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Abstract
This paper presents a new approach to study the statistics of lattice random walks in the presence of obstacles and local self-avoidance con-
straints (excluded volume). By excluding sequentially local interactions within a window that slides along the chain, we obtain an upper bound
on the number of self-avoiding walks (SAWs) that terminate at each possible position and orientation. Furthermore we develop a technique to
include the effects of obstacles. Thus our model is a more realistic approximation of a polymer chain than that of a simple lattice random walk,
and it is more computationally tractable than enumeration of obstacle-avoiding SAWs. Our approach is based on the method of the lattice
motion-group convolution. We develop these techniques theoretically and present numerical results for 2-D and 3-D lattices (square, hexagonal,
cubic and tetrahedral/diamond). We present numerical results that show how the connectivity constant m changes with the length of each
self-avoiding window and the total length of the chain. Quantities such as hRi and others such as the probability of ring closure are calculated
and compared with results obtained in the literature for the simple random walk case.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction and literature review

We define an L-locally self-avoiding walk to be a random
walk of length N in which every subsegment of the walk of
a fixed size L< N contains no self-intersections. In principle,
given a collection of random walks of length N, those that are
L-locally self-avoiding could be extracted by sliding a window
of length L along the length of each walk, and removing each
walk from the collection if it has at least one self-intersection
within any such window. Of course, this would be an exponen-
tially complex calculation due to the cost of enumerating ran-
dom walks. In contrast, what is presented here is an algorithm
for finding the distribution of end positions and orientations
for all L-locally self-avoiding walks of length N in an algo-
rithm that has polynomial complexity in N for each fixed L.
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L-locally self-avoiding walks differ from other concepts
presented in the literature, and are motivated by the observa-
tion that polypeptide chains in the unfolded state have steric
interactions that reach more than from residue i to iþ 1 [1].
In what follows, we make a distinction between several con-
cepts presented in the literature: random walks (RWs), non-
reversal random walks (NRRWs), torsional random walks
(TRWs), self-avoiding walks (SAWs), and the locally self-
avoiding walks (LSAWs) defined here. For example in the
cubic lattice a random walk can move in six directions. The
NRRW model will allow five directions (all but the direction
pointing backwards along the direction of the current move).
The TRW model would allow only four directions (those
which are orthogonal to the direction of the current move)
[45]. The distinction between NRRW and torsional models is
really only important for square and cubic lattices, since there
is no way for consecutive bonds to be parallel in the hexagonal
and tetrahedral lattices. If the number of rotational moves
available around each bond vector is z, then the total number
of conformations that can be generated by a torsional random
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walk model is zn [58]. LSAWs restrict the allowable moves
further (though not as much as SAWs when L< N ), and as
L/N, the LSAWs become SAWs.

Consider an ensemble of all possible L-locally self-avoiding
random walks, each of length N, in a D-dimensional lattice with
obstacles. Under some solvent conditions this can be a more
realistic model of a serial polymer (or polypeptide chain) than
classical Gaussian or unconstrained random walk models. Fur-
thermore, it is more tractable than the enumeration of all self-
avoiding walks. The ability to incorporate local self-avoidance
and global obstacle constraints in a computationally tractable
framework represents a new step in the direction of using poly-
mer models to describe biomolecular processes in living cells.

For the past fifty years Polymer Theory has used random and
self-avoiding walks on lattices extensively. Given the structure
of a polymer molecule (consisting of many monomers which
have C as their central atom), we can approximate the central
atoms as lattice sites and the covalent bonds as lattice edges.
Since the quantity ri�1 stands for the position of the ith lattice
site of the random walk, then the bond vector, bi¼ ri� ri�1,
connects two central carbon atoms of sequential monomers.
By summing the N bond vectors of Nþ 1 identical monomers
in the chain we find the end-to-end distance vector r [20]:

r¼
XNþ1

i¼1

ri� ri�1: ð1Þ

The corresponding end-to-end distance is R ¼ jrj. The mean
square of the latter hR2i is a very important entity for character-
izing the structure of the polymer [20,4]. Other important phys-
ical quantities are related to the distribution of values of R,
denoted here as pN(R) for a chain of length N. A multitude of
simulation methods has been developed to obtain information
about how pN(R) evolves for polymer chains [10e12]. These
methods have been applied to many models of polymer chains.
Many researchers resort to the use of lattice random walk
models to estimate hR2i. Random walks on lattices with an
excluded volume is a more realistic approach than simple ran-
dom walks on lattices and it has been thoroughly studied too
[3,6,7,21,59,60].

Self-avoiding walks is a topic on which many papers like
Refs. [25,29,30,33e36,39] and books have been written. A
classic book on this topic is by Madras and Slade [13]. It is
believed that the number of self-avoiding walks on any lattice
increases exponentially as the number of segments increases
[13]. The limiting behavior for large values of N is described
by the connectivity constant defined as

m¼ lim
N/N

c
1=N
N :

This equation simply says that the connectivity constant, for the
random walks of N segments is defined by the Nth root of CN, the
number of self-avoiding walks of N segments.

The number of self-avoiding walks has been enumerated for
up to a fixed number of segments for the square lattice (up to 71)
[50,18], the hexagonal lattice [46,54] (up to 48), for the cubic
lattice [19] (up to 26) and for the tetrahedral (diamond) lattice
[47] (up to 30). Previous methods in diamond lattice had
counted up to 20 segments and their end-to-end length distribu-
tions using a counting theorem [41]. Other methods in diamond
lattice SAWs have extended the excluded volume condition
[33]. Some works have exhaustively enumerated SAWs on
cubic lattices by either using the Hamiltonian function [14],
the Transfer matrix method [16], or other methods [51]. The
same method (Transfer matrix) is used to count walks on square
lattices [15,26], or in rectangular lattices [27]. Works in the past
on the cubic lattice also have studied the asymptotic behavior of
the number of self-avoiding walks (cn) on it [44]. Various other
methods have also been presented for counting self-avoiding
walks on the square lattice [17,53]. Faulon et al. have proved
that n-step self-avoiding walks on the square, tetragonal, cubic
and tetrahedral lattices can be uniquely characterized with no
more than n-Euclidean distances. Papers have also been written
on behavior of the distribution function for self-avoiding walks
[24]. Watts has made a study of the mean square lengths of self-
avoiding walks on a number of loose-packed lattices [42].
Mathematical techniques such as knot theory have also been
used to describe self-avoiding walks on lattices [43,48]. The im-
portance of the study of self-avoiding walks in polymer science
is noted in [40,52,49,20,23,28,37,38]. Other papers have
worked on self-avoiding walks, on honeycomb lattice by using
the chain generating function method [22], on various 2-D and
5-D lattices by exact enumeration by concatenation [32] and on
the L-lattice by the re-normalization group approach [31]. Stud-
ies on self-avoiding walks have also used Monte-Carlo method
to approximate their number [5,8]. Papers have also been writ-
ten on behavior of the distribution function for self-avoiding
walks [24,25]. To our knowledge, no other works have gener-
ated statistics on locally self-avoiding walks. In our view, these
chains represent a computationally tractable model that com-
bines features of RWs and SAWs.

2. Definitions and formulation

Let the coordination number of the lattice walk be denoted
as z. That is, in the absence of obstacles and self-interaction
constraints (other than immediate reversals), there are z possi-
ble moves that the walk can take at each step. Each move gen-
erates a link or bond to the previous position. For polymer
models, each value, 1, 2, ., z corresponds to a different value
of the torsion/dihedral angle describing rotation of the newest
bond around the previous one. The vector of all such angles for
a chain of length N is defined as fN . The set fN

i g
�

for i¼ 1, 2,
., zN denotes all possible combinations of angles. When the
length of the chain is clear from the context, we will drop the
superscript N.

In the absence of obstacles, if we want to ‘grow’ the statis-
tics of the complete ensemble of all L-locally self-avoiding
chains that are planted at the identity frame, we can do this
recursively (assuming that L is an even number) as follows.

First, enumerate all self-avoiding walks of length L/2. There
will be n(L/2)� zL/2 of these. Here the function n(l ) denotes the
number of SAWs of length l. Next, join all pairs of these two
self-avoiding segments, and construct a n(L/2)� n(L/2) table
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consisting of zeros whenever there is at least one intersection
between segment 1 and segment 2. This table can be denoted
as Wðf0;fÞ, where f0 is the L/2-dimensional vector of torsion
angles of the proximal part of the chain, and f is the L/2-dimen-
sional vector of torsion angles of the distal part of the chain.

Explicitly, we let gðfm
i Þ denote the forward kinematic func-

tion that produces the end position and orientation of a chain
of length m defined by torsion angles fm

i . In the notation of
homogeneous transformations [45],

g¼
�

A r
0T 1

�
; ð2Þ

and two rigid body motions compose as g1+g2, which is per-
formed as matrix multiplication. The same position and orien-
tation can be reached by different possible joint angles. In
other words, it is possible for gðfiÞ ¼ gðfjÞ even though i s j.

The position (or translation) and orientation (or rotation)
can be extracted from g by defining r[g]¼ r and A[g]¼ A,
respectively. Therefore, in this notation

A½g1+g2� ¼ A1A2 ¼ A½g1�A½g2�

and

r½g1+g2� ¼ A1r2 þ r1 ¼ A½g1�r½g2� þ r½g1�:
The set of all values of g together with the composition op-

eration, +, in our context forms a proper crystallographic
space group (where ‘‘proper’’ means that det(A)¼þ1 so
that reflections are excluded). We also call this a lattice motion
group, and denote it as G. Any g ˛ G can act on a lattice point
x ˛ L according to the rule:

g$x ¼ Axþ r:

In practice, we are only concerned with a finite subset of G,
since a chain of length N consisting of links with unit lengths
will always be contained within a ball of radius N from its
starting point.

In the simplest possible case, when one does not care about
local (or global) self-avoidance or obstacles, the statistics for
long chains can be generated from those of shorter chains by
convolution [45]. In particular, if we seek to generate the num-
ber distribution of end position and orientation for a chain of
length Nþ L/2 from those of length N and length L/2, we per-
form the convolution [45]:

fNþL=2ðgÞ ¼
X
h˛G

fNðhÞfL=2

�
h�1+g

�
: ð3Þ

The reason for performing such convolutions, as opposed to
purely translational convolutions in the lattice, is that the acces-
sible moves when traversing each bond has a different appear-
ance in a frame of reference fixed to the bond, and a frame of
reference fixed in space. For example, the set of one-step moves
available to a non-reversal random walk is a constant set in the
reference frame attached to the distal bond. However, in the
space-fixed frame the directions of allowable moves depend
on the orientation of the bond-fixed frame. Eq. (3) does not
take into account local self-interactions of the chain. All confor-
mations, both self-avoiding and self intersecting, are generated.

Returning to the locally self-avoiding case, and using this
notation, we have for each I, J ˛ {1, 2, ., n(L/2)}

W
�

f
0 L=2
I ;f

L=2
J

�
¼ 0 if r

h
g
�

f
0 L=2
I

�
+g
�
f

j
J

�i
¼ r
	
g
�
f0 i

I

�

for any i, j ˛ {1, 2, ., L/2}. Similarly, if any part of the sec-
ond segment intersects the first, this constitutes a self-intersec-
tion of the concatenated chain. Therefore, for each I, J ˛ {1, 2,
., n(L/2)}

W
�

f
0 L=2
I ;f

L=2
J

�
¼ 0 if r

h
g
�

f
0 L=2
I

�
+g
�
f

j
J

�i
¼ 0

for any j ˛ {1, 2, ., L/2}.
If neither of the above conditions holds, Wðf0I;fJÞ ¼ 1.
Our assumption is that L/2 is a number small enough (for

example, 2,4,6 or 8) that it is possible to compute and store
Wðf0;fÞ and enumerate all values of gðfL=2Þ. In fact, our as-
sumption is that L/2 is small enough that it would be no prob-
lem to store the array containing the number density function
describing the frequency of occurrence of the joint informa-
tion of position and orientation and the distal L/2 joint angles.
This number density is denoted as fNðg;fL=2Þ.

3. Recursive generation of position and orientation and
torsion angle distributions for locally self-avoiding walks

The joint number distribution of position and orientation
and torsion angles for a self-avoiding segment of length L/2
is computed by basically counting:

fL=2ðg0;fÞ ¼ d
�
½gðfÞ��1+g0

�
; ð4Þ

where g0 is an arbitrary position and orientation and the dimen-
sion of all vectors f are L/2. When summing over f it will
henceforth be understood that we are summing over all indi-
vidual values.

In Fig. 1 we see a random walk of length N to which a ran-
dom walk of length L/2 is pasted at the distal end. Fig. 1 shows
the result of this concatenation for various cases including the
presence of obstacles. In the case that the Nþ L/2 walk termi-
nates somewhere in the L/2-length distal end of the N length
walk or inside the obstacle then the walk is discarded.
Discarded walks are drawn by dotted-darker line.

In the absence of obstacles, we can obtain the distribution
fNþL=2ðg;fL=2Þ from fNðg0;fL=2Þ and fL=2ðg0;fL=2Þ by
computing:

fNþL=2ðg0;fÞ ¼
X

f0

X
h˛G

fNðh;f0ÞWðf0;fÞfL=2

�
h�1+g0;f

�
; ð5Þ

where the dimensions of all vectors f and f0 are both L/2.
In other words, we can extend the walk by length L/2 by

convolving the distribution of end positions and orientations
for the segment of length L/2 with that of length N, and
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Fig. 1. A random walk of length N to which a random walk of length L/2 is

pasted at the distal end. In the case that the Nþ L/2 walk terminates some-

where in the L/2-length distal end of the N length walk or inside the obstacle

then the walk is discarded. Discarded walks are drawn by dotted-darker line.
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enforce the property that none of the newly added walks inter-
sect the distal L/2 links of the walks of length N.

Substituting Eq. (4) into Eq. (5), we see that

fNþL=2ðg0;fÞ ¼
X

f0

X
h˛G

fNðh;f0ÞWðf0;fÞ
	
d
�
½gðfÞ��1+h�1+g0

�


¼
X

f0
Wðf0;fÞ

"X
h˛G

fNðh;f0Þd
�
½gðfÞ��1+h�1+g0

�#

¼
X

f0
fN

�
g0+½gðfÞ��1

;f0
�
Wðf0;fÞ:

The reason for this simplification is that the delta function
kills all entries in the summation over h ˛ G except
½gðfÞ��1+h�1+g0 ¼ e, which means that the only h that sur-
vives is h�1 ¼ gðfÞ+ðg0Þ�1, or h ¼ g0+½gðfÞ��1.

In short then, we have the following formula that can be
applied recursively to compute the joint distribution of end
position and orientation and the distal L/2 torsion angles:

fNþL=2ðg0;fÞ ¼
X

f0
fN

�
g0+½gðfÞ��1

;f0
�
Wðf0;fÞ: ð6Þ

Note that there is no sum over G remaining. This is an upper
bound on the number of self-avoiding walks of length N. As L
becomes larger, this bound becomes tighter.
4. How to handle obstacles

An obstacle in a D-dimensional lattice can be characterized
by a cloud of lattice points through which a random walk is
not allowed to pass. It is sufficient to only consider the points
on the exterior of such a cloud, since if a walk cannot occupy
exterior points of the obstacle, then it cannot penetrate into the
interior. The number of points on the surface of a large convex
obstacle in a D-dimensional lattice will be significantly
smaller than the total number of obstacle points. Therefore,
we only enumerate such surface/exterior points when describ-
ing an obstacle.
4.1. Obstacles without self-avoiding constraints
We begin by addressing how to handle statistics of walks
without local self-avoidance constraints in the presence of
obstacles. In order to be consistent with the formulation of
the prior section, for eventual merger of the results from
that section with this one, we will grow chain statistics by
a length of L/2 on each recursion similar to what is done in
Eq. (3). Let us assume that fN( g) is the number distribution
of position and orientation for a random walk of length N
that avoids obstacles defined by a set of lattice points {ok}
the total number of such points in j{ok}j ¼ K, and that this
distribution has been precalculated (by whatever means).
Now suppose that we want to ‘extend’ these walks by length
L/2 by ‘attaching’ the walk distribution fL/2( g) (which has no
obstacle-avoiding properties) to the ends of the current walk,
and then account for intersections with the obstacles. In the
case when L/2¼ 1, this was done very simply in Refs.
[2,45] by performing the basic convolutions in Eq. (3), and
then after each convolution zeroing any nonzero density on
the interior of the obstacle. The trouble is that this approach
does not work when extending by a length L/2> 1, because
the distal end of the walk has enough freedom to then enter
the obstacle with its penultimate vertex, and still place the
most distal vertex outside the obstacle. Therefore, the exten-
sion of Eq. (3) to the case when obstacles are present must
account for, and subtract, contributions that lead to intersec-
tions with obstacles before adding the contributions of each
extension into fNþL/2( g).

In order to do this, we first recall that fL/2( g) can be rewrit-
ten as in Eq. (4) when there are no obstacles. Each f describes
one walk of length L/2. If any part of this walk intersects any
part of an obstacle, then this whole walk (and, specifically, its
corresponding end position and orientation) must be ‘re-
moved’ from fL/2( g). The difficulty is that the walks that
should be removed depend on how the collection of walks
summarized in fL/2( g) has been moved. In short then, we mod-
ify fL=2ðh�1+g0Þ in Eq. (5) as:

fL=2

�
h�1+g0

�
¼
X

f

d
�
½gðfÞ��1+h�1+g0

�YK

k¼1

YL=2

j¼1h
1� d

�
h$r
h
g
�

fl
j

�i
� ok

�i
; ð7Þ
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where r½gðfl
jÞ� is the position of the jth point ( j< L/2) along

the chain defined by the set of L/2 torsion angles f. The
expression dðh$r½gðfl

jÞ �okÞ� is equal to zero when
h$r½gðfl

jÞsok� (in which case one minus this is equal to
one, and the walk is not disallowed). However, when
h$r½gðfl

jÞ� ¼ ok, the delta function is equal to one, which
means that one minus one gives zero. Since the above are
all multiplied, if any of the terms ½1� dðh$r½gðfl

jÞ �okÞ�� is
zero, the whole product is killed. If several intersections of
one walk with the obstacle occur, this is not double counted
since it will only result in several multiplications by the num-
ber zero.

Basically, Eq. (7) says that as we rigidly move fL/2( g)
around (i.e., shift from the left by h�1), we remove all contri-
butions to it from all chains that have any part that intersects
any obstacle point.

The modified convolution to account for obstacles then
takes the form:

fNþL=2ðg0Þ ¼
X
h˛G

fNðhÞ
"X

f

d
�
½gðfÞ��1+h�1+g0

�

�
YK

k¼1

YL=2

j¼1

	
1� d

�
h$r
	
g
�
fj
�

� ok

�
#

¼
X

f

fN

�
g0+½gðfÞ��1�YK

k¼1

YL=2

j¼1

�
	
1� d

�
g0+½gðfÞ��1

$r
	
g
�
fj
�

� ok

�

; ð8Þ

where the same calculation with the delta function that
resulted in Eq. (6) has been performed.
4.2. Combining obstacle effects and local self-avoidance
We can now simply combine the results in the two prior
sections to generate the joint distribution of end position and
orientation and distal torsion angles for L-locally self-avoiding
walks in the presence of obstacles:

fNþL=2ðg0;fÞ ¼
X

f0

X
h˛G

fNðh;f0ÞWðf0;fÞ
h
d
�
½gðfÞ��1+h�1+g0

�

�
YK

k¼1

YL=2

j¼1

	
1� d

�
h$r
	
g
�
fj
�

� ok

�
i

¼
X

f0
Wðf0;fÞ

"X
h˛G

fNðh;f0Þd
�
½gðfÞ��1+h�1+g0

�

�
YK

k¼1

YL=2

j¼1

	
1� d

�
h$r
�	

g
�
fj
�
�
� ok

�
#

¼
X

f0
fN

�
g0+½gðfÞ��1

;f0
�
Wðf0;fÞ

�
YK

k¼1

YL=2

j¼1

	
1� d

�
g0+½gðfÞ��1$r

	
g
�
fj
�

� ok

�

:

4.3. Special treatment for the tetrahedral lattice
The tetrahedral lattice differs from others in that it is ‘‘two-
definable’’ [61]. This means that walks of even and odd
lengths are treated differently. As shown in Refs. [45,2] for
finding fNþL/2( g0) we modify Eq. (3) as:

fNþL=2ðg0Þ ¼
X
h˛G

fNðhÞfL=2

�
AT

h Ag0 ;�AT
h

�
cg0 � ch

��
ð9Þ

given that h¼ (Ah,ch), g0 ¼ (Ag0,cg0) representing orientations
and positions depending on whether N is even or odd number,
respectively. Now the analog of having dð½gðfÞ��1+h�1+g0Þ ¼
1 in the case where N is odd is derived by solving the follow-
ing equation:�

AgðfÞ cgðfÞ
0T 1

�
¼
�

AT
h Ag0 �AT

h

�
cg0 � ch

�
0T 1

�
: ð10Þ

5. Computational cost and numerical results
5.1. Computational cost
Before computing analytically the computational cost for the
local interactions for the obstacle case and for the combinations
of local interactions with obstacles we need first to define some
quantities. Nt is the target number of segments we want to reach
with the recursion method. n(L/2) is number of self-avoiding
walks of length L/2, (Nþ L/2)D is the order of the number of
positional entries in an array for the updated chain of length
Nþ L/2 in a D-dimensional lattice, and jPj is the number of ro-
tational elements in the proper point group of the lattice. Finally
jKj is the number of obstacle points. The cost of one recursion of
Eq. (6) is Oð½nðL=2Þ�2$ðN þ L=2ÞD$jPjÞ. The cost of one recur-
sion of Eq. (8) is Oð½nðL=2Þ�$ðN þ L=2ÞD$jPj$jKjÞ. The cost of
one recursion of Eq. (9) is Oð½nðL=2Þ�2$ðN þ L=2ÞD$jPj$jKjÞ.
The cost for multiple recursions of Eq. (6) is

XNt

N¼L=2

O
�
½nðL=2Þ�2$ðNþ L=2ÞD$



P

�;
where the step of the summation is L/2. The cost of multiple
recursions of Eq. (8) is

XNt

N¼L=2

O
�
½nðL=2Þ�$ðNþ L=2ÞD$



P

$

K

�:
The cost of multiple recursions of Eq. (9) is

XNt

N¼L=2

O
�
½nðL=2Þ�2$ðNþ L=2ÞD$



P

$

K

�:
The computational costs for these three foregoing multiple
recursions are OðNDþ1Þ. The quantities jPj and jKj serve as con-
stants. We see that things go much faster, that is, the
computational cost is O(NDþ1). We have implemented
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the above method for L¼ 4 for the square and for L¼ 6 for the
hexagonal lattice. This is because the first self-intersections in
these lattices occur at N¼ 4, N¼ 6, respectively, where N is
the number of segments of the random walk. Furthermore since
our goal is to demonstrate the method with some numerical re-
sults and since the computational cost is a strictly increasing
function of L we restricted ourselves to the smallest number of L.
−5

0

y
−
d
i
r
e
c

5.2. Numerical results
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Fig. 3. Zoom in of the figure of square random walks with obstacle and local

interactions.

0.12

0.14
probability density of distances
Before proceeding to the presentation of the numerical re-
sults we need to specify that ratio8 stands for hRi8=hR2i4, where
hR2i is the mean square end-to-end distance. For all the lattices
and for all the cases we calculate and present plots for the mean
end-to-end distance hRi, ratio8 and probability of ring closure
with respect to N. For the square and hexagonal lattices we
also present the distribution of distances for Nt segments. Fur-
thermore, when local interactions are involved we present m

w.r.t. N. Finally for both the planar lattices we present a figure
which shows on the lattice the density of walks to each lattice
site and from there we can conclude that our method avoids
the obstacle because all the lattice sites in the obstacle are unoc-
cupied. The obstacle that was used for the planar lattices is a
circle of radius 5 and of center K¼ (10,15). For the 3-D lattices
the obstacles are 12 points selected randomly.

5.2.1. Square lattice
Figs. 2 and 3 show the distribution of walks for the 100 seg-

ments random walk on the square lattice when there exists the
obstacle and we exclude local interactions. We see the interior
of the obstacle is unoccupied.

In Fig. 4 we compare the probability distributions of the
distances that are reached by the 100 segment random walk
on the square lattice when we exclude obstacles (circles),
when we exclude local interactions (dots), when we exclude
both local interactions and obstacles (�s) and that of the sim-
ple random walk (squares).
−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

x−direction

y
−
d
i
r
e
c
t
i
o
n

distribution with obstacle

Fig. 2. The distribution of walks for the 100 segments random walk on the

square lattice when there exists the obstacle and we exclude local interactions.

We see again the interior of the obstacle is unoccupied.
In Fig. 5 we compare the mean end-to-end distance as it
evolves as the number of segments increases, of the random
walk on the square lattice when we exclude obstacles (circles),
when we exclude local interactions (dots), when we exclude
both local interactions and obstacles (�s) and the case of
the simple random walk (squares).

In Fig. 6 we compare m as a function of the number of seg-
ments for random walks on the square lattice when we exclude
local interactions (dots), when we exclude local interactions
and obstacles (�s) and we compare it with the line derived
by the calculation of m according to the real number of
SAWs (squares) as obtained from the literature [50]. As we
notice the constant m is smaller when we exclude local
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Fig. 4. Comparison of the probability distributions of the distances that are

reached by the 100 segment random walk on the square lattice when we ex-

clude obstacles (circles), when we exclude local interactions (dots), when

we exclude both local interactions and obstacles (�s) and that of the simple

random walk (squares).
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Fig. 5. Comparison of the mean end-to-end distance as it evolves as the num-

ber of segments increases, of the random walk on the square lattice when we

exclude obstacles (circles), when we exclude local interactions (dots), when

we exclude both local interactions and obstacles (�s) and the case of the

simple random walk (squares).
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Fig. 7. Ratio8, hR8i=hR2i4, as it evolves as the number of segments increases,

of the random walk on the square lattice in the presence of obstacles (circles),

when we exclude local interactions (dots), when we exclude both of local in-

teractions and obstacles (�s) and that of the simple random walk as it evolves

in the one-step lattice motion-group convolution (squares).
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interactions and obstacles than that when we exclude only lo-
cal interactions. We notice that the upper bounds on the con-
nective constant on the square lattice are much looser even
from the results of Noonan and Guttman respectively [56,57]
and of course that of the real value of m for the walks that
have been counted (up to 71 segments). Recently in [55]
have been presented even tighter approximations. However,
our approximation would improve if we took a greater L.
That would require an additional computational cost and since
our purpose is to demonstrate the development of a method
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Fig. 6. Comparison of the constant m as a function of the number of segments

for random walks on the square lattice when we exclude local interactions

(dots), when we exclude local interactions and obstacles (�s), and line derived

by the calculation of m according to the real number of SAWs (squares) as

obtained from the literature.
that finds upper bounds in combination with an obstacle we
did not consider that necessary.

In Fig. 7 we compare hR8i=hR2i4, as it evolves as the num-
ber of segments increases, of the random walk on the square
lattice in the presence of obstacles (circles), when we exclude
local interactions (dots), when we exclude both of local inter-
actions and obstacles (�s) and that of the simple random walk
as it evolves in the one-step lattice motion-group convolution
(squares). In Fig. 8 we compare the probability of ring closure
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Fig. 8. Comparison of the probability of ring closure (walks terminating at the

origin) on the square lattice for the case when we exclude local interactions

(dots), when we exclude obstacles (circles), when we exclude both local inter-

actions and obstacles (�s) and that of the 2-D version of the classical Jacob-

soneStockmayer result, that is, P ¼ 1=pn (squares).
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Fig. 9. The distribution of walks for the 75 segments random walk on the hex-

agonal lattice when there exists the obstacle and we exclude local interactions.

The notch is due to the lattice’s geometry.
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Fig. 11. Comparison of the mean end-to-end distance as it evolves as the num-

ber of segments increases, of the random walk on the hexagonal lattice in the

presence of obstacles (circles), exclusion of local interactions (circles), exclu-

sion of local interactions and obstacles (�s) and the simple random walk

(squares).
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(walks terminating at the origin) for the case when we exclude
local interactions (dots), when we exclude obstacles (circles),
when we exclude both local interactions and obstacles (�s)
and we compare it with the 2-D version of the classical Jacob-
soneStockmayer [9] result that is P ¼ 1=pn (squares).
5.2.2. Hexagonal lattice
Fig. 9 shows the distribution of walks for the 75 segments

random walk on the hexagonal lattice when there exists the ob-
stacle and we exclude local interactions. The notch is due to
the lattice’s geometry. By a ‘notch’ we simply mean that there
is a location where density is missing, where there would
otherwise be density if not for the presence of the obstacle.

In Fig. 10 we compare the probability distributions of the dis-
tances that are reached by the 75 segment random walk on the
hexagonal lattice in the presence of obstacles (circles), exclu-
sion of local interactions (dots), exclusion of local interactions
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Fig. 10. Comparison of the probability distributions of the distances that are

reached by the 75 segment random walk on the hexagonal lattice in the pres-

ence of obstacles (circles), exclusion of local interactions (dots), exclusion of

local interactions and obstacles (�s) and the simple random walk (squares).
and obstacles (�s) and the simple random walk (squares). In
Fig. 11 we compare the mean end-to-end distance as it evolves
as the number of segments increases, of the random walk on the
hexagonal lattice in the presence of obstacles (circles), exclu-
sion of local interactions (circles), exclusion of local interac-
tions and obstacles (�s) and the simple random walk (squares).

In Fig. 12 we compare the constant m, as it evolves as the
number of segments increases, of the random walk on the hex-
agonal lattice when we exclude local interactions (dots) when
we exclude local interactions and obstacles (�s) and when we
have true number of SAWs obtained in the bibliography
(squares). As we notice the constant m is smaller when we
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Fig. 12. Comparison of the constant m, as it evolves as the number of segments

increases, of the random walk on the hexagonal lattice when we exclude local

interactions (dots), when we exclude local interactions and obstacles (�s) and

when we have true number of SAWs obtained in the bibliography (squares).
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Fig. 14. Comparison of the probability of ring closure on the hexagonal lattice

(walks terminating at the origin) for the case when we exclude local interac-

tions (dots), when we exclude obstacles (circles), when we exclude both local

interactions and obstacles (�s) and we compare it with the 2-D version of the

classical JacobsoneStockmayer [9] result (squares).
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exclude local interactions and obstacles than that when we ex-
clude only local interactions. We notice that the upper bounds
on the connective constant on the hexagonal lattice are much
looser from the real value of m for the walks that have been
counted (up to 48 segments). However though, our approxima-
tion would be better if we took a greater L. That would require an
additional computational cost and since our purpose is to dem-
onstrate the development of a method that finds upper bounds in
combination with an obstacle we did not consider that necessary.

In Fig. 13, we compare hR8i=hR2i4, as it evolves as the
number of segments increases, of the random walk on the hex-
agonal lattice in the presence of obstacles (circles), when we
exclude local interactions and obstacles (�s) and the simple
random walk as it evolves in the one-step lattice motion-group
convolution (squares). In Fig. 14 we compare the probability
of ring closure (walks terminating at the origin) for the case
when we exclude local interactions (dots), when we exclude
obstacles (circles), when we exclude both local interactions
and obstacles (�s) and we compare it with the 2-D version
of the classical JacobsoneStockmayer [9] result (squares),
that is, P ¼ 1=pn. In the picture we cannot clearly see the
line which describes the exclusion of the local interactions be-
cause it coincides with the line which describes the exclusion
of both local interactions and obstacles.
5.3. Cubic lattice
In Fig. 15 we compare the mean end-to-end distance, as it
evolves as the number of segments increases, of the random
walk on the cubic lattice in the presence of obstacles (circles)
and exclusion of local interactions (dots). As we can see from
that figure, these quantities diverge in value slightly as the
number of segments increase yet the ratio of the values of
these two quantities remains constant.
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Fig. 13. Ratio8, hR8i=hR2i4, as it evolves as the number of segments increases,

of the random walk on the hexagonal lattice in the presence of obstacles

(circles), when we exclude local interactions and obstacles (�s) and the simple

random walk as it evolves in the one-step lattice motion-group convolution

(squares).
In Fig. 16 we compare the constant m as it evolves as the num-
ber of segments increases, of the random walk on the cubic lat-
tice when we exclude the local interactions (dots) with the value
of m as found when we take into account the real number of
SAWs (squares). We notice that the upper bounds on the
connective constant on the cubic lattice are much looser from
the real value of m for the walks that have been counted (up to
26 segments). However though, our approximation would be
better if we took a greater L. That would require an additional
computational cost and since our purpose is to demonstrate
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Fig. 15. Comparison of the mean end-to-end distance, as it evolves as the num-

ber of segments increases, of the random walk on the cubic lattice in the pres-

ence of obstacles (circles) and exclusion of local interactions (dots).
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Fig. 18. Comparison of the probability of ring closure (walks terminating at

the origin) on the cubic lattice, for the case when we exclude local interactions

(dots), when we have obstacles (circles) and we compare it with the classical

JacobsoneStockmayer [9] result (squares) which is given by the formula

P ¼ ð3=2pnÞ3=2 [9].
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Fig. 16. Comparison of the constant m as it evolves as the number of segments

increases, of the random walk on the cubic lattice when we exclude the local

interactions (dots) with the value of m as found when we take into account the

real number of SAWs (squares).
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the development of a method that finds upper bounds in combi-
nation with an obstacle we did not consider that necessary.

In Fig. 17 we compare hR8i=hR2i4 as they evolve as the num-
ber of segments increases, of the random walk on the cubic lat-
tice in the presence of obstacles (circles with thicker line),
exclusion of local interactions (dots), and the line derived using
the method of Ref. [10] (squares) for calculating the ratios men-
tioned before for the simple random walk model on the cubic
lattice. Since these lines are almost coincident, we notice that
the results coincide to the expected values 35=3 [10e12,20],
despite the exclusion of local interactions or the exclusion of
walks reaching the obstacles. This means that the values of these
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Fig. 17. Ratio8, hR8i=hR2i4, as it evolves as the number of segments increases,

of the random walk on the cubic lattice in the presence of obstacles (circles

with thicker line), exclusion of local interactions (dots), and the line derived

using the method of [10] (squares) for calculating the ratios mentioned before

for the simple random walk model on the cubic lattice.
ratios are not influenced by the presence of obstacles or exclu-
sion of local interactions significantly.

In Fig. 18 we compare the probability of ring closure (walks
terminating at the origin) for the case when we exclude local in-
teractions (dots), when we have obstacles (circles) and we com-
pare it with the classical JacobsoneStockmayer [9] result
(squares) which is given by the formula P ¼ ð3=2pnÞ3=2 [9].
5.4. Tetrahedral lattice
In Fig. 19 we compare the mean end-to-end distance, as it
evolves as the number of segments increases, of the random
walk on the tetrahedral lattice in the presence of obstacles
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Fig. 19. Comparison of the mean end-to-end distance, as it evolves as the num-

ber of segments increases, of the random walk on the tetrahedral lattice in the

presence of obstacles (circles), and when we exclude local interactions (dots).
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Fig. 21. Ratio8, hR8i=hR2i4, as it evolves as the number of segments increases,

of the random walk on the tetrahedral lattice in the presence of obstacles (cir-

cles), exclusion of local interactions (dots), and the line derived using the

method of Ref. [10] for calculating the ratios mentioned before (squares) for

the simple random walk on the tetrahedral lattice model.
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(circles), and when we exclude local interactions (dots). We
see that these two lines are almost coincident, and that the
value of mean end-to-end distance is around 17.5 at 57
segments.

In Fig. 20 we compare the constant m as it evolves as the
number of segments increases, of the random walk on the tet-
rahedral lattice when we exclude the local interactions (dots)
with the value of m as found when we take into account the
real number of SAWs (squares). We notice that the upper
bounds on the connective constant on the tetrahedral lattice
are much looser from the real value of m for the walks that
have been counted (up to 30 segments). However, our approx-
imation would improve if we took a greater L. That would re-
quire an additional computational cost and since our purpose
is to demonstrate the development of a method that finds upper
bounds in combination with an obstacle we did not consider
that necessary.

In Fig. 21 we compare hR8i=hR2i4 respectively, as it evolves
as the number of segments increases, of the random walk on the
tetrahedral lattice in the presence of obstacles (circles), exclu-
sion of local interactions (dots), and the line derived using the
method of Ref. [10] for calculating the ratios mentioned before
(squares) for the simple random walk on the tetrahedral lattice
model. Since these lines are almost coincident, we notice that
the results coincide to the expected value of 35=3, [10e
12,20], despite the exclusion of local interactions or the exclu-
sion of walks reaching the obstacles. This means that the value
of this ratio is not influenced by the presence of obstacles or
exclusion of local interactions significantly.

In Fig. 22 we compare the probability of ring closure (walks
terminating at the origin) for the case when we exclude local
interactions (dots), when we have obstacles (circles) and we
compare it with the classical JacobsoneStockmayer [9] result
(squares) which is given by the formula P ¼ ð3=2pnÞ3=2 [9].
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Fig. 20. Comparison of the constant m as it evolves as the number of segments

increases, of the random walk on the tetrahedral lattice when we exclude the

local interactions (dots) with the value of m as found when we take into

account the real number of SAWs (squares).
5.5. Random walks which are restricted in a small space
Assume the case of the square lattice and assume that the
space is constrained from the shape defined by the lines
with equations x¼�4, y¼�4, x¼ 4, y¼ 4. This means that
only the lattice sites that are inside the square created by these
lines, that is 49 lattice sites. The way that we deal with this
case is the same exactly as described for the case of the obsta-
cle, that is, walks that pass through or attach the border of the
obstacle are discarded. We will compare the results of that
case with the results that derive from the simple non-reversal
random walk case. First of all we will compare m for both
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Fig. 22. Comparison of the probability of ring closure on the tetrahedral lattice

(walks terminating at the origin) for the case when we exclude local interac-

tions (dots), when we have obstacles (circles) and we compare it with the clas-

sical JacobsoneStockmayer [9] result (squares) which is given by the formula

P ¼ ð3=2pnÞ3=2 [9].
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of these cases. In Fig. 23 we see that the number of simple
non-reversal random walks on the square lattice (in blue (for
interpretation of the reference to colour in text, the reader is
referred to the web version of this article)) are always power
of 3, whereas those of the constrained space are not. For the
100 segments the number of the walks of the constrained space
are 1.1912� 1042 whereas for the non-reversal random walk
the number is 5.1538� 1047 that is five orders of magnitude
more.

Concerning the ring closure (JacobsoneStockmayer result)
we plot the probability of reaching the origin of the con-
strained walks (in �s), of the simple non-reversal random
walks (in crosses) and of the typical 2-D version of the Jacob-
soneStockmayer result (in dots), see Fig. 24. We notice the
following: The probability of ring closure for the NRRW using
the one-step lattice motion-group convolution and that of the
theoretically obtained by the JacobsoneStockmayer result
coincide, whereas that of the constrained space random
walk does not converge to the value of the Jacobsone
Stockmayer result. That is a surprising discovery because as
we saw in the arbitrary obstacle case, the probability of ring
closure coincided with of the JacobsoneStockmayer result.
We see what big difference there exists when we restrict the
random walk in a confined space compared to the results de-
rived from the existence of a simple obstacle.
5.6. Calculation of entropy and moments
The entropy for each case can be simply found by the for-
mula S¼�KB ln(NT), where KB is the Boltzmann constant
and NT is the total number of random walks that derive from
the exclusion of those which pass through the obstacle or those
which are locally self intersecting. Concerning the moments,
in this paper we calculated the even moments of the mean
end-to-end distance. In order to do that we calculated how
many times each distance from the origin was reached and
then we could easily find the moment of interest by using
the formula hR2ki ¼

P
i

tid
2k
i =
P

i

ti where ti is the number of
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Fig. 23. Comparison of the constant m of the simple non-reversal random walk

on the square lattice (horizontal line) with that of the random walk in the

square lattice in a constrained space (curvy decreasing line).
times each distance is reached, di is the particular distance
and hR2ki is the even moment of the end-to-end distance.

6. Summary

In this paper we presented a novel technique for finding prob-
ability distributions for locally self-avoiding walks. In addition
to being a more tractable model than globally self-avoiding
walks, this model can be used to find bounds on self-avoiding
walks in the presence of obstacles, that exclude exactly all
the walks that pass through that obstacle. Despite the fact that
these bounds are looser, when compared with others developed
for SAWs this paper opens a new way to research the area on
bounds on SAW’s and in the presence of obstacles. The main
conclusion is that the selection of the obstacle plays a very big
role in the nature of the results. So for each particular obstacle
at each particular lattice, we have to examine separately. We
cannot describe any analytical way of how the results are mod-
ified with the introduction of a new obstacle. We have to apply
the method described in the paper and obtain the results numer-
ically, something that this method does fast and accurately.
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7. Appendix

7.1. Review of the one-step lattice motion-group convolution

The L-locally self-avoiding walk model builds on our pre-
vious work in Ref. [45] on the topic of torsional random walks
in which L¼ 1. We therefore review this method here. In order
to give a thorough explanation of the one-step lattice motion-
group convolution we have first to explain how we treat the
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lattice sites and how we use the lattice geometry. The lattices
of study are the square, the hexagonal, the cubic and the tetra-
hedral. The rotational symmetries of these lattices are the
symmetries of the corresponding geometric shapes (square,
hexagon, cube and tetrahedron, respectively) i.e. the rotations
of these shapes that bring them to the same position they were
before applying that rotation. To each lattice point now we
assign Cartesian coordinates with respect to the lattice point
of reference which has lattice coordinates (0,0), or (0,0,0) if
it is for 2-D or 3-D lattice, respectively. To that particular lat-
tice site we also assign the particular frame of reference, that
is, the directions of the x, y and z axes, respectively. The lattice
site that a random walk reaches and the way it reaches it (ei-
ther from the left or from the right for instance) defines the po-
sition of this lattice site with respect to the lattice site of
reference and also the orientation with respect to the original
frame of reference. The way that a lattice site is reached de-
fines a combination of position and orientation. The same lat-
tice site can be reached by a different way that gives a different
combination of position and orientation. This combination of
position and orientation can be represented by a 3-by-3 or
by a 4-by-4 matrix depending whether the lattice is 2-D or
3-D and it is explained in text. Let’s assume the position
and orientation of the end of an N-segment random walk to be

g¼
�

A r
0T 1

�
: ð11Þ

In Fig. 25, we see the original frame of reference e (the identity
element) and the end position and orientation of the random
walk of N segments g. We see that one way to reach that partic-
ular combination of position and orientation g in N segments is
Fig. 25. Explanation of convolution.
to reach at L segments the position and orientation h and at
N� L segments the position and orientation k. By concatenat-
ing these two positions and orientations we achieve the desired
N positions and orientations g for the N segments. This concat-
enation is mathematically expressed by the matrix multiplica-
tion of the matrix representation of h with that of k, that is
h+k. The question that we answer is that given that we know
all the end positions and orientations that are reached by the
L, and the N� L-segment random walk how do we find all the
end positions and orientations that are reached by the N-seg-
ment random walk. The way we work is simple. For the L-seg-
ment random walk we define a function. That function has as
input the combination of the end position and orientation and
as output the number of times that this combination of position
and orientation is reached by the L-segment random walk.
Given the fact that the number of different orientations on the
lattice is finite and very small (4 for the square, 6 for the hexag-
onal, 24 for the cubic, 12 for the tetrahedron) we can develop
that function very simply by first assigning to each of these dis-
crete rotations e symmetries a symbolic number (that is 1e4
for the square lattice, 1e6 for the hexagonal lattice, 1e24 for
the cubic lattice, 1e12 for the tetrahedral lattice). Then we de-
velop a three or four dimensional array (depending on whether
the lattice is 2-dimensional or 3-dimensional). The first two (for
2-D lattice) or three dimensions (for 3-D lattice of this array
stand simply for the cartesian coordinates of the end lattice
site. The last dimension stands for the orientation with which
that lattice site is reached. In that particular entry of this array
we put the number of times that this particular combination of
end position and orientation is reached by the L-segment ran-
dom walk. The same thing we do for N� L-segment random
walk. So in order to find how many times a combination of
end position and orientation is reached by the N-segment
random walk we calculate the sum

fNðgÞ ¼
X

h

fLðhÞfN�LðkÞ ¼
X

h

fLðhÞfN�L

�
h�1+g

�
: ð12Þ

What this equation says is simply that in order to calculate how
many times that particular combination of position and orienta-
tion is reached by the N-segment random walk you calculate for
each position and orientation h that is reached by the L-segment
random walk the real number product fL(h)fN�L(h�1+g), and
then we sum over all h. The conception is very logical because
you have to multiply h�1+g on the right of h in order to get g.
We directly know how many walks of length N that at the Lth
segment terminate at the h position and orientation, terminate
at the g position and orientation at the Nth segment. If L¼ 1
then we have the one-step lattice motion-group convolution.
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