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Workspace Generation of Hyper-Redundant
Manipulators as a Diffusion Process on SFE(N)

Yunfeng Wang, Member, IEEE, and Gregory S. Chirikjian, Member, IEEE

Abstract—Hyper-redundant manipulators have a large number
of redundant degrees of freedom. They have been recognized as a
means to improve manipulator performance in complex and un-
structured environments. However, the high degree of redundancy
also causes difficulty in the calculation of workspaces and inverse
kinematics. This paper develops a diffusion-based algorithm for
workspace generation of hyper-redundant manipulators. This al-
gorithm makes the workspace generation problem as simple as
solving a diffusion equation which has an explicit solution. This dif-
fusion equation is a partial differential equation defined on the mo-
tion group SE(NN), and describes the evolution of the workspace
density function, depending on manipulator length and kinematic
properties. This paper also solves the inverse kinematics problem
in an elegant way by dividing the manipulator into virtual segments
and cascading the corresponding workspace densities generated by
the diffusion equation.

Index Terms—Diffusion process, Euclidean motion group, har-
monic analysis, hyper-redundant manipulator, inverse kinematics,
workspace generation.

NOMENCLATURE

SE(N)  N-dimensional Euclidean motion group.

1 Identity matrix.

JL Left Jacobian.

Jr Right Jacobian.

X; Basis element of the Lie algebra for SE(2).

X R Right differential operator corresponding to X;.

X L Left differential operator corresponding to X;.

f(g; L)  Workspace density for a manipulator of length L.
Here g € SE(2).

f(p) Motion group Fourier transform of f(g).

F(f) Motion group Fourier transform of f(g).

n(f( i»p) Operational property coefficient matrix for X;.

Nmn m — n element of the operational property coeffi-
cient matrix 7).

a, B, e Kinematic parameters for the diffusion equation.

Manuscript received April 2, 2003. This paper was recommended for publi-
cation by Associate Editor G. Oriolo and Editor I. Walker upon evaluation of the
reviewers’ comments. This work was supported by the National Science Foun-
dation under Grant I1S-0098382. This paper was presented in part at the IEEE
International Conference on Robotics and Automation, Washington, DC, May
11-15, 2002.

Y. F. Wang is with the Department of Engineering, The College of New Jersey,
Ewing, NJ 08628 USA (e-mail: jwang @tcnj.edu).

G. S. Chirikjian is with the Department of Mechanical Engineering,
The Johns Hopkins University, Baltimore, MD 21218 USA (e-mail:
gregc@jhu.edu).

Digital Object Identifier 10.1109/TRA.2004.825473

I. INTRODUCTION

YPER-REDUNDANT manipulators, which are also

called snake-like, serpentine, or highly articulated ma-
nipulators, possess conformational freedom far superior to that
of conventional manipulators. They have great potential for
applications where a high degree of redundancy is essential.
Examples include inspection and repair tasks in complex en-
vironments, search and rescue tasks in areas difficult to access
by humans, and medical diagnostic and minimally invasive
operations in health care.

Substantial research has been done on hyper-redundant
manipulators, and many different prototypes have been con-
structed. Cable/tendon-driven mechanisms have been used in
[12], [14], and [20]. Elastic links are employed in [7], [13],
and [15]. The design of the Jet Propulsion Laboratory (JPL,
Pasadena, CA) serpentine manipulator [26] uses gears with a
high gear ratio. The manipulator in [16] is composed of serially
connected three-bar linkages. To avoid complicated control
schemes, binary actuated manipulators are proposed in [5].
They adopt a variable geometry truss structure, and are actuated
by pneumatic cylinders.

The algorithmic issues associated with hyper-redundant
manipulators such as kinematics [11], control [22], [24],
[32], and motion planning [6], [21] also have been explored
extensively. In this paper, we concentrate on the workspace
generation problem for hyper-redundant manipulators. Geo-
metric methods were used in [18] to generate the workspace
for a manipulator with an arbitrary number of revolute joints. A
curve-approximation approach was presented to determine the
workspace of complex planar manipulators in [28]. The authors
of [27] divided the manipulator into parts, subworkspaces of
which were then calculated using the Jacobian. The Monte
Carlo method was used in [1], where a large number of random
actuator values were generated, and the corresponding reach-
able positions were calculated. In terms of workspace density,
the author of [9] presented a method based on concatenation
of the densities of individual modules by sweeping, while the
authors of [4] applied the convolution of functions on Lie
groups to determine the workspaces through partitioning a
manipulator into segments, and approximating the workspace
of each segment as a density function.

Different from all the above methods, we formulate the
workspace generation problem as a diffusion process and
develop a diffusion-based algorithm. In this algorithm, the
workspace density is the solution to a partial differential
equation defined on the motion group SE(N). This partial
differential equation describes the evolution of the workspace
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Fig. 1. Workspace density of a binary manipulator with three manipulator
configurations displayed [4].

density function, depending on manipulator length and kine-
matic properties, and can be easily solved using the techniques
of noncommutative harmonic analysis as developed in [2].

II. INSPIRATION OF THE ALGORITHM
A. Workspace Density

Our diffusion-based algorithm takes advantage of the con-
cept of workspace density. This concept was first proposed in
[29] to analyze the accuracy of performance of a manipulator
by discretizing the range of continuously actuated joints. Later,
this concept was employed to handle workspace generation and
kinematics problems for binary manipulators in [4] and [9].

Workspace density describes the density of reachable
points/frames in any portion of the workspace [4], where the
workspace is discretized into small blocks, and the density of
points/frames is the number of reachable points/frames per
unit workspace volume. Workspace density is a probabilistic
measure of accuracy over the workspace. The density in the
neighborhood of a given point/frame is an indication of how
accurately a discretely actuated manipulator can reach that
point/frame. Higher density of a point means the manipulator
can reach that point more accurately. The workspace density
function is a probability density function (pdf) that describes
the distribution of points/frames over the workspace.

When the concept of workspace density is used for continu-
ously actuated manipulators, the range of motion of each degree
of freedom (DOF) will be discretized first. For example, a ma-
nipulator with n DOFs, each sampled at K values, results in a
discretized workspace with K™ positions and orientations.

Fig. 1 displays the workspace density of a planar binary ma-
nipulator with ten modules [4]. Three of the manipulator’s 23°
configurations are indicated. Darker areas mean higher density,
and the manipulator can reach that part more accurately.

B. Physical Analogy

Consider a discretely actuated serial manipulator where each
module can reach 16 different states. Such modules can be

1 module 2 modules
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4 4
2 2 2 RO
0 ' 0
-2 -2
-5 0 5 -5 0 5
3 modules 4 modules
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4
2
0
-2 -2
-5 0 5 -5 0 5

Fig. 2. Workspace of a manipulator with different numbers of modules.

designed by using binary actuators as the vertical elements
in each truss, and two stacked binary actuators of different
stroke lengths as the diagonal element. The workspaces of
this manipulator with different modules are shown in Fig. 2.
They are generated by brute-force enumeration. It is easy to
notice that the size of the workspace spreads out as the number
of modules increases. This enlargement of the workspace is
just like the diffusion produced by a drop of ink spreading
in a cup of water. Inspired by this observation, we view the
workspace of a hyper-redundant manipulator as something that
grows/evolves from a single point source at the base as the
length of the manipulator increases from zero. The workspace
is then generated after the manipulator grows to full length.

In this way, the workspace generation problem is described
by a diffusion process. Is this intuitive analogy valid? It has
been shown that the workspace density of any discrete-state
serial manipulator (or any manipulator whose joint ranges
are sampled at discrete values) can be generated by dividing
the manipulator into pieces, exhaustively enumerating the
workspace density of each piece, and then generating the
workspace density for the whole manipulator by computing the
S E(N)-convolution for adjacent pieces [4], [9], [19]. This fact
is a consequence of the Markovian nature of the workspace
density. The well-established theory of Markov processes
associates with every continuous Markov process a diffusion
equation that describes the evolution of probability density.
That is, given a Chapman—Kolmogorov (i.e., convolution)
equation, there is an underlying diffusion process which can be
described by a Fokker—Planck equation.

With the knowledge gained from our study on the conforma-
tional statistics of stiff macromolecules [3] and the results of
[19], we derive a diffusion equation describing the evolution
of the workspace density function depending on manipulator
length and kinematic properties. This equation is a partial differ-
ential equation defined on the motion group, and can be easily
solved using the the techniques of noncommutative harmonic
analysis.
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III. NONCOMMUTATIVE HARMONIC ANALYSIS

Noncommutative harmonic analysis is a generalization of
Fourier analysis. This mathematical tool was developed for the
case of rigid-body motions by and for pure mathematicians and
theoretical physicists in the 1960°s [23]. It is rarely known by
engineering scholars. In this paper, it is successfully applied
to formulate and solve problems in the field of robotics. This
section reviews this powerful mathematical tool and some new
results we derived.

A. Euclidean Motion Group

The Euclidean motion group, SE(N), is the semidirect
product of IR™ with the special orthogonal group, SO(N).! We
denote elements of SE(N) as g = (A, a) where A € SO(N)
anda € RN . Forany g = (A,a) and h = (B,b) € SE(N),
the group law and inverse of an element are, respectively,
written as g o h = (AB,a + Ab) and g=! = (AT, -ATa).
It is often convenient to express an element of SE(N) as an
(N 4+ 1) x (IV 4 1) homogeneous transformation matrix of the

form
(A a
g = OT 1 .

In this way, rotation and translation are combined into a single
matrix. A homogeneous transformation matrix takes the place
of the pair (A, a), and the group operation becomes the matrix
multiplication.

For example, each element of SE(2) parameterized using
polar coordinates can be written as

cos¢p —sin¢ rcosh
g(p,r,0) = | sing cosdp rsind (1
0 0 1

where 0 < ¢, < 21, and 0 < r < oo. SE(2)
is a three-dimensional (3-D) manifold much like IR>.
We can integrate over SFE(2) using the volume element
d(g(¢.7,0)) = (1/4n*)rdrdfdg (2].

Our diffusion model for workspace generation of planar ma-
nipulators is defined on the motion group SFE(2). We focus
on SE(2) because the mathematics is less involved, and the
methodology is the same as it would be in the 3-D case. The
interested reader is referred to [2] for the mathematical back-
ground required to apply this methodology to spatial manipula-
tors.

B. Jacobians for the Motion Group SE(2)

Jacobian matrices are important for understanding differen-
tial operators and integration defined on motion groups. They
can be derived by equating two different looking, though equiv-
alent, ways of writing gg=! and g='g for g € SE(2) where
g = dg/dt. One way is to use matrix multiplication and the
other is to use the chain rule from calculus. When ¢ is on the
left or right side of g—!, we call the corresponding Jacobian a
left or right Jacobian.

IThe group SO(N') consists of N X N matrices with the properties RR” =
I and det R = +1. The group law is matrix multiplication.

Let g € SE(2) be parameterized with (q1, g2, g3) as
_ (Ald) a(a)

where (g1, go, ¢3) is written as a vector q € IR*. Using matrix
multiplication, we have

) <AAT —AATa—i—é)

It is well known that AAT is a 2-D skew-symmetric matrix [8]

with the form
0 —w
o= (" )

We denote vect(2) = w € IR. Following [25], we define an
operation () such that

Q v\’ _(w
of o) “\v)"
Applying this operation to (2), we get
- —1\WV _ [ WL
(997)" = <VL> ©)
where wy, = vect(AAT), and v, = —AATa + a. Using the
chain rule, we find

1! [ﬁl@

g9t =59 g1,
on” " Oq2

) q1
, - j . 4
’8qgg ] P @

From (3) and (4), we have

<wL> =Jr(a)q

vL
where

2 () (8)
j = o N N 5
r(a) l(aqlg 90s? 9g3? ®)
is the left Jacobian. Similarly, we can get the right Jacobian as

_ ag \% B ag \% _ ag \%
JIr(a) = 1—) : ( =) (g ) |6
r(q) l(g o0 9 B 9" B (©6)

For example, when g € SFE(2) is parameterized as in (1), we
can use (5) to get the corresponding left Jacobian as

1 0 0
JrL = rsinff  cosf —rsinf @)
—rcosf sinf rcosf

and (6) to get the corresponding right Jacobian as

1 0 0
Jr=10 cos(p—6) rsin(¢—10) |. @)
0 —sin(¢p—46) rcos(p—86)

The bi-invariant integration measure for SFE(2) is de-
fined to within an arbitrary constant as |detJg|drd¢dd =
|detJ,]|drdpdd.

C. Differential Operators for the Motion Group SE(2)

We take a very coordinate-dependent approach to describe
these concepts. For readers interested in coordinate-free ap-
proaches, see [2], [25], and references therein.

For small translational (rotational) displacements from the
identity along (about) the #th coordinate axis, the homogeneous
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transforms representing infinitesimal motions can be expressed
by

exp(tX;) = I +tX; (t < 1)
where

: 0 -1 0

Xi=[1 0 O
0O 0 0

~ 0 0 1

Xo=110 0 O
0 0 0

: 0 0 O

Xs=(10 0 1
0 0 O

X1, X5, and X3 correspond, respectively, to infinitesimal rota-
tion about the Z axis and translations along the X and Y axes.
They are the natural basis elements of the Lie algebra for SE(2).
It is often convenient to write them in vector form as

~ 1 ~ 0 R 0
(X)"=[0], (X)"=[1], (X3)"=[0
0 0 1

Let g € SE(2) and f(g) be a function which takes elements

of the motion group as its arguments. Analogous to the par-
tial derivative of a function of an IR" -valued argument, we can
define differential operators acting on functions of the motion
group as [10], [23]

~ d -
XIf 2 2 flexp(—tX:) 0 g) o

- A d ~
Xffr= Ef(goexp(tXi)) |¢=0-

In our notation, the superscripts L and R denote whether the
infinitesimal motion exp(tX,; ) is on the left or the right of g.
Hence, )N(f is invariant under right shifts, and XZR is invariant
under left shifts.

Let us define the parameters () such that

g(a) o (I +1tX;) = g(q™"). 9)

Performing the matrix multiplication on the left and expanding
the right side of (9) in a Taylor series to first order in ¢, we get

8(] dq
tgX; = t J 10
g+tgXi=g+ Z 7 (10)
t=0
We then have that
3 R
- aq dq ?
Xi _ -1 Y. J
Zg aq]' dt
j=l1 t=0

or

\% dquyl
Z Bq] dt

t=0

Using the right Jacobian for the motion group as given in (6),

we can rewrite

dqR,1
dt

= Jr(q)

t=0

This allows us to solve for

dqR,z
dt

= Jp (X))
t=0
which is used to calculate the right differential operators for
SE(2) as

. 3. of
XPf=Tg" ) (X)) -ejo— =
— 9q;
J
where e; = [1,0,0]7,e2 = [0,1,0]7, and e3 = [0,0,1]7.
Similarly, we can derive the left differential operators for S E(2)
as

(T "ei) - (Vaf) (1)

of _

3
XIS == S e 2L

i=1

(jL i) . (qu)

12)

Substituting (8) into (11), we can get explicit expressions of
the right differential operators X for SE(2) in polar coordi-
nates as

~ 9]

R _
=5

L sin(g—6)

XE = cos(¢p — 9) 5 —r 2
. _ 9 cos(¢p—0) 0

R _ _ —f) =4+ " 7
X3t = —sin(¢ 6)8r+ . ETh

Substituting (7) into (12), we can get explicit expressions of
the left differential operators X * for SE(2) in polar coordinates
as

~ 5] 0
X - =
! d¢p 00
- d sinf 0
L—_ J—
Xy = cos@ar—f— ]
- 0 cosf O
L_ w909 o
X3 = smﬂar 90

D. Motion-Group Fourier Transform

The Fourier transform of a function of motion, f(g), is an
infinite-dimensional matrix defined as [2]

)= [ s

where d(g) is a volume element at g, and U(-,p) is a unitary
matrix function (called an irreducible unitary representation)
for each value of the parameter p. The corresponding inverse
Fourier transform (IFT) is

flg) = FA()) = /trace[f<p>U<.q7p>] W(p)  (13)
G

f) =1 ,p)d(g)

where G is the space of all p values called the dual of the group
G, and v is an appropriately chosen integration measure in a
generalized sense on G.

For the case of G = SE(2), the matrix elements of U (g, p)
are expressed explicitly as [30]

umn(g(qﬁ,r, H),p) = Jn_

m = j[né+(m—n)6] Jnem(pr) (14)
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where J,(z) is the vth-order Bessel function, and j = /—1.
The IFT (13) can be written explicitly for SE(2) in terms of
these matrix elements as

f(g) = / fmn“nm(g p)pdp.

m nGZ

15)

E. Operational Properties

In analogy with the classical Fourier transform, which con-
verts derivatives of functions of position into algebraic opera-
tions in Fourier space, there are operational properties for the
motion-group Fourier transform.

By the definition of the motion-group Fourier transform and
differential operators, one observes that

F(XEf) = /G % (flesp(—1%)00))| U™ p)do)

t=0
(16)
U(g~",p)d(g).
t=0
a7

F (%) = [ GUlgoe()

By performing the change of variables k = exp(—tX;) o
and using the homomorphism property of the representations
U(g,p), we can rewrite (16) as

F(XEr) = / FR) U 0 exp(—1X:), ) )
= ([ swwi paw)
(dtwexp( )| )
= —f(p)n(Xi.p)
where
n(Xi,p) = ( au (exp(tXLp)) . (18)
Similarly, it can be shown that
F(XFf) = n(Xin)f (). 19

The explicit expression of n(X;, p) for SE(2) can be derived
as follows. R

The matrix elements of U (exp(¢X1 ), p) can be obtained from
(14) by setting ¢ = t,r = 0,and § = 0

Umn (eXp(tXl)vp) = eijmtém,rr
The fact that
1, m—n=0
Jm—n(0) = {0, m—mn#0

is used in the above calculation. It then follows that

N (X1,9) = =M n. (20)

The matrix elements of U (exp(£X3), p) can be obtained from
(14) by setting ¢ = 0,7 = t,and § = 0

It is known that
d 1
75 7m (@) = 5[ Tm-1(2) = Jmga (2)]-

Hence

- Jp
nmn(X27p) =

5 21

(6m,n+1 + 6m,n—1)~

The matrix elements of U (exp(tX3),
(14) by setting ¢ = 0,7 = t,0 = 7/2

Umn (exp(tX3)7p) = (=" Jp—m(pt)

p) can be obtained from

and so

nmn(X37p) = g(5m,n+1 - 5m,n—l)- (22)

IV. WORKSPACE GENERATION AS A DIFFUSION PROCESS

The concept and methods developed here can be used for spa-
tial manipulators as well as planar ones. However, the planar
case is used to introduce and explain our algorithms, because it
is much easier to visualize concepts in the plane than in space.

A. Diffusion Equation for Workspace Generation

We obtain the diffusion equation for workspace generation by
realizing that some characteristics of hyper-redundant manipu-
lators are similar to those of polymer chains like DNA. During
our study of conformational statistics in polymer science, we de-
rived a diffusion equation defined on the motion group SF(3)
[3], [31]. This equation describes the evolution of a pdf for
the position and orientation of the distal end of a stiff macro-
molecule relative to its proximal end. By incorporating param-
eters into this equation which indicate the kinematic properties
of a manipulator, we can modify it to describe the evolution of
the workspace density function. In the planar case, it is written
explicitly as

af _ xR r\’ | ¥R “r)’

o7 = <a ! +B(X1) + X! +6(X3) >f. (23)
f stands for the workspace density function. L is the manipu-
lator length. X7 and X are the differential operators defined
on SFE(2) as given in Section III-C. Since the motion of a planar
manipulator includes rotation around the Z axis and translation
in the X-Y plane, only X f{ and X§ are considered in (23),
where the subscript 1 denotes the rotation around the Z axis, and
the subscript 3 stands for the tangent direction along the manip-
ulator’s backbone. Parameters (3 and € are usually called diffu-
sion coefficients, and « is a drift coefficient. Here, we interpret
them in the sense of the kinematic properties of manipulators.
We define these kinematic properties as flexibility, extensibility,
and the degree of asymmetry. 3 describes the flexibility of a
manipulator in the sense of how much a segment of the manip-
ulator can bend per unit length. A larger value of # means that
the manipulator can bend a lot. € describes the extensibility of
a manipulator in the sense of how much a manipulator can ex-
tend along its backbone direction. A larger value of € means that
the manipulator can extend a lot. o describes the asymmetry in
how the manipulator bends. When v = 0, the manipulator can
reach left and right with equal ease. When @ < 0, there is a
preference for bending to the left, and when o > 0, there is a
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preference for bending to the right. Since «, 3, and € are quali-
tative descriptions of the kinematic properties of a manipulator,
they are not directly measurable. In Section V, we will show how
to choose the values of these parameters from the framework of
probability theory for the best fit to a given manipulator.

B. Mathematical Validation of the Diffusion Model

If we cut any serial hyper-redundant manipulator of length
L1 + Ly into two pieces of length L; and Lo, each with
workspace densities f(g; L1) and f(g; L2 ), then the workspace
density function f(g; L1 + Lo) is the motion-group convolution

[4]

f(g; L1 + Lo) = Ly) * f(g; Lz)

g
/fhh

where * denotes SE(N) convolution. Here L; = n;Lys where
Ly is the length of one module and n; is the number of mod-
ules in segment 7. The Fourier transform for SE(N) converts
this to a product as

Fi Ly + La) = f(p; La) f(p; L)

where p is the “frequency” parameter. Keep in mind that this
must hold no matter how we partition the manipulator. This in-
dicates that each of these Fourier matrices must be of the form

f(p: L) = exp(LD(p))
where D(p) is a matrix. Taking the partial derivative of both
sides of the above equation with respect to L yields
af(p; L) ;
—— =D ; L).
9L (p)f(p; L)

_ Earlier in the paper, we showed that the differential operators
X transform under certain operational properties to matrices
of the form n(X;, p). In addition, SE(N) isan M = N(N +
1)/2-dimensional Lie group, and any left-invariant differential
operator D can be constructed as

Ly g;Lo)dh  (24)

M M
i=1 ij=1
M
+ Z cqtijquX]Rle” + -
1,5,k=1

In essence, this is an analog of the Taylor series for a Lie group.
If one takes enough terms, then the Fourier matrix of this Taylor
series can be made to fit any D(p) by appropriate choice of the
coefficients a;, b;;, etc. We truncate at relatively few parame-
ters (based on our experience in an example in polymer theory,
where only a relatively few parameters have physical meaning).
However, the true test is the goodness with which we can fit the
example later in this paper. If these few parameters were not suf-
ficient, we could take more. The parameters defining the details
of the diffusion can be changed to meet different manipulator
geometries as needed.

C. Solution to the Diffusion Equation

The procedure to solve the diffusion equation is explained in
Fig. 3. We first apply the motion-group Fourier transform to the
diffusion equation (23). Using the operational properties (19),

af = (RE+BR) + X2 +e(RE))f

¢ Motion-group Fourier Transform

d_f_ o
L =B(p) f

Matrix Exponential

F(p;L) = exp(LB(p))
lMotion-group Inverse Fourier Transform

f(gL)=F(f)

Fig. 3. Solving method to the diffusion equation (23).

$=0 9=45°

Fig. 4. Workspace density at different orientations.
the diffusion equation (23) is converted to a system of linear
ordinary differential equations with constant coefficients

df

Vi B(p)f (25)

where

B = an(X1,p) + Bn(X1.p)]* + 1(Xs,p) + e[n(Xs,p)]*.

Explicit expressions for the matrix elements of n(f( 1,p) and
n(X 3, p) are derived in (20) and (22), respectively.
In principle, f(g;0) = §(g) (the Dirac delta function is for
E(2)), and f(p;0) is the identity. The solution to (25) can be
obtained by the matrix exponential

f(p; L) = exp(LB(p)). (26)

Then we can get the solution f(g; L) to the diffusion equation
(23) by applying the motion-group IFT (15) to (26). Example
solutions to the diffusion equation (23) at different orientation
¢with L =2, a=0,8=1,and ¢ = 0 are illustrated in Fig. 4.
The effects of the parameters in (23) can be observed ob-
viously in the positional workspace densities. By integrating
f(g; L) over all values of rotation angle ¢, we can obtain the
positional workspace density as shown in Fig. 5. Fig. 5(a) and
(b) show the effect of the length parameter L with L = 1,2.
Fig. 5(b) and (c) shows the effect of the extensibility parameter
€ with ¢ = 0,0.04. The area of the workspace density is ex-
tended/fattened because of the larger value of e. Fig. 5(b) and (d)
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L=1, ¢=0,B=1,e=0
2 2 2
1 1 1
. O/iﬁf \§i\ O(@m@h
0] 2
L=2,0=0.6,p=1,6=0

Vo W i )
NN Nl

=2 0 2 -2 0 2 =2 o} 2

L=2,0=0,B=1,=0 L=2,0=0, B=1,£=0.04

2
-2 0 2 -

/€

Fig. 5. Effects of parameters L, a, 3, and €.

shows the effect of the flexibility parameter 5 with 5 = 1, 1.5.
For a larger value of (3, the workspace density is supported with
a larger area. Fig. 5(b), (e), and (f) shows the effect of the asym-
metry parameter o with a = 0, —0.6,0.6. It is easy to notice
how « affects the workspace of a manipulator to bend to the left
and right.

In the above numerical implementations, the infinite-dimen-
sional matrix function U(g, p) is truncated. The result is a ban-
dlimited approximation. We chose the upper bound of the fre-
quency parameter p to be 100. The matrix U(g, p) is truncated
at—Ilgp < m,n <lg,wherelp = 7. Since the numerical results
of the Fourier transform of this diffusion equation are approx-
iplated by a bandlimited version, the outer elements (values of
f(p; L) = exp(B(p)L) with |m|, |n| — Ip) can have larger er-
rors. We therefore impose a second cutoff frequency of g = 4
after the exponentiation, when substituting into the Fourier in-
verse formula to obtain the workspace density function f(g; L).
All these numerical results are calculated using Matlab on a Pen-
tium III 64MB RAM PC. It takes no more than 40 s to solve the
diffusion equation (23) and get the workspace density.

V. CHOICE OF PARAMETERS IN THE ALGORITHM

Different manipulators have different kinematic properties. It
is impossible to find a closed-form relationship between the pa-
rameters «, (3, and e and the kinematic properties of manipula-
tors that is suitable for all manipulators. Also, these parameters
are a qualitative description of the kinematic properties and not
directly measurable. We developed a general approach based on
probability theory to match the parameters «, 3, and € to a given
manipulator.

The proposed matching method uses the mean and variance
of workspace density functions. The general idea is to adjust
a, 3, and € to make the mean and variance of the workspace
density functions obtained from (23) and brute-force enumera-
tion as similar as they can be. The values of «, 3, and € charac-
terizing the manipulators are the ones that make the workspace
density functions have nearly the same mean and variance. The
procedure for this matching method is depicted by the flowchart
shown in Fig. 6.

A manipulator with a few modules

Diffusion equation >

‘ Mean & Variance ‘ ‘ Mean & Variance ‘

Cost Function C i

|

Yes No . / Adjust
afe

Fig. 6. Flowchart of the matching method.

Output B e

For a given manipulator, we consider only a few modules,
so that its workspace can be easily obtained by brute-force
enumeration. We first calculate the workspace density function
fbru using brute-force enumeration, and fg4;¢ using the diffusion
equation (23). The initial values to the parameters «, 3, and € in
(23) are assigned manually by observing features in the shape
of fpru. Then we calculate the corresponding mean in terms
of x,y,¢, and variances in terms of x2,y2, ¢2, zy, xd, Y.
The parameters «, (3, and e are adjusted to minimize the cost
function

Cla,B,e) = (B, — E,)* + (B, — Ey)? + (Eg — Ey)?
~2 2\ 2 ~2 2)2 ~2 22
+ (Urc - Uz) + (Uy o Uy) + (045 o Utb)
~2 2 \2 ~2 2 )2
+ (02, = 02y)” + (020p — 025)
~92 2 \2
+ (Uyrb - UW) 27
where the E’s and &°s are the means and variances of fait, and
the E’s and ¢’s are the means and variances of fj,y.

There are several ways to adjust «, 3, and €. Since it is easy
to find the coarse range of these parameters, one simple way is
to enumerate all the possible values with a small incremental
step of these parameters for a given range, and find the set of
parameters that results in the minimal value of the cost function.
Our numerical simulations show that the value of cost function
is not sensitive to small changes in these parameters, so the step
of the increment will not affect the final result significantly.

VI. NUMERICAL SIMULATIONS FOR WORKSPACE GENERATION

The manipulator used for the numerical simulation is the
same as the one that has the workspace shown in Fig. 2. We use
this manipulator with four modules to match the parameters.
The maximal distance between a reachable position and the
proximal end (origin) for this manipulator with four modules is
six. Hence, the length parameter L in (23) is set to be six. Since
the workspace is symmetric in bending to the left and right,
the parameter « is set to be zero. The range of parameter (3 is
taken from 0.02 to 0.74 with the increment step of 0.02. The
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Fig. 8. (a) Workspace and (b) its density of a four-module manipulator.

range of parameter e is taken from O to 0.8 with the increment
step of 0.04. Fig. 7 shows the corresponding values of the
cost function (27). We found that the minimal value of the
cost function is 0.5748 when 8 = 0.12 and ¢ = 0.08. Hence,
the parameters characterizing this manipulator are taken to
be o = 0,0 = 0.12, and ¢ = 0.08. The discrete workspace
and the corresponding density of this manipulator with four
modules generated from the diffusion equation (23) with
L =6,a =0,8=0.12, and ¢ = 0.08 are shown in Fig. 8(a)
and (b), respectively.

Equation (24) indicates the linear relationship between
the length and number of modules of a manipulator in the
workspace density function. In our simulation, we use a
four-module manipulator to match the parameters «, (3, and
€ in the diffusion equation (23) with the length parameter
L = 6. Because of the linear relationship shown in (24), the
workspace density produced by adding or reducing one module
of a manipulator is the same as that by increasing or decreasing
the length parameter L by 1.5 (i.e., the length corresponding to
one module = length of 6/4 modules). To verify this result,
we test the manipulator with five modules using the matched
parameters a = 0,3 = 0.12, and ¢ = 0.08. Fig. 9(a) and (b)
show the discrete workspace and the corresponding density of
this manipulator with five modules generated from the diffusion
equation (23) with L = 7.5, respectively.

7r 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0
-1F -1
2t 2
3 3

5 0 5 5 1] 5

(a) ()
Fig. 9. (a) Workspace and (b) its density of a five-module manipulator.

Of course, the benefit of using the diffusion approach is that
the cost is the same for any length L, whereas brute force goes
as K*F, where )\ is number of modules per unit length, and K
is number of sample points per module.

When the modules of a manipulator are not all identical, a
different diffusion equation is solved for each segment of the
manipulator composed of the same kind of modules, then the
convolution of the different segments is performed as matrix
multiplication in Fourier space, and the Fourier inversion for-
mula is used to recover the workspace density.

VII. INVERSE KINEMATICS USING WORKSPACE DENSITY

To further confirm our diffusion-based workspace generation
algorithm, we apply the workspace density generated by the dif-
fusion equation to solve the inverse kinematics problem. The
way we apply the workspace density to inverse kinematics is
similar to the Ebert—-Uphoff method [2]. The criterion for this
method is to configure the manipulator to achieve the maximum
workspace density around the target spot.

A. Scheme for Using Workspace Density

Consider a manipulator with P independent modules. Let gy,
denote the homogenous transformation that relates the distal end
of the kth module to its own base, where k € {1,..., P}. The
transformation of the distal end of the kth module relative to the
base of the whole manipulator is then

g*) =giogro--0g

and the transformation that relates the distal end of the manipu-
lator to the distal end of the kth module is

-1
(g(k)) o .O(P) = 9k+1°9k+20---0gp.

Let f;_1,(g) denote the workspace density function for the
ith module. With this notation, fy p(g) = f(g; L) will be the
workspace density function for the whole manipulator. The
workspace density function for two concatenated modules is
the convolution [4]

fi—l,i+1(9) = (fi—l,i * fi,i-l—l)(g)

and the workspace density function for the whole manipulator
is the multiple convolution

fo,P(g) = (f0,1 * flo® - x fP71,P)(9)~
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Fig. 10. Inverse kinematics solutions for the 16-module manipulator.

Using the above fact, we divide the manipulator into virtual
segments and view the lower segment as a transport device for
the workspace density of the upper segment. We then fix the
configuration of the lower segment by choosing the one that
results in the highest density of the upper segment at the target
spot.

B. Inverse Kinematics Method

There are several ways to realize the above scheme. One
way is to start from the base module and proceed up one
module sequentially until the last module, as the Ebert—Uphoff
method [2] does. Let g4es denote the target spot. Starting from
the base module, we transport the base module to all possible
states, and find which state of this module maximizes the
density fp_1((9™) 7! 0 gdes). Suppose we find g1 opt is such
a state. We fix the base module to g opt. Then we proceed
up the manipulator one module. Among all possible states of
g® = J1,0pt © g2, we search for the state of go that can achieve
the highest density fp_2((9®) ™% 0 gdes). If g2.0pt is such a
state, we configure the second module to go op¢. This procedure
is performed by sequentially maximizing fp 1 ((¢%*)) ™" 0 gqes)
forall k € {1,2,..., P —2}. When k = P, the state of gp that
minimizes the cost function

C= D(gdes7gl 0g20--- O.OP)

is chosen, where D(+, -) is a distance metric [17], [33].

The novelty of this inverse kinematics approach lies in the fact
that the functions fx(g) = f(g; (k/N)L) can all be computed
without explicitly performing convolution on SF(2). Rather,
we only solve the diffusion equation (23) for different length
values of kL/N.

C. Numerical Simulations for Inverse Kinematics

The sample manipulator with 16 modules is used to simu-
late the inverse kinematics approach. Targets located in various
areas of the workspace are tested, and four of them are shown
in Fig. 10. The contour plot on the background of the figure
indicates the workspace of this manipulator with 16 modules.
The circles stand for the targets. The cross denotes the position

of the fixed end of the manipulator. The segmented lines dis-
play the corresponding configurations of the manipulator, where
each segment stands for a module. From all these tests, we see
that the inverse kinematics algorithm using the workspace den-
sity generated by the diffusion equation (23) provides an accu-
rate solution to reach the target.

The above simulations are implemented using Matlab on a
Pentium IIT 64MB RAM PC. It takes less than 1 s to compute the
inverse kinematics solutions. Note that the computation time for
solving the diffusion equation is not counted, since we store the
workspace density of this manipulator with different numbers
of modules in advance.

VIII. CONCLUSION

Workspace generation is an important issue for applications
of hyper-redundant manipulators to be realized. In this paper,
we have shown that the workspace of a hyper-redundant manip-
ulator can be generated by solving a partial differential equation
defined on the motion group. The computational complexity
of this workspace generation algorithm is independent of the
number of modules/DOFs of a manipulator. In this sense, this
approach is very suitable for hyper-redundant manipulators. To
our knowledge, this is the only method in which computational
complexity is not affected by the number of modules/DOFs.
We have also shown that the workspace generated by the dif-
fusion equation can be applied to perform inverse kinematics
efficiently.
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