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Error Propagation on the Euclidean Group With
Applications to Manipulator Kinematics
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Abstract—Error propagation on the Euclidean motion group
arises in a number of areas such as errors that accumulate from
the base to the distal end of manipulators. We address error
propagation in rigid-body poses in a coordinate-free way, and
explain how this differs from other approaches proposed in
the literature. In this paper, we show that errors propagate by
convolution on the Euclidean motion group, (3). When local
errors are small, they can be described well as distributions on
the Lie algebra (3). We show how the concept of a highly
concentrated Gaussian distribution on (3) is equivalent to one
on (3). We also develop closure relations for these distributions
under convolution on (3). Numerical examples illustrate how
convolution is a valuable tool for computing the propagation of
both small and large errors.

Index Terms—Euclidean group, error propagation, manipulator
kinematics, spatial uncertainty.

I. INTRODUCTION

I N THIS paper, we address how errors propagate on the Eu-
clidean motion group. Applications include the accumula-

tion of errors in serial linkages and the estimation of the state
of a rigid body from noisy measurements. Our approach is to
treat errors using probability densities on the Euclidean group.
Whereas concepts such as integration and convolution of these
densities follow in a natural way when considering the Lie group
setting [4], standard concepts associated with the Gaussian dis-
tribution in do not follow in a natural way to Lie groups.
For example, a Gaussian distribution in is the solution to
a diffusion equation, it is the maximum entropy distribution;
the family of Gaussians is closed under convolution and con-
ditioning. In the Lie group setting, one can often satisfy one or
several of these properties with specialized distributions, but not
all, that is, at least not when discussing distributions with mass
that is spread over a large region in the group. In contrast, con-
centrated distributions on Lie groups (which are often the most
appropriate distributions to describe the sorts of small errors en-
countered in practice) can be constructed to have all of the prop-
erties associated with Gaussians.

In the following sections, the relevant literature is re-
viewed, and an overview of rigid-body motions is provided.
In Section II, the motivating application of error accumulation
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in serial (and hybrid serial-parallel) manipulators is discussed.
In Section III, the concept of highly concentrated Gaussian
distributions is discussed, and several of their important prop-
erties are examined. In Section IV, closed-form expressions
for the convolution of these densities are derived. Section V
illustrates with numerical examples that both small and large
serial errors propagate by convolution, and examines the range
of values over which a distribution can be considered highly
concentrated. Section VI presents our conclusions and dis-
cusses other potential applications of this formulation. The
Appendix provides some background mathematics.

A. Literature Review

Several distinct research fields relate to the study presented in
this paper. These include the theory of Lie groups, probability
and statistics, robot kinematics, methods for describing spatial
uncertainty, and state estimation. We review several of the most
closely related works in each of these areas here.

Murray et al. [19] and Selig [23] presented Lie-group-
theoretic notation and terminology to the robotics commu-
nity, which has now become standard vocabulary. Park and
Brockett [21] showed how dexterity measures can be viewed in
a Lie-group setting, and how this coordinate-free approach can
be used in robot design. Wang and Chirikjian [31] showed that
the workspace densities of manipulators with many degrees of
freedom can be generated by solving a diffusion equation on the
Euclidean group. Blackmore and Leu [1] showed that problems
in manufacturing associated with swept volumes can be cast
within a Lie-group setting. Kyatkin and Chirikjian [4], [13]
showed that many problems in robot kinematics and motion
planning can be formulated as the convolution of functions on
the Euclidean group.

Starting with the pioneering work of Brockett [2], the controls
community has embraced group-theoretic problems for many
years. This includes proportional-derivative (PD) control on the
Euclidean group [3], [14], [33], tracking problems [8], [9], and
estimation [15]. The representation and estimation of spatial un-
certainty has also received attention in the robotics and vision
literature [25]. Kinematic error propagation for use in assembly
planning has also been studied [26]. Recent work on error prop-
agation described by the concatenation of random variables on
groups has also found promising applications in mobile robot
navigation [24].

B. Review of Rigid-Body Motions

The Euclidean motion group is the semidirect product
of with the special orthogonal group . We denote el-
ements of as , where
and . For any and , the
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group law is written as , and
. Alternately, one may represent any element of

as a 4 4 homogeneous transformation matrix of the
form

in which case, the group law is matrix multiplication.
For small translational (rotational) displacements from the

identity along (about) the th coordinate axis, the homogeneous
transforms representing infinitesimal motions look like

where is the 4 4 identity matrix, and

Large motions are also obtained by exponentiating these ma-
trices. For example

In what follows, it will be convenient to describe elements of
with the exponential parametrization

(1)

This is common in the study of Lie groups and algebras [29].
One defines the “vee” operator such that

The total vector can be obtained from from
the formula

(2)

II. PROPAGATION OF ERROR IN SERIAL LINKAGES

Intuitively, if two rigid parts are manufactured with errors
and those parts are bolted together at an interface, the errors
will “add” in some way. Likewise, a manipulator that is con-
structed from several subunits, each with some manufacturing
error and/or backlash, will have errors that accumulate as the
length from base to end-effector is traversed. In this section, we
quantify how errors accumulate in serial and hybrid serial-par-
allel devices. We formulate this as a convolution of highly con-
centrated error densities on .

Suppose we are given a manipulator consisting of two con-
catenated units. These units could be Stewart–Gough platforms
or serial links connected with revolute joints. One unit is stacked
on top of the other one. The proximal unit will be able to reach
each frame with some error when its proximal end
is located at the identity . This error may be different
for each different frame . This is expressed mathematically as
a real-valued function of which has a peak in the
neighborhood of , and decays rapidly away from . If the unit
could reach exactly, this function would be a delta function.
Explicitly, the error may be described by one of many possible
density functions depending on what error model is used. How-
ever, it will always be the case that it is of the form
for , that is, the error will be a function of

for each frame that the top of the module tries to at-
tain relative to its base. Likewise, the second module will have an
error function for that describes the
distribution of frames around that might be reached when
is the expected end frame for module 2 relative to its base, and
the base of module 2 is located at the identity .

The error distribution that results from the concatenation of
two modules with errors and results from sweeping
the error distribution of the second module by that of the first.
This is written mathematically as

(3)

Here, is the unique bi-invariant integration measure for
evaluated at [4]. Sometimes this is simply written

as . In the case of no error, the multiplication of homogeneous
transforms and as represents the composite change
in position and orientation from the base of the lower unit to the
interface between units, and from the interface to the top of the
upper unit. In the case of inexact kinematics, the error function
for the upper unit is shifted by the lower unit ,
weighted by the error distribution of the lower unit
and integrated over the support of the error distribution of the
lower unit (which is the same as integrating over all of ,
since outside of the support of the error distribution, the integral
is zero). The result of this integration is, by definition, the error
density function around the frame , and this is denoted
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Fig. 1. Error propagation in serial linkages.

as . We illustrated (3) in Fig. 1. Parametric
distributions that can be used for this application are discussed
in Section III, but it should be noted that (3) holds, regardless of
the size of the errors or the form of the error density.

To test this formulation, consider the case of exact kinematics.
In this case, the error distributions have a very special form:
they are Dirac delta functions on . In complete analogy
with the usual Dirac delta function on the real line, we have the
properties

Using these properties, the error distributions for both units
may be written as

Then, in this special case, (3) reduces to

(4)

In other words, in the case of exact kinematics, we have ex-
actly the result which is expected.

III. SPECIAL FEATURES OF CONCENTRATED

PROBABILITY FUNCTIONS

Errors in manufactured parts, and in the assembly of those
parts into larger structures, are typically small, but not so small
as to be ignored. Therefore, having a way to describe small er-
rors using concentrated probability density functions (pdfs) is
useful. This section focuses on the properties of concentrated
pdfs on the Euclidean group. In the proof that follows, a number
detailed mathematical steps are skipped. These details can be
obtained from the authors on request.

A. Probability Densities Concentrated at the Identity

Suppose that instead of a deterministic and exactly measured
frame of reference , we have a distribution (or cloud)
of frames of reference that are tightly clustered around . How
do we describe such things in a quantitative way? Let us first
consider a cloud clustered around the identity . In
order to quantify what is meant by a highly concentrated/tightly
clustered density, a few definitions are required.

Definition 1: Compatibility: Let be a real unimodular ma-
trix Lie group1 (of which and are examples), and
let be an orthogonal basis for the associated Lie algebra

, that is, , where is an inner product on
, is the Kronecker delta, and is a scale factor (which

can be set to if each is scaled appropriately). Let
where . Let be a small positive real

number. Let be a metric (distance function) for
, with the additional property that

where is the identity element of . Let us say that when this
condition holds, the metric and inner product are
compatible with each other. (Examples for can be found
in the Appendix.)

Definition 2: Rapidly Decreasing Unimodal Distribution: A
pdf on a real unimodular matrix Lie group is a function

, with the property that , where
is the appropriately normalized bi-invariant integration measure
for . It is called unimodal and rapidly decreasing with mode
at the identity if, for all , the following inequality
holds:

for all values of for which ,
and some real-valued function that increases ex-
ponentially for sufficiently large values of . In other words,
decreases monotonically and rapidly as it traverses any one-di-
mensional (1-D) subgroup away from the identity.

Definition 3: Tightness of a Distribution: Let be a real uni-
modular matrix Lie group, and let be a smooth and
rapidly decreasing unimodal pdf. is called tightly focused

1Recall that a Lie group is called unimodular if its integration measure d(g)
has the property that d(g � g) = d(g � g ) for all g 2 G
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or highly concentrated at the identity if, for compatible
and , the following is true for a small number :

and, in addition, grows exponentially for values of
. Stated intuitively, a distribution satisfies this condition if most

of its mass is supported on a small region around the identity.
Such a distribution can be moved elsewhere by the left-shift
operation.

If two functions, each concentrated within a ball of radius
about the identity are convolved, the result will be concentrated
in a ball of radius . Therefore, if one performs convolutions,
in order for the result to be safely considered as tightly focused,
each of the original functions should be concentrated within a
ball of radius .

Tightly focused distributions are essentially pdfs on the
Lie algebra , and we therefore can use any number of
parametric distributions that are used in . For example, the
Gaussian distribution

(5)

can be used, where as in (1), and is
defined as in (2).

We note that while the exponential mapping from to
is not bijective, this is irrelevant for two reasons: 1) the

set of measure zero for which bijectivitity fails has no effect
on nonpathological pdfs; and 2) the small errors to which this
mapping is applied are not located at the singularities of the
mapping, which are far from the identity.

The normalization constant is determined by setting

so as to make a pdf. Here, is the unique bi-invariant
integration measure for . In exponential parameters

near the identity . Therefore, when is tightly con-
centrated around the identity, we have

This is true for exponential coordinates and a distribution highly
concentrated at the identity. Therefore, the constant in (5) can

be set in the usual way that it is for Gaussian distributions. In
particular, if is the matrix of covariances with elements de-
fined by

(6)

then

Special properties of the distribution in (5) are proved in the
Appendix, as is the issue of whether or not covariances should
be defined as in (6).

Given two probability densities on , their convolution
is defined as

(7)

This can be considered as a special case of (3), when the depen-
dence on and either does not exist or is suppressed for
notational convenience. If describes a distribution of frames
of reference , and describes a distribution of
frames of reference , then the convolution

is the distribution that describes the distribution of all pairs
. In general, since

, it follows that . How-
ever, convolutions of two distributions centered tightly around
the identity do commute.

In what follows, the functions are interpreted as func-
tions with the argument in described as 4 4 homoge-
neous transformations. These functions can be extended to have
argument in in a number of ways, e.g., by setting
for all , or by having decay rapidly
to zero as the distance between and increases. When such
extensions are smooth, then expanding in a Taylor series in

yields

(8)

where and is defined in a natural way,
i.e., is a matrix with entries each of with

.
Equation (8) is useful in evaluating expressions in the

proof below. Note that equalities that are presented below
are true to in the sense that denotes

. With this, we have the following.
Theorem: Convolution of two functions on , each

tightly focused at the identity, is the same as convolution on
using exponential parameters as coordinates.
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Proof: Let and
. Let , for , be func-

tions tightly focused at the identity. Then2

Let us define in an analogous way. Then, using (8) and
retaining zeroth-order terms, we have

Then, the convolution (7) can be written in this special case as

and, since , . Therefore, we can write

(9)

where is the convolution of functions in .

B. Convolution of Probability Densities Shifted From the
Identity

The issue of how to describe highly concentrated distribu-
tions around a frame of reference is handled easily by left
translating a distribution defined around the identity

Given two shifted functions and
, the convolution is

If we define the new variable , then .
Therefore

2Equation (8) and the tightness of the distribution are used here and in the
manipulations that follow.

If we define such that , then

Now, if and are highly concentrated in a small neighbor-
hood of the identity, the only values of that matter will be close
to the identity. The inverse of these values of also will be close
to the identity. The automorphism preserves
closeness to the identity. Therefore, the fact that is concen-
trated in a small neighborhood of the identity, and the fact that

is close to the identity, means that forces to have
importance only near the identity.

Since is close to the identity, . Then, by
definition, we have

Likewise, it can be shown that

where is defined by the expression
. See [4] and [19] for the explicit form of

as a 6 6 matrix.
Since and are both close to the identity, an extension of

(9) can be applied to yield

(10)

Note that whereas is close to the identity, , in general, will
not be, since and are not small motions. In order to compute

, one must substitute

into the above expression.
Finally, we note that

even though

IV. FORM CLOSURE FOR CONVOLUTION AND CONDITIONING

OF CONCENTRATED GAUSSIANS ON

Let us assume that and are both concentrated
-Gaussian functions of the form in (5). This section

computes (10) explicitly in closed form, and establishes how
the mean and variance of each of the initial concentrated
distributions “mix” to result in the mean and variance of their
convolution.
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We note that while form closure under convolution of
Gaussian functions, as defined in (5), results trivially from (9),
the case when both functions are shifted is more challenging.
Fundamental to all of the calculations in this section is the
identity [4]

(11)

If are taken to be of the form (5), then direct substitution
into (10) and use of (11) with produces the result

(12)

We note that since , and that, in general, for
invertible matrices of compatible dimensions

, our result can be written in the alternate, slightly
more complicated, form

Now, the following formula [10, eq. 2.22]:

which holds when , and are of compatible dimensions
and all of the indicated inversions are well defined, can then be
used in reverse with , , and

to yield

(13)

This result is one which also can be obtained from the theory
of extended Kalman filtering [24], and has been obtained with
other arguments [26].

This provides all that is required to propagate error densities
in closed form, rather than numerically performing the convo-
lution for the special case of highly concentrated distributions.
Returning to error propagation and (3), the results of this section
can be seen to be directly applicable by observing that one can
define

In other words, each error density is Gaussian shifted from the
identity to and, in addition, the covariance matrix

and scalars depend on the amount of shift.
Conditioning of highly concentrated densities at the identity

follows in exactly the same way that it does in .

V. NUMERICAL EXAMPLES

Here, we present two examples. In the first subsection, a cas-
cade of two Stewart–Gough platforms, each with small errors
in their leg lengths, is analyzed using the covariance propaga-
tion method presented earlier. This example is used to verify and

Fig. 2. Hybrid manipulator of two stacked 6-D Stewart platforms.

validate the part of our formulation that was devoted to small er-
rors. In the second example, the propagation of large backlash
in a planar revolute manipulator is analyzed. This example illus-
trates the universality of the convolution formulation, even in a
case when the errors are too large for covariance propagation to
be applicable.

A. Propagation of Covariances in a Hybrid Serial-Parallel
Manipulator

Consider a hybrid manipulator of two stacked 6-D Stewart
platforms shown in Fig. 2. For this Stewart platform, the coor-
dinates of the six connection points at the base and the platform
are chosen as

for , respectively. The configurations of the first and
second module are taken as

The orientation parts of and are generated using the
- - Euler angles, i.e., ( ) for and
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( ) for . Obviously, when two such platforms
are stacked, the frame of reference at the end, , is then

.
With given and , the six leg lengths of the first module

can be easily calculated as

and those of the second module as

In order to test the covariance formula derived in this paper,
we generated small deviations of their leg lengths from the
above ideal values by assuming that each leg length has a
uniformly random error of 1%. Therefore, each leg length
was sampled at three values, , and . This
generates different frames of reference that are
clustered around . While this distribution is not Gaussian, as
will be seen, the derived covariance propagation method still
works reasonably well. Here, is obtained using the forward
kinematics method developed in [32].

We compute

and then the “experimental” covariances as

(14)

For leg lengths with 1% error, the experimental results for
the first and second module are computed, respectively, as
and , shown at the bottom of the page.

Using the covariance propagation formula (12), the inverse
covariance of the whole manipulator is obtained as , as
shown at the bottom of the page.

To verify the proposed covariance propagation method, brute
force enumeration is also used to get the covariance of the whole
manipulator directly. In this case, the formula in (14) is used
with the discrete poses obtained by concatenating every ele-
ment of with every other, and one obtains , defined
as shown at the bottom of the page.
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Fig. 3. Deviation of the proposed propagation covariance method relative to
brute-force enumeration.

As can be seen, these results are in excellent agreement,
which serves as a demonstration and validation of the derived
formula for the case of small errors. This agreement is quan-
tified in a single number defined using the Hilbert–Schmidt
(Frobenius) norm as

where is the deviation in the computed by covariance prop-
agation relative to that generated by brute force, and de-
notes the Hilbert–Schmidt (Frobenius) norm. For leg lengths
with 1% error, we found .

Of course, it is of interest to know what happens in the case
of other smaller and larger errors, and so we have repeated this
experiment with 0.5%, 0.8%, 1%, 2%, 3%, and 5%
errors on leg lengths. The trend is graphed in Fig. 3. Clearly, the
approximations used in the derivation of covariance propagation
break down as the errors become large.

The following subsection considers a different example in
which the errors are large, and the value of the convolution for-
mulation presented earlier is demonstrated.

B. Large Backlash Propagation in a Revolute Manipulator
by Convolution

Consider the three-link planar revolute manipulator shown in
Fig. 4. Each rigid link has length , and each joint has some
backlash that is described by a probability distribution
centered around the value 30 degrees. The error density for
a single link is then of the form

(15)

Fig. 4. Three-link planar manipulator with joint backlash.

where is the usual Dirac-delta function in one dimension,
and an arbitrary element of is parametrized as

The associated volume element for this parameterization is
, and integration over is integra-

tion over all values of and , .
In (15), the delta functions enforce the rigidity of the links,

and division by is due to the in the volume element. The
function has its mode at 0, but the backlashes can be po-
tentially large (i.e., not highly concentrated). For this reason, we
cannot take it to be a Gaussian, but rather, a folded Gaussian of
the form

(16)

The error density that accumulates at the end-effector due to
backlashes in each of the joints is computed as the convolution

Computing this numerically by the definition of convolution is
not as convenient as using the -convolution theorem and
the corresponding concept of Fourier transform, which is what
we shall do here.

The Fourier transform of a function on is defined
as

(17)

where is an infinite-dimensional unitary matrix called
an irreducible unitary representation (IUR) [4]. It possesses
the important homomorphism property

. One can show that the generalization of
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the classical Fourier transform in (17) admits a convolution
theorem due to the homomorphism property of , and
that the following inverse transform can be used to reconstruct
the original function:

trace (18)

This is because the matrix elements of the full set of IURs
form an orthonormal basis with which to expand functions on

.
A number of works, including [4], [27], [28], and [30], have

shown that the matrix elements of the IURs for can be
expressed as

(19)

where is the th-order Bessel function, and and take
values in the integers.

From this expression, and the fact that is a unitary
representation, we have that

(20)

Computing the -Fourier transform of the one-link
backlash-error density in (15), one finds (after the delta func-
tions kill the integrals over and ) that

(21)

Using the convolution theorem, we compute ,
where the matrix elements of are given by (21). Then, the
original error density can be reconstructed by
applying the Fourier-inversion formula (18) to . Since it
is difficult to view the error density graphically, the mar-
ginal density function is computed. The marginal density
function is found by just integrating the Fourier recon-
struction formula (18) for , with respect to , as

Fig. 5. Marginal error density �(r; �) for � = 0:1.

To validate the results obtained from our convolution-based
error-propagation method, the error distribution (16) is sam-
pled and applied to each joint of the manipulator directly. Then,
brute-force enumeration is used to obtain the error distribution
directly.

The marginal error densities obtained from both
methods are plotted in Figs. 5 and 6, with the top one from the
propagation method, and the bottom one from brute force. The
variance of 0.1 is given in Fig. 5, and of 0.3 is given in
Fig. 6.

For the above computations, the link length is taken as 1,
and 60 sample points are generated for the distribution (16).
The infinite-dimensional matrix function in the
Fourier transform is truncated at finite values of ,
(i.e., the dimension of is ). The bandlimited
approximation still gives very accurate results, because the mag-
nitude of the Fourier transform of a sufficiently smooth function
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Fig. 6. Marginal error density �(r; �) for � = 0:3.

can be ignored beyond a certain cutoff frequency. The frequency
parameter is sampled in the interval of 300 with an integration
step of 0.2. All the calculations in this example took less than
3 min using Matlab with a 1.0-GHz, 516-MB RAM computer.

VI. CONCLUSION

Quantifying the intuitive notion of how spatial errors “add”
has been addressed in this paper. It was shown that even though
the concept of a Gaussian distribution does not completely
generalize when considering the case of Lie-group-valued
arguments, an appropriate concept does exist when considering
highly concentrated distributions. This paper worked out the
details of how Gaussian distributions are defined in this con-
text, what their properties are, and how they can be applied to
compute the propagation of covariances in serial manipulators.
Properties of these distributions were proven. The computations
performed show that such distributions have the desired closure
properties in order for them to be useful in estimation problems.

APPENDIX

A. Metrics on Rigid-Body Displacements

Several metrics have been proposed in the kinematics liter-
ature to measure displacements between rigid bodies [5], [7],
[11], [17], [20].

It can be shown that the following is a metric:

(22)

where

contains inertial information about the rigid body that is being
moved from to . In particular, if the body has mass den-
sity , then and .
This naturally reconciles the difference in units used to measure
translations and rotations. In other words, the body that is under-
going the motion itself defines (through its mass density) how
rotations should be weighted relative to translations. The metric

discussed here is left invariant [5]. A compatible inner
product satisfying Definition 1 is

where .
A second metric that can be used for is

In a Lie-thoeretic setting, this may be a more natural metric.
However, in some applications, the issue of differences in units
between orientational and translational quantities must be ad-
dressed. An inner product compatible with this metric is

where .

B. Integration Over Rigid-Body Motions

The body-fixed Jacobian for parametrized with
is [18], [19]

(23)

In general, the volume element with which to integrate over mo-
tions will be of the form

It can be shown that the same result occurs whether the body-
fixed or base-fixed Jacobian is used.
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C. Statistics on Groups

The concepts of mean, variance, and covariance are well de-
fined for probability densities in . Let

where . Then the mean, or expected value,
is the value of which minimizes . The straightfor-

ward generalization of this to pdfs on groups is that the expected
value is the group element which minimizes the
function

(24)

Here, is a metric (not to be confused with the integra-
tion measure ), and clearly, the center of mass in this case
depends on how this metric is defined. Hence, is called
the -mean, and the value is what we will refer to
as the -variance. These definitions are known in the theoret-
ical statistics literature (e.g., see [6]), but are not part of what is
generally considered to be standard engineering mathematics.
Other issues relating to pdfs on groups in general (and ,
in particular) are addressed in [12], [16], and [22].

In traditional statistics in , covariance matrices
with entries of the form

play an important role. Here can be viewed as a (signed)
distance from the origin to a point on the th coordinate axis. A
natural extension of this concept to the group-theoretic setting
is

(25)

We note that when using the metric
, the above covariance formula essentially re-

duces to the standard definition, since .
Therefore, this is a very natural choice in this context. In the
body of this paper, when calculating covariances, we are cal-
culating .

In contrast, while the other metric is applicable in many
contexts, it introduces the weighting matrix into the cal-
culations. In order to use a covariance calculated with this
metric in the definition of the -Gaussian distribution, the
fact that the units in are homogeneous over all values of
and would need to be modified to account for the fact that

, and have different units. In other words,
if, for example, the weighting matrix in (22) has and

, where is a scalar and is the identity, then will be

divided by when both and are rotational, and divided by
when either or (but not both) are rotational. This reduces

the definition of covariances to be exactly the same as in (6) for
the case of highly concentrated distributions.
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