high mechanical strength and stiffness arid considered to capture the basic electronic properties of the
desirable electrical properti¢8]. Perhaps more importantly, system. From the DOS, many other properties including the
carbon nanotubes have strongly coupled mechanical anehergy band gaf, can be extracted.
electrical properties, and thus may be useful in applications The tight-binding Hamiltoniaid, from which the DOS is
where strain-tunable electrical properties are needed. From@mputed, consists of diagonal elements corresponding to
modeling perspective, it is important to use methods thaatomic orbital energies, and off-diagonal elements corre-
consider both mechanical and electronic degrees of freedosponding to orthogonal two-center hopping parameters. For
in a fully coupled way. Carbon nanotubes are part of thethe carbon nanotube analysis undertaken heresghdamil-
class of materials known as fullerenes, which have been exenian is given in detail in the final section of the paper. Once
amined before as a case study for moment-b&@¢ tight- the HamiltoniarH is constructed, the DOS can be calculated
binding calculation$4]. The emphasis of the work presented from the Hamiltonian by direct diagonalization. This method
here is on using the method of moments to study the effectis costly, with computational complexity d®(N°), so for
of deformation on electronic properties; comparisons ardarge systems it makes sense to consider methods with larger
made to Green’s function method&FM's), and both the cost per atom if better scaling with the total number of atoms
KPM and MEM approaches are used to reconstruct the DOSI is possible. This motivates the development of the method
for a range of uniformly and nonuniformly deformed struc- of moments.

A tight-binding atomistic modeling method assumes that
the total energy of the system is divided into separate parts

E¢
Eelec= 2[ ED(E)dE, (2

tures. .
In the following section the basic orthogonal tight-binding B. Constructing the DOS from the moments
method of interest is outlined. Then the computational ap- 1. Power-moment-based MEM

proach for determining the DOS and total energy using the
moment method is introduced, and both the KPM and MEM
are briefly described. Then a formal analysis of various

methods for collecting moment data is presented, and several M =Tr{H™ :f E"D(E)dE. (3)
fast algorithms for collecting moment data are described in

detail. Most of the methods are convolution-based apin Eg.(3), the trace operation may be performed within only
proaches that are generalized versions of the recursion relthe subsystem of interest. For example, if only the atom
tion used most often in the literature to generate Chebysheorbital) i is of interest,u,=(i|H™i).

The power moments dD(E) are defined as
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To generate power moments frokh using Eq.(3), the In generating Chebyshev moments through the recursion
calculation amounts to taking powers of the matfixTight-  equation(7), the computational effort comes mainly from the
binding Hamiltonians are usually sparse matrices, so therportion XT,,_4(X), which is the same as the power moments.
are ways to reduce the complexity of the calculation; this idn the following section algorithms for this step are formally
the subject of the next section of the paper. analyzed. It is shown that a method known as single step

Once the power moments are computed &) can in iterative convolution(SSIO can be used to generate both
principle be determined5]. However, since only a finite Chebyshev and power moments using analogous recursion
number of moments can be generated from [By.there are  relations. Furthermore, for the case of carbon nanotubes, the
an infinite number of possible forms BE) consistent with methods are shown to scale @CM?), where the constant
the finite number of moments. In the maximum entropy ap-C is identified from the periodic structure of the nanotube.
proximation, the information theoretic entropy associated The DOS can be exactly constructed from the Chebyshev
with all these possible forms dd(E) is maximized to find moments according to

the most likely form[5]. The entropy is a functional d&(E), "
i 1
described by D(X) = —,—zlw 23 Mme(X)]- (®)
M w1l —X m=1
S= _f D(E)In D(E)dE+ EO )‘m(f ETD(E)dE - '“m>* However, since only a finite number of moments is avail-

able, a factorgm is introduced to damp the Gibbs phenom-
(4)  enon. The available daia,, are substituted for the moments

whereM is the number of moments calculated, aggare N Ed-(8), and the DOS is written &s]

Lagrange multipliers. Functional variation with respect to the M
unknownD(E) yields D)= ——| 1+ 2> @M Tr(¥) |, (9)
M V1l =X m=1
S
——=00 D(E):exp<—)\ -2 Em> with
oD(E) =
" M-m
1 M= s 10
=Zexp - X )\mEm>. (5) O z) B (10
z m=1
The D(E) can be computed using Newton’s method of UMW)
iteration. Starting with initial values®, a preliminaryD(E) &= M ' (1)
can be found from Eq(5). Using Eqg.(3), the respective Ulf()\)
momentsu,,, can be calculated from the preliminaB(E), v=0

which is ther_1 checked_ against momenig. The fteration yare y (\) are the Chebyshev polynomials of the second
process continues until the error between and u,, falls kind v

within a certain limit. Unfortunately this process is compu- '

tationally intensive, and the successive approximations to

D(E) are unacceptably oscillatofyg] and limited by ma- 3. MEM combined with KPM

chine precisiori8]. This problem motivates the use of other 1o obtain the best approximation BE), the MEM can
2. Chebyshev-moment-based KPM used in the KPM. In fact, the Chebyshev moments are Fou-

. . _ rier integrals
The kernel polynomial method is a linear Chebyshev ap-

proximation to the real DOS based on the Chebyshev mo- ! g

ment data. To compute Chebyshev moments of the DOS, the Mm:f Tm(X)D(X)dXzf codme)D(¢)dé,  (12)
Hamiltonian must be rescaled accordingteaX+b, where - 0

the magnitude of every eigenvalug of X falls between 0 where x=coq¢), T (X)=cogsme),D(X)=D(¢)/sin(¢). So
and 1. ThenD(E) is rewritten asD(x), and the Chebyshev the Dy(¢) can be represented as

moments are defined 8]

2
! DK(d’):f Ok (@ = ¢o)D(¢ho)deby, (13
pm=THTR(X)} = f Tr(>3)D(x)dX, (6) 0
-1
whereT,, the Chebyshev polynomials of the first kind, are 1 M M
defined byTo(X)=1,T;(X)=X, and the recurrence relation () = > | %ot 221 Im CcOSM3) | . (14)
m=

Tm(X) = 2XTrn-1(X) = T-2(X). @) To improve the energy resolution of the DOS a kernel
As before, in Eq.6), the trace operation can be performed polynomial approximation forM X K moments is sought
for a subsystem of interest. based on the availabl®! moments[8], whereK is some
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integer. To avoid arbitrary extrapolation of the moment sedengthm starting at node and ending at nodg, the scalar
ries, the MEM can be used here to provide the criterion. Invalued walk function is written as,,[a;x]. In generalx can
the method described by Silver and co-workeédk the rela-  be left as a variable so that the functiap[a;x] is evaluated
tive entropy given by over all possible values of=[xy, ... ,X4] and each value is
o D(4) then placed in thdx,, ... x4] entry of the d-dimensional
s:J {D(@ -Do(¢p) - D(¢)In<—)}d¢ (15) walk distribution arrayW,[a;x], whered is the spatial di-
0 Do(#) mensionality of the lattice. The lattice node coordinates

is maximized. The iteration method is adopted which starté’sed. as both the argument far, ar_ld 3'30 the entry index
from the initial DOSDy(¢), and Dy(¢b) is the D(¢b) from speqlfylng the cprrespondlng location\,,, When the con-
the KPM in Eq.(13) with M moments K text is clear,W,, is used as a shorthand f@v,[o;x].

Finally, once the DOS is known, many other electronic Although walk distributions are defined over the entire

properties can be extracted. First of all, given the number OF\ttice structure, it is often convenient to work with the finite
valence electrons ' ’ subset of the walk distribution that contains all the nonzero

information. In eachx; coordinate dimension oV, for fi-

Et nite values ofm, there is an index range, or minimal bound-
Nya = ZJ D(E)dE, (16)  ing box, that captures all nonzero entries. If the index range

w in the ith dimension is denoted by, then the minimal
the Fermi energyE; can be calculated. Then the electronic bounding box is the portion AV, defined byr; X --- Xry.
portion of energyEq.is computed from Eq(2). From the  The dimensions of the minimal bounding box can be written
DOS nearE;, it is straightforward to estimate the energy as the vector
band gapE,. In the following section, a detailed analysis of . _
fast m%tr%%s for determinir?g moments is presented.}/Then in dim(Wey) = [Iral, ... Irql] (17
the last section it is shown that with the KPM alone it is where|r;| is used to denote the magnitude of the index range
difficult to accurately evaluatdey for carbon nanotubes. in dimensioni. The minimal bounding box o#V,, may still
Even with fast methods for evaluating moments, the hug&ontain zero valued entries, but it is the smallest region with
amount of data needed leads to impractical computationajontinuous index ranges in each dimension that contains all
cost. Thus, the combined KPM and MEM approach is demnonzero entries of,,,. For example, on an unconstrained,
onstrated for both uniformly and nonuniformly deformed homogeneous, integer lattice, with starting node
single wall carbon nanotubes. =[ay,...,a4]

ri={a-ma+m} foralli={1,...d}, (18
I1l. CALCULATING MOMENT DATA

A. Notation for random walk distributions dim(W,) =[2m+1, ..., 2n+ 1], (19

on an integer lattice and there aré2m+1)9 nodes in the minimal bounding box.

For an ensemble of atoms with an arbitrary number of
orbitals per atom, the process of collecting moment data to
determine the LDOS at a particular atom is identical to the ) )
process of summing the costs of all possible closed weighted !N order to compare the various methods for collecting
random walks on a lattice, where the total cost of each rant@ndom-walk distributions, or moment data, the homoge-
dom walk is simply the product of individual hopping pa- N€ous integer lattice is cqn&dergd fII’SF. In this case the cost
rameters associated with steps in the walk. This process R hopping between a pair of neighboring nodes is the same
formally analyzed here within the framework of efficient 8Cross the entire lattice structure. Thus, for simplicity, the
random-walk statistics to introduce the use of convolution inv@lue of each random walk does not need to be calculated
determining moments of the DOS. one step at a time because gll random walks of lengthll

Given a neighbor list and an ensemble of nodes, or atorh@ve a value ot™ wherec is the cost of each step. The
and orbital pairs, a random step is defined as a move frorfl€thods developed for enumerating random-walk distribu-
one node to a randomly selected neighbor. A random walk i§0ns on this simple lattice will serve as the basis for ap-
a sequence of random steps starting from some initial nodéroaching more complex structures. A brute force, recursive
A random walk ofm steps is also called a random walk of algorithm is presented first, to establish a reference. Second,
lengthm. the graph—theoretic apprqach is given, which leads to a set of

Node positions on the integer lattice are defined by thesonvolution-based techniques.
coordinate vectox=[xy, ... ,Xq] and the origin node is de-
fined by o=[0, ...,0. For any pair of connected nodes, or 1. The brute force approach
neighbors, the associated cost of hopping from one node to This method is implemented recursively by starting from
the other is written as(a,b). The cost of a self-hop, or the a given node and calling a function from each of the node’s
site energy in tight binding, is given bxfa,a). neighbors with the walk length reduced by 1 after each round

The value of a random walk is defined as the product obf function calls. In thed-dimensional lattice, there ared2
the costs of each hop. For the case of a random walk ogbossible neighbors for each step. The recursive function thus

B. Methods for collecting random-walk distributions
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makes one function call to get started and thdmre calls w[a:x]= > w,,_q[a;bw[0;x - b]. (24)
(one from each node neighbofor the remaining steps: e U ’

2,...,m. This is a total of 142d)™* function calls, making o ) }
the algorithm of complexity((2d)™Y). By considering all possible values &f the scalar equation

takes the array form

2. The graph-theoretic approach W, [a;x] = E Wrq[a;b]Wy[0;x = b] (25)
Within the minimal bounding box oW, nodesa; are b

indexed byi {1, ... N}. The NXN adjacency matridA is  which is readily identified as a convolution “x” because
defined by the starting nodes of the quantities involved are constants

A =cla,a) (20) and the ending node is experiencing all possible shifts by

bl e b. The weighting coefficientsy,,_,[a;b] are scalars and the

In an orthogonal tight-binding formulation, the adjacencyshifted masksW;[o0;x—b] are d-dimensional arrays; the
matrix is the Hamiltonian. Matrices of this form have the equation sweeps the one-step masks over the values of the
property that for previous distribution. By the definition of convolution this
equation is written as

A=A A

o imes (1) Wil @;x] = Wy @;X] Wil 0;x]. (26)
thei,j entry of A™ is the sum of the values of all walks of  The most general form of the convolution of two walk
lengthm that connect nodes; anda;. That is, distributions W,[a;x] and W.[b;x] on a homogeneous,

[A™ 5 = wof ;3] (22) d-dimensional, integer lattice is

Thus, all the entries oA™ across rowi (or down columni) Wi a;x] * Wi[b;X] = Win[a +b;x]
can be used to fill in the entries ¥, a;;x]. The number of o
closed random walks for each lattice node can then be deter- 2 3 wlaA]W[b;x-A] (27)
mined by reading the entries off the diagonalfdt. That is, A=-co

the moments, or sums of closed random-walk costs, can t\ﬁhereA:[Al
obtained simply by taking powers of the Hamiltonian. '
Given a node numbering system, this method can easil
be applied to inhomogeneous lattice structures with spatiall
varying geometries. The matriR™ has more information
than just random-walk distributions from a single preselected’j‘re

...,A4] and the summation id dimensional.
The homogeneity of the lattice is what allows the starting
Yodesa and b to be combined intda+b). If the minimal
¥>ounding box dimensions of the involved walk distributions

starting node; it contains the random-walk distributions from dim(W,) =[py, - .. .Pal, (28)

any starting node. This additional information can be used to

calculate quantities such as lthe numbe( of random yvall_<s be- dim(W,) =[qy, ... adl, (29)

tween nodes on opposite sides of an inhomogeneity in the _ T _ .

lattice. then the resulting walk distribution is of dimension
dim(Wien) =[P+ 01— 1, ... pg+0dg—1]. (30)

3. Derivation of iterative convolution from the graph-theoretic ) ) S
method The complexity of convolution between two distribution

) 1 arraysW,, and W,, on ad-dimensional integer lattice when
By selecting the row oA™* that corresponds to node computed using Eq27) is

and the column oA that corresponds to any nogeEq.(22)

can be used to express the matrix multiplication of &) complexity {Wi, * W,} £ (m,n)y = (2m+ 1)4(2n + 1)
as ~ O(m"nd). (31)
W[ a;X] = 2 Wy q[@; bjwi[b;x] (23)  Convolution can also be implemented using either of the
b

following Fourier transform relations:

where thed-dimensional summation ovds covers every
node in the latticéthis is equivalently done by just summing
over the nodes in the minimal bounding boxWf,_,[a;x]). B N
The equation considers all walks of lengt+1 fromato all Winin = F HF(Wi) F(W,)), (33
possible intermediate nodbsand then considers how to hop

from each one of these locations to the desired ending nod&here a bar over a walk distribution indicates that the array
x. This covers all possible ways to walk froento x in m has been padded with zeros so that its dimensions are the

steps. same as the resulting arr&y,.,, the power oW, implies

In the case of lattice homogeneitfa,b)=c(0,b-a), and  exponentiating each term ¥, individually, and the product
thusw,[a;b]=w;[0;b-a]. From this relation Eq:23) can be  of the transforms is taken element by elemémd not by
rewritten as matrix multiplication. These transforms can be implemented

Wi = FHF(W) ™), (32)
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using the discrete fast Fourier transform for an even greater SPIQm) = SSIAp) + (p,p)g+ (2P P)g+ (3P, P)g+ -+

performance boost.

In the context of random-walk enumerations for comput-
ing moments, all distributions with lengths from 1 toare
of interest, and not just the distribution of walks of length
While the DFFT implementation of convolution achieves

+[(M/p—1)p,ply (40)

~p®t+ pip?+ (2p)p? + (3p)%p?+ -+ + (MVp - 1)%p%p¢

better performance when pairs of large matrices are con-

volved, for example in the calculation &%,* W,, the cal-
culation of W;* W,,, is more useful here because it corre-
sponds to building up a distribution one step at a time, and i
can be used iteratively to yield all the intermediate distribu-
tions. According to the definition of convolution, the com-
plexities of W;* W, and W,,* W,;, on a two-dimensional in-
teger lattice ar@(n?) andO(m?), respectively, but with the
DFFT method, they are reduced to complex@ym log m)
andO(m?log m).

4. Single step iterative convolution

Based on the discussion in the previous section we intro

duce the convolution-based method referred to as single step

iterative convolution. The distribution of a single st&,, is
first identified. Then the distributiokV,, is calculated using

the iterative convolution according to
Wi{0;X] = Wi q[0;X] * Wi[0;X]. (34)

This process involvem—1 convolutions, and has computa-
tional complexity

SSIAM) =(1,D)4+(2,)g+ (3, Dg+ -+ +(Mm—1,1)4

(35
~0(19%x 19+29x 19+ --- +(m-1)9% 1% (36)
=019+ 29+ -+ +(m-1)% (37)
;
O(M) d=1,
2
:< O(W)’ d=2, (38)
_ 2
(e
\
o(n?), d=1,
~{0(m, d=2, (39)
o(m*), d=3.

5. Smallest prime iterative convolution

An alternative convolution-based method can be con
structed by first determining, the smallest prime factor of
m. SSIC is used to generate the walk distributi®p, which
is then convolved with itselfn/p-1 times to get the desired
distribution W,,. The computational complexity of this
method, referred to as the smallest prime iterative convolu
tion (SPIQO), is given by

04670

(41)
=p™*t+p? 19+ 29+ 39+ .- + (Mp-1)9 (42
t (
> (m/P-l)(m/p)>) _
O('O +p< 2 ’ d=1,
_ 3 4 (an—l)(rer)(Zan—l))) _
=4 O(p +p< 5 . d=2,
_ 2
O<p4+p6<<m/p 21)(m/p)>)’ .
) (43
. omd), d=1,
~{0(pn?), d=2, (44)
O(p?m*), d=3.

The p coefficients have been left in the complexity expres-

sions to show how strongly they may impact the computa-
tions. Even though then dependence of these expressions is

the same as in SSIC, SSIC performs more efficiently, espe-
cially in cases where is large.

6. Binary iterative convolution

The desired walk lengtin can be written in a normalized
(a,# 0) binary form as

m=2> a X 2' = (ay, ... A2 (45)

i=0

where n=[log,(m)]. The set of walk distributions

{MLo, ... W.n} is then generated by the recursive definition
Woi{ 0; X] = Wok-1[ 0; X] # Whik-1[ 0; X] (46)

where each walk distribution has the associated complexity

W2:W1*Wl—> (111)d1 (47)

W4=W2*W2—> (2,2)d, (48)

Wg =W, Wy — (4,4)q, (49)

Won = Won-13 Won-1 — (2773, 2771) . (50)

The total complexity for calculating this set is
(1,Dg+(2,9g+ (4,4 + -+ + (271,27 Dy
~ O(lzd + 22d + 42d + oo+ (2n—l)2d) (51)
20(20_,_ 22d + 24d + 26d + o+ 22d(n—l)) (52)
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TABLE I. A summary of the computational complexities for the | S
integer lattice random-walk enumeration methods on one, two, and i )
three dimensions.

Order of complexity
Method d=1 d=2 d=3
DFFT O(mlog m) O(m?logm) O(mélogm)
ssic o(n?) o(m?) o(m?)
SPIC o(m?) O(pn?) O(p?n
BIC o(n?) o(m?) O(md)
Graph o(md) o(m®) o(md)
Brute force o2m o(4™ oM
n-1
=0l X 2%k (53) , ,
k=0 FIG. 1. Representation of the hexagonal graphene lattice as two
superimposed integer lattices.
n
:O(E (22d)k‘1> (54) of choice for homogeneous lattice regions. The graph-
k=1 theoretic method is better suited for handling inhomogeneous

lattice structures that cannot be uniformly handled by convo-
(22Hn -1 lution. In the context of compiling moments for electronic
=0 o _ 1 (59 structure calculations, the SSIC, for power moments, is
equivalent to recursive methods for generating Chebyshev
moments. The graph-theoretic method describes the basic ap-
proach of forming powers of the Hamiltonian. The DFFT
o method described here represents a type of approach that has
:O<<T> ) (57) not been used previously to our knowledge in computing
2 moments for electronic structure applications.

—~ 0(22d(n—1)) (56)

The desired walk distributiofV,, is then constructed by ) )
convolving the distributions from the above set which have a  C- APPlying convolution methods to carbon nanotubes

nonzero digit in the binary representationrof In the worst 1. pecomposition of the homogeneous, planar, hexagonal lattice

case all bits are a “1.” This requires . .
The hexagonal graphene lattice can be decomposed into

Wy % Woy s Wy -+ % Won-1=(1,2) 4+ (3,4)g + (7,8 g+ -+ two triangular lattice layers. The two triangular lattice layers
F@VIo1,27Y (58) can be viewed as integer lattices, as shown in Fig. 1, allow-
' d ing for use of the analysis from the previous sections.
The direction and magnitude of a single edge in each of
<(2,2q+(4,44+(8,84+ -+ + (212" Ny, (59 the integer lattices can be described by the lattice basis vec-

This is less complex than the above computations which arlP's Px andb,, respectively. The offset between the lattices

required to generate the 38, W,, ... W,n. The overall per- can then be written as,. These quantities are shown in Fig.

S : ] . 2.
formance of this binary iterative convolutio(BIC) thus . L
scales a©((m/2)2). Any point on the hexagonal lattice is represented by the

coordinate
7. Comparative analysis

A summary of the computational complexities for the
walk distribution enumeration techniques in one, two, and
three dimensions is given in Table I. The brute force method
(very slow), the SPIC method, and the BIC method do not
produce all intermediate distributions and are slower than the ba,
SSIC method, which can generate the desired ensemble. The
DFFT method has the lowest order of complexity for gener-
ating a random walk of a specific length, but it is actually
slower than the SSIC when the full ensemble of random
walks or moment distributions is required. The SSIC method
is faster than the graph-theoretic method so it is the method FIG. 2. Relative positions of the basis vectors.
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‘u:u< A walks are marked with gray triangles, is the gray node in the
A gray square. All single steps from the layer 0 origin end on
s=1 layer 1, and single steps from the layer 1 origin end on layer
P 0. ThusW;[ 0g; Xo] andW;[04;x4] are both zero distributions.
A \Y The results are written as the walk distributions
{ wm | | 000 000
\F{ﬁt X A ;;fl'#f'\ Wi[0g;Xe]=[0 0 O}, Wilog;x]=[1 0 0],
nL |0 0 0] 1 1 0]
/ — - — -
*/,e = :_' """" 011 00O
T
o ,,,,,,,, i Wi[01;%0]=|0 0 1|, Wy[o:;%X:]=|0 0O O].
Nl 00 0 0 0 0]
M) (63)

From these basic definitions a hexagonal lattice SSIC
method can be defined in the same way as for the integer
lattice. The random-walk distribution after+1 steps is ob-
tained by taking the distribution aften steps and convolving

on the one-step distribution as defined in E8Q). The re-
sulting hexagonal convolution is thus given by the equation

1
_ Wineal 06 X5l = 2 Wil 0 xu] # Wioyixg].  (64)
wheres denotes the laydeither 0 or 3 andx andy are the u=0
lattice coordinates of the node on its layer. An arbitrary nod
on layers is referred to axg and the origin of this lattice is
defined ao,=[0,0,s]. The corresponding Cartesian location

FIG. 3. A portion of the hexagonal lattice showing the distribu-
tion of one-step walks from the two possible origin nodes. The
lattice coordinatex andy are labeled along the edges and the
lattice coordinates is given in a corner of each layer. Black is used
for layer 0 and gray is used for layer 1.

x=[x,y,s] € Z? x {0,1} (60)

Crhis equation is evaluated once &0 and once fos=1 to
get the walk distribution.

of any lattice point with respect t@,=[0,0, 0] and the right- 3. Convolution on a four-orbital, two-dimensional lattice
handed reference frame whesgis in they direction is Random walks or moment distributions can also be col-
X=xby +yb, +sby e R2. (61) lected using the same methods for the general case in which

each atom or node has a four-orbigaf basis more repre-
The basis vectors corresponding to a hexagonal lattice witBentative of the real electronic structure of carbon. This can

unit side length are be accomplished simply by adding one more integer valued
parameter to the coordinate system. Any node on the integer
_ ( 3!2 ) _ ( 0_) . ( ’_> (62) lattice with four orbitals denoted hy={0,1,2,3 can then be
*\V32 Y \\3 * N represented by the coordinate

x=[xy,i] e 7?x{0,1,2,3. (65)

2. Hexagonal lattice convolution Level i of this arbitrary node is referred to as and the

The SSIC method is the most suitable approach for comerigin of this lattice is defined ag=[0,0,i].
puting random-walk distributions on the integer lattice in  For any pair of atoma andb, the total set of interactions
two and three dimensions, so hexagonal lattice convolutiofis represented by the cost functiofs;,b;), which describes
will therefore be based on this approach. The notatiorthe cost of hopping frona to b;. In a tight-binding model
W,[0,0;x,y], which is the distribution of random walks this information is stored in the 88 Hamiltonian(or cos}
of length m starting at the origin on a two-dimensional matrix
integer lattice, is now augmented to the form
W,[0,0t;X,y,s]2W,[0;Xs], which is the distribution of H(a,b):{
random walks of lengtim on layers when the origin is taken

as o;. The noncentrosymmetry of the hexagonal lattice reyynere each subblock iF(a,b) is a 4 4 matrix whose(i ,j)
quires that both possible origin locations be considered.

The distributi f q K first b entry is the hop cost of moving from orbital state orbital
e distribution of one-step random walks must first Cstatej for the corresponding atom pair given in the super-

enumerated for hexagona}l lattice C‘?”VO'UF'O”' as It was Ir%cript. The entries in each subblock map to the cost function
the SSIC method on the integer lattice. Figure 3 shows thﬁccording to

region of hexagonal lattice defined bi-1,1}x{-1,1

(66)

Ha—2 HaHb
Hbaa Hb*)b

x{0,1}. Here the origin on layer 0, from which one-step [H*) =c(a,a), [H*");=c(a,b), (67)
walks are marked with black triangles, is the black node in
the black square; the origin on layer 1, from which one-step [HP=2 =c(b,a), [HPPL;=c(b,b). (69)
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The tight-binding Hamiltoniard(a,b) can be completely -15
general in form. Since interactions are reciproggch edge
has the same hop cost for moving in both directjdi&, b)
is symmetric. If all atoms are internally the same, then the -5
self-energies are equal, b2 ~a=Hb—b,

Finally, combining the two-layer decomposition of the 2 0 o5
hexagonal lattice(s={0,1}) with the four-orbital model 5 os
(i={0,1,2,3) produces the node coordinate system 0

10 I
x=[xy,sile7Z?x{0,14x{0,1,2,3 (69)
1 01
for the four-orbital, two-dimensional, hexagonal lattice. In o = 2 5 10
shorthand notation, such an arbitrary node is writterxas
and the origin is written ase;=[0,0,s,i]. FIG. 4. (Color onling Walk distribution after 50 steps on the
The set of 64 single hop masks is given by integer lattice with node vacancies as defined in [#@).

0 c(0y,as;) 0
Wl[ot,j;xs,i]z C(Ot,jads,i) C(Ot,jvos,i) C(Ot,jvbs,i) .
0 c(0y,Cs;) 0

after each iteration of convolution. As an example the integer
lattice is considered with a set of vacant nodes defined by

= X=* = 5} 72
(70 V={xylx=t4 and |y| <5} (72)
o ) ) ) , This set effectively restricts possible walks from the origin to
The set of eight iterative convolution equations is positions left and right. As the walk length increases, the
1 3 distribution is first bounded on the sides, then spreads verti-
Winea[ O 5 Xsi] = > Wil 03Xy * Waloy i Xsi]. cally, and finally “spills” out of the confined area. The walk
u=0 k=0 distribution after 50 steps is shown in Fig. 4.
(72) For material interfaces the hop costs become functions of
lattice position. This can be handled by an exponentially
This equation sums over all lattice layers and orbital levelssiow brute force method that varies its function calls by the
of the intermediate distributiow,, and then uses the single current node position. Alternatively, a hybrid, convolution-
hop masks and convolution to determine the contributiondased method can be created by partitioning the lattice into
made to the distribution for any lattice layerand orbital  regions, such that the overall walk distribution is calculated
layeri in the new walk distributioW,,,;. Using this method by combining the walk distributions of the simpler subre-
and notation, random walks for power momefds Cheby-  gions. In particular, the lattice is separated into homogeneous
shev momentscan be efficiently collected on the grapheneregions, where efficient convolution methods can be used,

lattice. and inhomogeneous regions, where the graph-theoretic
method can handle all possible inhomogeneous configura-
4. Handling chirality, vacancies, and interfaces tions.

Hexagonal convolution as described in the previous sec- FOr example, if the lattice is composed of atoms of types
tion can be used to enumerate walks on a single walled ca@ andb, the following partition can be created on the lattice:
bon nanotube, which is topologically equivalent to a rectan-A. all atoms of typea that have only neighbors of type 5,
gular section of hexagonal lattice with one set of oppositell atoms of typeb that have only neighbors of tyge C, all
edges connected. A periodic boundary condition is impleJémaining atoms. Latticesl and 5 are homogeneous ar
mented for any walks that go beyond the connected opposit@rms the interface between them. A similar partition of the
edges, while any walks that go beyond the nonconnecte®@lk distributionWi, is created. The walk distributionat,
opposite edges, or ends of the nanotube, are ignored. Thn W, contain the entries 8y, onlyfor the atoms in4, 5,
implementation is also easily extended to include chirality.Or C, respectively, and zero entries elsewhere, yielding the
When walks go beyond the opposite connected edges, thélgcomposition given by
are relocated onto the other side, but with a shift in lattice Wi= WA +WE +0E (73
coordinate along the nanotube axis equal to the chirality.

Thus any such structure can be defined by size and chirality To calculate the walk distributiow,,, all random walks
parameters. of lengthm must be extended by a single step, by consider-

Vacancies can also be handled by defining the set of ondng each node in the lattice and extending all random walks
step hops(which is alsoW,) as a function of position. By that end at that node by one step. The results can be com-
allowing the vacant nodes to be temporarily presghtis  bined as
permitting use of the convolution methpdnd then remov- (74)
ing the incorrect additional walks that have been allowed on
the lattice, the homogeneity in the lattice is preserved for the The contribution to each walk distribution aften+1
sake of computational performance. This is achieved by zesteps is obtained by the convolution of thestep distribu-
roing out the entries iW,, that correspond to vacant nodes tion and the one-step mask. By extending random walks by

Wm+1:WA + WS

mt+1 mt+1

+Wo

mt+1*
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one step in each region, the distributions may branch out tc
nodes in neighboring regions. Nonhomogeneous regions car
not be handled with convolution because the one-step mas=—
is not of constant value, so walk distributions in these re-
gions are determined directly by the graph-theoretic method

IV. APPLICATIONS l

To illustrate the methods described above, a convolution-gesiriisics
based tight-binding moments method is used to study de<i*Eiiill:
formed carbon nanotubes. A tight-binding model described &t
in [10] is used as a basis for the method. In this model the ©
repulsive energy, is given by

bt g
€ p 5 d

h & r

el P4

a4 P-2h-4pd

FIG. 5. Schematic illustrations of the zigzéif,0 carbon nano-
Erep= E f(E ¢(rij)>a (75) tube under tensioffia) and torsion(b); and the squashed armchair
! ! (10,10 carbon nanotubéc).

wherer;; is the distance between atomandj, and

do\™ F\™ [ do\™ Tom-1= 2TTim-1 = Ty, (80)
¢(r) = ¢0<T) expm - (d_c) " <d_c> + (78 only (M/2-1) convolutions need to be performed. So the
computational complexity can be further reduced to
4 O([(M/2)(M/2-1)/2]NpNy). Therefore, to exactly evaluate
f(x)= >, cx", (77) M Chebyshev moments, the CPU time of the method scales
n=0 asO(M?), as in the more general case of SSIC discussed in
with $o=8.18555 eV, m=3.30304, m.=8.6655, d, tmhergrcer:gous section for either power moments or Chebyshev
=2.1052 A, dy=1.64 A, c,=-2.5909765118191, ¢, °The S thod is d rated 1 . 0 carb
=0.572 115 149 861 9¢,=-1.789 634 990 3998 103, c, e methad is demonstrated for a zigZdg,() carbon

- 5 —_ nanotube under tension and torsidri] and for a squashed
2.353922151675% 107 ¢,=-124251169551587 armchair(10,10 carbon nanotubgl2] as shown in Fig. 5.

X107,

The tight-binding HamiltonianH has off-diagonal ele-
ments described by a set of orthogosgf two-center hop- A. Tension
ping parametery/ss,=—5.0 8V, Vg, =4.7 €V, Vpp,=5.5 eV, Figure Ga) presents the DOS near the Fermi energy for
Vppr=—1.55 €V, scaled with interatomic separatfoaccord-  gjfferent deformed zigza(10,0 carbon nanotubes, as evalu-
ing to the function ated using several different methods. The initial structures

Y r\% [ro\ne are formed by rolling up graphene sheets and then relaxing

s(r)z(—o) ex {—(—) +<—°> } , (78) using tight-binding molecular dynamidg.0]. For the un-

r le le stretched structure, the DOS's are presented from the KPM,
with n=2.0,n.=6.5,r.=2.18 A, r,=1.536 329 A. The scal- MEM (combined with the KPN and GFM. The GFM is
ing function S(r) and the pair potentiajz’)(r) are cut off at based on the Hamiltonian through the Green'’s function given
re=2.6 A and go smoothly to zero at the cutoff distanceby [13,14

[10]. The on-site elements are the atomic orbital energies of 1
the corresponding atoms, given l§,=-2.99 eV andE, GE)=z=—T", (81
=371 eV. E+ié=H
To analyze single walled carbon nanotubes using thignd the DOS is in turn defined by
model, Chebyshev moments are found using a SSIC-based .
method. Symmetry is exploited to treat the structure as a _ 4t
one-dimensional system, instead of a fully two-dimensional D(B)= T Im G(E). (82)

hexagonal lattice. According to E¢37) the computational
complexity is O[M(M-1)/2]NyN,), whereM is the total For the KPM and MEM results presented here, 1024 Cheby-

number of moments calculated, aNg andN, are constants shev moments are used to construct the DOS. Compared to

associated with the nanotube geomeNy.is the maximum the GFM results, the resolution of the KPM DOS is insuffi-

number of neighbor orbitals, which, for carbon nanotubes ié:?enf[_to estir_nate the band gap, while the MEM result is

typically N,=37.N is the number of orbitals within a nano- Significantly improved. The MEM result for the stretched

tube of 2, length, as the minimal bounding length in- structure with 3.0% strain shows an enhanced band gap near
cu ’

creases by 2, for a single step. the Fermi energy. The total energies of un.relaxed anq relaxed
By using the recursive rules for multiplying Chebyshevz'gzag (10,9) carbon nanotubes under different strains are
polynomials, shown in Fig. 6b). Clearly, the relaxed structures have_lower_

total energy than the unrelaxed structures. The elastic strain

Tom=2TTm— 1, (79) has increased the total energy of the system quadratically as
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FIG. 6. (Color onling (a) The DOS near the Fermi energy for  F|G. 7. (Color onling (a) The DOS near the Fermi energy of
unstretched and stretched structures of zigddy0 carbon nano-  zigzag(10,0 carbon nanotubes with different twists. The total en-

tube calculated with different methods. The total enefllyand  ergy (b) and band gayic) of unrelaxed and relaxed zigz4@0,0
band gap(c) of unrelaxed and relaxed zigz&$0,0 carbon nano-  carbon nanotubes under torsion.
tubes under different strains.

torsion are presented in Fig(cJ. The results estimated from

a function of strain, as expected from continuum theory. Butne MEM are comparable with those from the GFM. As men-
despite the increased DOS resolution of the combined MEMjoned above, the band gap near the Fermi energy is en-

approach, the total energy is computed less reliably using thganced and then narrowed.
MEM. In Fig. 6(c), band gaps are presented for unrelaxed
and relaxed zigzad10,0 carbon nanotubes subjected to
varying strain. The values estimated from MEM are slightly
smaller than those from GFM. Without relaxing the struc- The two examples shown above are both periodic struc-
tures the band gaps are overestimated. tures. To compare the moments methods for a structure with
broken symmetry, an armchaiil0,10 carbon nanotube is
squashed by two tips of length 3.0 nm. Details of this prob-

C. Squashing

B. Torsion lem can be found in Ref12]. In Fig. 8, the LDOS for one
The DOS's, total energies, and band gaps of zigdag0
carbon nanotubes under torsion are also computed. Figure o10f W ' "]
7(a) shows the DOS near the Fermi energy for three different M‘}
structures with «, or twist per unit length, equal to w'ﬂ\‘**e—%

0.00,0.06,0.08, respectively. Here, only the results from the 3
MEM are presented. With twist, the band gap near the Fermi 9 0.05¢ — MEM
energy is enhanced first and then narrowed again; also, the a — &M
position of the band gap is shifted. The total energies of

unrelaxed and relaxed zigz&$0,0 carbon nanotubes under 0.00
torsion, computed using the KPM, are presented in Fig).. 7

As in the case of tension, the relaxed structures have lower

total energy than the unrelaxed structures, and the total en- FIG. 8. (Color onling The LDOS for one atom in the squashed
ergy of the system increases with strain. The band gaps @fart of an armchair(10,10 carbon nanotube from different
unrelaxed and relaxed zigz&$j0,0 carbon nanotubes under methods.

-0.8 -0.4 0.0 0.4 0.8
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atom, located in the middle of a squashed section of thenents is much better conditioned than from power moments.
nanotube, is presented for both the GFM and MEM ap-As the Chebyshev polynomials are orthogonal to each other,
proaches. The LDOS of any other atom in the structure cait is straightforward to generate the DOS from Chebyshev
be calculated using the same methods. The GFM and MENhoments using the KPM. The KPM approach gives accurate
results are clearly consistent with each other, yet the MEMleformed carbon nanotube total energies with 1024 Cheby-
method is significantly less computationally demanding forshev moments, which is consistent with the results reported
considering the local electronic structure of a single atom irin Ref.[8] for other systems. However, to accurately recon-

the structure. struct DOS for deformed carbon nanotubes, it is desirable to
combine the KPM with a MEM developed by Silvet al.
V. DISCUSSION AND CONCLUSIONS [8]. Both the moments methods and the GFM can be used to

) ) _obtain the DOS. A direct comparison of the computational
The computational complexity and accuracy of variousgemands of the two methods is not practical, as they are
methods for collecting moments of the electronic DOS isefficient for computing different results. Moments methods
analyzed here with applications in studying electronic prop4re desirable for computing the DOS for specific atoms,
erties of .deforr.ned carbon nanotubes. Convolution—ba_segCrOSS the entire energy spectrum, while the GFM ap-
methods, mcludmg SSIC, are shown to be the most praCt'Caéroaches may be more desirable for computing the DOS for
methods for obtaining power moments, and of the samene entire system, but within a limited energy range. As an
complexity order as recursive methods fpr_ obtaining ChebYExample, moment-based tight binding is useful for studying
shev moments. A DFFT method for obtaining moments on gqcg| electronic structure in disordered or nonuniformly de-

uniform lattice is shown to have the most desirable compuformed nanostructures such as the squashed carbon nanotube
tational complexity, scaling a@(M log M) for carbon nano-  gnsidered here.

tubes if the full symmetry of the quasi-one-dimensional
structure is taken into account.

While the number of power moments that can be used to
reconstruct the DOS is limited by machine precision, an es- The financial support of NSF Grant No. DMR 02-10131
sentially unlimited number of Chebyshev moments can bés gratefully acknowledged. H.T.J. thanks R. Phillips for
used. With the same number of moments, the ill-posed inmany helpful and encouraging discussions, and R. N. Silver
verse problem of inferring a spectrum from Chebyshev mofor sharing his KPM/MEM program.
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