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Abstract

Error propagation on the Euclidean motion group arises in a num-
ber of areas such as in dead reckoning errors in mobile robot nav-
igation and joint errors that accumulate from the base to the distal
end of kinematic chains such as manipulators and biological macro-
molecules. We address error propagation in rigid-body poses in a
coordinate-free way. In this paper we show how errors propagated
by convolution on the Euclidean motion group, SE�3�, can be ap-
proximated to second order using the theory of Lie algebras and Lie
groups. We then show how errors that are small (but not so small
that linearization is valid) can be propagated by a recursive formula
derived here. This formula takes into account errors to second order,
whereas prior efforts only considered the first-order case. Our formu-
lation is non-parametric in the sense that it will work for probability
density functions of any form (not only Gaussians). Numerical tests
demonstrate the accuracy of this second-order theory in the context
of a manipulator arm and a flexible needle with bevel tip.

KEY WORDS—recursive error propagation, Euclidean group,
spatial uncertainty.

1. Introduction

Error propagation on the Euclidean motion group arises in a
surprising number of different areas. For example, consider a
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robotic manipulator for which each joint angle has some back-
lash. If we describe this backlash as a distribution of possible
angles around the nominal one, how will these joint errors add
up to produce pose errors at the end effector? Similar prob-
lems arise in the study of chainlike biological macromolecules
that undergo thermal fluctuations in solution. See, for example,
Zhou and Chirikjian (2006) and Kim and Chirikjian (2005).
As another example, consider a non-holonomic mobile robot
that executes an open loop trajectory. Uncertainties in pose will
add up along the path, and if many trials are performed, what
will the distribution of terminal poses be? Many such problems
in “probabilistic robotics” can be imagined with the recent
popularity of simultaneous localization and mapping (SLAM)
(Thrun et al. 2005).

If the errors are small, Jacobian-based methods or first-
order error propagation theories can be used. However, what
if the errors are very large? Here we address the propagation
of large errors in rigid-body poses in a coordinate-free way. In
this paper we show how errors propagated by convolution on
the Euclidean motion group, SE�3�, can be approximated to
second order using the theory of Lie algebras and Lie groups.
We then show how errors of moderate size (but not so small
that linearization is valid) can be propagated by a recursive
formula derived here. This formula takes into account errors
to second order, whereas prior efforts only considered the first-
order case. Our formulation is non-parametric in the sense that
it will work for probability density functions (pdfs) of any form
(not only Gaussians).

In the remainder of this section we review the literature on
error propagation, and review the terminology and notation
used throughout the paper. In what follows, bold lower case
letters denote vectors, N and n are positive integers, G denotes
either the groups SO�3� or SE�3�, all upper case letters (Roman
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or Greek) (except for N and G) denote matrices, lower case
letters denote scalars and group elements, and a lower case let-
ter followed by parenthesis denotes a scalar-valued function.

In Section 2, important definitions from the basic theory
of Lie groups and probability and statistics are reviewed. In
Section 3, several new theorems are proved. This forms the
core of our paper. In Section 4, sampling is discussed and the
theory is adapted for the case when a whole pdf is not avail-
able. Then numerical tests demonstrate the accuracy of this
recursive second-order propagation formula relative to base-
line truth generated by brute force. In Section 5 our conclu-
sions are presented. Three appendices provide more detailed
background material that is important for understanding the
definitions and proofs presented in the main body of the paper.
The remainder of the current section reviews the literature and
basic definitions and notation used throughout the paper.

1.1. Literature Review

The Lie-group-theoretic notation and terminology which has
now become standard vocabulary in the robotics community is
presented by Murray et al. (1994) and Selig (1996). Chirikjian
and Kyatkin (2001) formulated many problems in robot kine-
matics and motion planning as the convolution of functions on
the Euclidean group. The representation and estimation of spa-
tial uncertainty has also received attention in the robotics and
vision literature. Two classic works in this area are Smith and
Cheeseman (1986) and Su and Lee (1992). Recent work on er-
ror propagation describes the concatenation of Gaussian ran-
dom variables on groups and applies this formalism to mobile
robot navigation (Smith et al. 2003). In all three of these works,
errors are assumed to be small enough that covariances can be
propagated by the formula (Wang and Chirikjian 2006a,b)

�1�2 � Ad�g�1
2 ��1 AdT�g�1

2 �� �2� (1)

where Ad is the adjoint operator for SE�3� (see the appendix
for a review of terminology). This equation essentially says
that given two “noisy” frames of reference g1� g2 � SE�3�,
each of which is a Gaussian random variable with 6 � 6 co-
variance matrices1 �1 and �2, respectively, the covariance of
g1 � g2 will be �1�2. This approximation is very good when
errors are very small. We extend this linearized approximation
to the quadratic terms in the expansion of the matrix exponen-
tial parameterization of SE�3�. The origin of (1) will become
clear for the special case of small errors in our more general
nonparametric derivation.

1. Exactly what is meant by a covariance for a Lie group is quanti�ed later in
the paper.

1.2. Review of Rigid-body Motions

The Euclidean motion group, SE�3�, is the semi-direct product
of �3 with the special orthogonal group, SO�3�. We represent
elements of SE�3� using 4 � 4 homogeneous transformation
matrices

g �
�� R t

0T 1

�� �
and identify the group law with matrix multiplication. The in-
verse of any group element is written as

g�1 �
��RT �RTt

0T 1

�� �
For small translational (rotational) displacements from the

identity along (about) the i th coordinate axis, the homoge-
neous transforms representing infinitesimal motions look like

gi ���
	� exp�� 
Ei � � I4 � � 
Ei

where I4 is the 4� 4 identity matrix and


E1 �

���������

0 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 0

���������
� 
E2 �

���������

0 0 1 0

0 0 0 0

�1 0 0 0

0 0 0 0

���������
�


E3 �

���������

0 �1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

���������
� 
E4 �

���������

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

���������
�


E5 �

���������

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

���������
� 
E6 �

���������

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

���������
�

These are related to the basis elements 
Ei � for so�3� (the
Lie algebra corresponding to the rotation group, SO�3�) as


Ei �
��Ei 0

0T 0

��
when i � 1� 2� 3. Each 
Ei has a corresponding natural unit
basis vector ei � �

6. For example, e1 � [1� 0� 0� 0� 0� 0]T,
e2 � [0� 1� 0� 0� 0� 0]T, etc.
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Large motions are also obtained by exponentiating these
matrices. For example,

exp�t 
E3� �

���������

cos t � sin t 0 0

sin t cos t 0 0

0 0 1 0

0 0 0 1

���������
and

exp�t 
E6� �

���������

1 0 0 0

0 1 0 0

0 0 1 t

0 0 0 1

���������
�

More generally, it can be shown that every element in the
neighborhood of the identity of a matrix Lie group G can be
described with the exponential parameterization

g � g�x1� x2� � � � � xn� � exp

�
n�

i�1

xi 
Ei

	
(2)

where n is the dimension of the group. For SO�3� and SE�3�,
n � 3 and 6, respectively, and the exponential parameteriza-
tion extends over the whole group.

One defines the “vee” operator, �, such that

�
n�

i�1

xi 
Ei

	�
�

������������

x1

x2

x3

���

xn

������������
The vector, x � �n, can be obtained from g � G from the
formula

x � �log g��� (3)

For SO�3� and SE�3� this is defined except on a set of measure
zero, which for all intents and purposes in the probability and
statics problems that we consider means that the exponential
and logarithm maps are “effectively” bijective. See the appen-
dix for details.

When integrating a function over SO�3� or SE�3�, a weight
��x� is defined such that


G
f �g� dg �



�n

f �g�x����x� dx�

The exact form of the weighting function is

��x� � � det Jr�x�� where

Jr�x� �
��

g�1 �g

�x1


�
� � � � �

�
g�1 �g

�xn


��
� (4)

This is derived for SO�3� and SE�3� in the Appendix B and C,
respectively. The weighting function is even in the sense that
��x� � ���x�.

1.3. The Baker–Campbell–Hausdorff Formula

Given any two elements of a Lie algebra, X and Y , the Lie
bracket is defined as [X� Y ] � XY � Y X . An important re-
lationship called the Baker–Campbell–Hausdorff (BCH) for-
mula exists between the Lie bracket and matrix exponential
(see Baker (1904), Campbell (1897) and Hausdorff (1906)).
Namely, the logarithm of the product of two Lie group ele-
ments written as exponentials of Lie algebra elements can be
expressed as

Z�X� Y � � log�eX eY �

where

Z�X�Y � � X � Y

� 1

2
[X� Y ]

� 1

12
�[X� [X� Y ]]� [Y� [Y� X]]�

� 1

48
�[Y� [X� [Y� X ]]]� [X� [Y� [Y� X]]]�

� � � � � (5)

This expression is verified by expanding eX and eY in Taylor
series of the form in (36), and then substituting the result into
(37) with g � eX eY . If the � operation is applied (see the
appendix for a review), (5) can be written as

z � x� y� 1

2
ad�X�y� 1

12
�ad�X�ad�X�y

� ad�Y �ad�Y �x�� 1

48
�ad�Y �ad�X�ad�Y �x

� ad�X�ad�Y �ad�Y �x�� � � �

1.4. Probability and Statistics in �n: Multivariate Analysis

In �n , a pdf is defined by the conditions

f �x� � 0 � x � �n and


�n

f �x� dx � 1
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where dx � dx1 dx2 � � � dxn is the usual Lebesgue integration
measure. The mean of a pdf, f �x�, is defined as

� �


�n

x f �x� dx or


�n
�x� �� f �x� dx � 0� (6)

Note that � minimizes the cost function

c�x� �


�n
�x� y�2 f �y� dy (7)

where �v� � �v � v is the 2-norm in �n.
The covariance of the same pdf about the mean is defined

as

� �


�n
�x� ���x� ��T f �x� dx� (8)

It follows that

C �


�n

xxT f �x� dx � � � ��T� (9)

where C is the covariance about the origin and � is the co-
variance about the mean.

Pdfs are often used to describe distributions of errors. If
these errors are concatenated, they “add” by convolution:

� f1 � f2��x� �


�n

f1��� f2�x� �� d�� (10)

The mean and covariance of convolved distributions are found
as

�1�2 � �1 � �2 and �1�2 � �1 ��2� (11)

In other words, these quantities can be propagated without
explicitly performing the convolution computation, or even
knowing the full pdfs. This is independent of the parametric
form of the pdf. Often one does not have access to the full pdf,
but only samples from a process with an underlying pdf. In this
case, the unbiased sample mean and covariance are defined as
(Anderson 2005)

��N� � 1

N

N�
i�1

xi and

��N� � 1

N � 1

N�
i�1

�xi � ��N���xi � ��N��T�

The reason for division by N � 1 rather than N is explained
in the literature on multivariate analysis, such as Anderson
(2005). As the sample size becomes large, the difference be-
tween N and N � 1 becomes negligible and these sampled
quantities converge to those corresponding to the underlying
pdf.

Our main purpose in this paper is to develop equations anal-
ogous to (11) to describe the propagation of error on the mo-
tion group SE�3�. In the process, we also do so for the rotation
group SO�3�.

It is often convenient to use the Gaussian (or normal) dis-
tribution to model errors in �n . This parametric distribution
is completely defined by its mean and covariance. We have
no need to assume that densities are Gaussian. Our results are
non-parametric, and therefore more general.

2. Definitions and Properties of Mean and
Covariance on SE�3�

In this section we provide definitions of the mean and covari-
ance of Lie-group-valued functions and illustrate some of their
properties. We note in passing that a pdf that is a symmetric
function, 	�g� � 	�g�1�, always satisfies the condition


G
�log g��	�g� dg � 0� (12)

for G � SO�3� or G � SE�3�. This is easy to see if we let
	0�x� � 	�eX �. Then 	0�x� � 	0��x�. This is an even func-
tion in the exponential coordinates, and so the odd function
x	0�x� integrates to zero over a symmetric domain of integra-
tion in the space of exponential parameters that maps to G.
See the appendix for a discussion of integration measures. In
our case this domain is the ball of radius 
 (for SO�3�), or the
Cartesian product of this ball with �3. Both of which are sym-
metric. Hence, the integral in (12) vanishes. More generally, if
	�g� is a symmetric function on G � SO�3� or G � SE�3�
then for

�n
i�1 ni odd,


G

n�
i�1

[�log g�� � ei ]ni	�g� dg � 0� (13)

This is because the integrand is an odd function of the compo-
nents of x. For example,


G
�log g�2k�1	�g� dg � 0n�

Here 0n is the n-by-n zero matrix with n � 3 or n � 6�

Definition 1. If a unique value � � G exists for which

G

[log���1 � g�]� f �g� dg � 0� (14)

� will be called the mean of a pdf f �g� on G, which is a
straightforward extension of (6). Furthermore, the covariance
about the mean will be computed as

� �



G
log���1 � g��[log���1 � g��]T f �g� dg� (15)

Note that while in the case of Euclidean space (6) and mini-
mization of (7) both give the same value of the mean, the min-
imization of a functional of the form
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c�h� �



G
�[log�h�1 � g�]��2 f �g� dg

does not generally return a value hmin that is equal to �. How-
ever, in the special case when f �g� is unimodal and very con-
centrated, hmin � �.

The equality (12) can be thought of as a statement of when
the mean is at the identity. If 	�g� has mean at the identity,
then f �g� � 	�a�1 � g� has mean at a. We use 	�g� to denote
pdfs with mean at the identity, and f �g� to denote pdfs that
can have the mean at some other group element.

Theorem 1. If f �g� has mean � and covariance � , then to
second order

m � [I � F1���]� (16)

where the following shorthand is used:

m �



G
�log�g��� f �g� dg and � � �log������ (17)

and the matrix-valued function F1��� is defined as

F1��� � 1

12

6�
i� j�1

� i j ad� 
Ei �ad� 
E j � (18)

and

C �



G
�log�g�����log�g����T f �g� dg

� � � �log�����log����T

� 1

2

�
�adT�log��� ad�log���

�
� (19)

Here C is the covariance about the identity, which is defined
in an analogy with the concept of covariance about the origin
in the context of probability and statistics in �n .

Proof. Let f �g� � 	���1 � g� where 	�g� has mean at the
identity. Then


G
�log g�� f �g� dg �



G
�log g��	���1 � g� dg

�



G
�log�� � g���	�g� dg�

Expanding using the BCH formula (5) with � � exp X and
g � exp Y , and using the linearity of the Lie bracket, we find
that since 	�g� is a pdf with mean at the identity,



G

[log�� � g�]�	�g� dg

� x�
6�

i� j�1

� i j

�
1

12
[ 
Ei � [ 
E j � X ]]

� 1

48
�[ 
Ei � [X� [ 
E j � X ]]]� [X� [ 
Ei � [ 
E j � X]]]�

��
� � � � �

The first expression in the statement of the theorem results
from the definition of the adjoint and from keeping the �rst
two terms in the above expansion. Likewise,


G
[log�� � g��]�

�
[log�� � g��]�

�T
	�g� dg

�



G

�
x� y� 1

2
ad�X�y� � � �

�

�
�

x� y� 1

2
ad�X�y� � � �

�T

	�g� dg�

Expanding out the product and eliminating terms linear in y
results in the second statement of the theorem. �

3. Propagation of the Mean and Covariance of
pdfs on SE�3�

Let �1� �2 � SE�3� be two precise reference frames. Then
�1 ��2 is the frame resulting from stacking one relative to the
other. Now suppose that each has some uncertainty. Let 
hi �
and 
k j � be two sets of frames of reference that are distributed
around the identity. Let the first have N1 elements, and the
second have N2. How will the covariance of the set of N1 � N2

frames 
��1��2�
�1��1�hi��2�k j � (which are also distributed

around the identity) look?
Let 	i �g� be a unimodal pdf with mean at the identity and

which has a preponderance of its mass concentrated in a unit
ball around the identity (where distance from the identity is
measured as ��log g���). Then 	i��

�1
i � g� will be a distribu-

tion with the same shape centered at �i . In general, the convo-
lution of two pdfs is defined as

� f1 � f2��g� �



G
f1�h� f2�h

�1 � g�dh�

and, in particular, if we make the change of variables k � ��1
1 �

h, then

	1��
�1
1 � g� � 	2��

�1
2 � g�

�



G
	1�k�	2��

�1
2 � k�1 � ��1

1 � g� dk�

Making the change of variables g � �1 � �2 � q, where q is a
relatively small displacement measured from the identity, the
above can be written as
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	1�2��1 ��2 �q� �



G
	1�k�	2��

�1
2 � k�1 ��2 �q� dk� (20)

The essence of this paper is the efficient approximation of
covariances about the mean of 	1�2 in (20) when the covari-
ances about the means of 	1 and 	2 are known. In cases when
�1�2 � �1 � �2, the problem reduces to the efficient approxi-
mation of

�1�2 �



G



G

log�q��[log�q��]T	1�k�	2

� ���1
2 � k�1 � �2 � q� dk dq

�



G



G

log���1
2 � k � �2 � q ���

� [log���1
2 � k � �2 � q ���]T	1�k�	2�q

�� dk dq �� (21)

Lemma 1. The convolution of pdfs with mean at the identity
results (to second order) in a pdf with mean at the identity.
Furthermore, if 	1 � 	2 � 	2 � 	1 and 	i �g� � 	i �g

�1�, then
this result becomes exact.

Proof. We have

G
�log g��	1 � 	2��g� dg

�



G



G
�log g�	1�h�	2�h

�1 � g� dh dg

�



G



G

log�h � k�	1�h�	2�k� dh dk�

To second order, all terms in the BCH expansion of log�h � k�
are linear in either log h or log k (or both), and therefore at
least one of the above integrals integrates to zero.

If 	1 � 	2 � 	2 � 	1 and 	i �g� � 	i �g
�1� then it is easy

to show that �	1 � 	2��g� � �	1 � 	2��g
�1�, which automat-

ically means that the function �	1 � 	2��g� has mean at the
identity due to (12). �

Theorem 2. If fi �g� is a pdf on SE(3) that has mean �i and
covariance�i for i � 1� 2, then to second order, the mean and
covariance of � f1 � f2��g� are, respectively,

�1�2 � �1 � �2 (22)

and

�1�2 � A� B � F�A� B�� (23)

where

F�A� B� � 1

4
C�A� B�

� 1

12

�
A��B � �A��B�T � B ��A � �B ��A�T� �

A � Ad���1
2 ��1 AdT���1

2 ��

B � �2�

and C�A� B� and A�� are computed as follows:

A�� �
�� A11 � tr�A11�I3 03

A12 � AT
12 � 2tr�A12�I3 A11 � tr�A11�I3

�� �
where A is divided into 3-by-3 blocks A11, A12, A21, A22�

We define B �� in the same way with B replacing A every-
where in the expression. The blocks of C are computed as

C11 � �D11�11�

C12 � ��D21�11�
T � D11�12 � C21�

C22 � �D22�11 � D21�21 � �D21�12�
T � D11�22�

where Di j�kl � D�Ai j � Bkl�, and the matrix-valued function
D�A�� B �� is defined relative to the entries in the 3� 3 blocks
A� and B � as

d11 � �a�33b�22 � a�31b�32 � a�23b�23 � a�22b�33�

d12 � a�33b�21 � a�32b�31 � a�13b�23 � a�21b�33�

d13 � �a�23b�21 � a�22b�31 � a�13b�22 � a�12b�32�

d21 � a�33b�12 � a�31b�32 � a�21b�13 � a�21b�33�

d22 � �a�33b�11 � a�31b�31 � a�13b�13 � a�11b�33�

d23 � a�23b�11 � a�21b�31 � a�13b�12 � a�11b�32�

d31 � �a�32b�12 � a�31b�22 � a�22b�13 � a�21b�23�

d32 � a�32b�11 � a�31b�21 � a�12b�13 � a�11b�23�

d33 � �a�22b�11 � a�21b�21 � a�12b�12 � a�11b�22�

Proof. The approximation in (22) follows directly from
Lemma 1. Next, let X � log���1

2 � k � �2� � ��1
2 K�2 where

k � exp K , and let Y � log q �. Using the BCH formula (5) to
evaluate the log terms in the definition of covariance, and re-
taining all even terms to second order (since first-order terms
will integrate to zero), we obtain
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�
�Z�X� Y ���[�Z�X� Y ���]T�

even

� xxT � yyT � 1

4
[X� Y ]�

�
[X� Y ]�

�T

� 1

12
y
�
[X� [X� Y ]]�

�T � 1

12
x
�
[Y� [Y� X]]�

�T

� 1

12
[X� [X� Y ]]�yT � 1

12
[Y� [Y� X]]�xT� (24)

Each of these terms can be expanded using the adjoint concept.
For example,

[X� Y ]�
�
[X� Y ]�

�T � ad�X�yyTadT�X� and

[X� [X� Y ]]�yT � ad�X�ad�X�yyT� (25)

In our formulation, X � ��1
2 K�2 (where k � eK and so

��1
2 � k � �2 � exp���1

2 K�2� � eX ). Defining the vector
x � Ad���1

2 �k, then

A �



G
xxT	1�k� dk

� Ad���1
2 �

�

G
�log k��[�log k��]T	1�k� dk

�
AdT���1

2 �

� Ad���1
2 ��1 AdT���1

2 �

and since q � � eY ,

B �



G
yyT	2�q

�� dq �

�



G
�log q ���[�log q ���]T	2�q

�� dq � � �2�

The following complicated looking integral (which is noth-
ing more than (21) written in exponential coordinates)

�1�2 �



q ��G



k�G

�
�Z�X� Y ���[�Z�X� Y ���]T�

� 	1�k�	2�q
�� dk dq �

�



q ��G



k�G

�
�Z�X� Y ���[�Z�X� Y ���]T

�
even

� 	1�k�	2�q
�� dk dq �

can be simplified. This is because

xi x j � eT
i Ad���1

2 ��log k��[�log k��]T AdT���1
2 �e j

and
yk yl � eT

k �log q ���[�log q ���]Tel�

and since all terms in
�
�Z�X� Y ���[�Z�X� Y ���]T

�
even can be

expressed as weighted sums of such products, it follows that
after integration we obtain

�1�2 � A � B � F�A� B�� (26)

For the SE�3� case

Ad�g� �
�� R 03

T R R

�� � �6�6 and

ad�X� �
��
 03

V 


�� � �6�6

where T� � t, V � � v and 
� � �. Then (25) becomes

[X�Y ]�
�
[X� Y ]�

�T

�
��
x 03

Vx 
x

�����y

vy

�� [�T
y � v

T
y ]

���
x �Vx

03 �
x

��

�
��
x 03

Vx 
x

�����y�
T
y �yvT

y

vy�
T
y vyvT

y

�����
x �Vx

03 �
x

��
and

[X� [X�Y ]]�yT

�
��
x 03

Vx 
x

����
x 03

Vx 
x

�����y

vy

�� [�T
y � v

T
y ]

�
��
x 03

Vx 
x

����
x 03

Vx 
x

�����y�
T
y �yvT

y

vy�
T
y vyvT

y

�� �
If we divide the 6 � 6 symmetric matrices A � Ad���1

2 �
�1 AdT���1

2 � and B � �2 into 3� 3 blocks as

A �
�

A11 A12

AT
12 A22

	
and B �

�
B11 B12

BT
12 B22

	
�

then using the specific form of ad�X� and integrating over q �
we obtain



G

[X� [X� Y ]]�yT	2�q
�� dq � �

�� 
2
x 03

Vx
x � 
x Vx 
2
x

�� B

and
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G

[X� Y ]�
�
[X� Y ]�

�T
	2�q

�� dq �

�
�� �
x B11
x

�Vx B11
x � �
x B12
x �
T

��Vx B11
x �
T �
x B12
x

�Vx B11Vx � Vx B12
x � �Vx B12
x�
T � 
x B22
x

�� �
Then integrating over k � G gives


G



G

[X� [X� Y ]]�yT	1�k�	2�q
�� dk dq � � A��B



G



G

[X�Y ]�
�
[X� Y ]�

�T
	1�k�	2�q

�� dk dq �

� C�A� B� �
��C11 C12

CT
12 C22

�� �
The BCH formula yields several such terms, each of which can
be obtained by either transposing those given above or switch-
ing the roles of B and A. �

4. Sampled Distributions and Numerical
Examples

Evaluating the robustness of the first-order (1) and the second-
order (23) covariance propagation formula over a wide range
of kinematic errors is essential in understanding effectiveness
of these formulas. In this section, we test these two covariance
propagation formulas with concrete numerical examples.

In many practical situations, discrete data are sampled from
	1 and 	2 rather than having complete knowledge of the dis-
tributions themselves. Therefore, sampled covariances can be
computed by making the following substitutions:

	1�g� �
N1�

i�1

�i��h
�1
i � g� (27)

and

	2�g� �
N2�
j�1

� j��k
�1
j � g� (28)

where
N1�

i�1

�i �
N2�
j�1

� j � 1�

Here ��g� is the Dirac delta function for the group G,
which has the properties


G
f �g���h�1�g� dg � f �h� and ��h�1�g� � ��g�1�h��

Table 1. DH Parameters of the PUMA 560.

i �i�1 ai�1 di � i

1 0 0 0 �1

2 �90� 0 0 �2

3 0 a2 d3 �3

4 �90� a3 d4 �4

5 90� 0 0 �5

6 �90� 0 0 �6

Using these properties, if we substitute (27) and (28) into (21),
the result is

�1�2 �
N1�

i�1

N2�
j�1

�i� j log���1
2 � hi � �2 � k j �

�

� [log���1
2 � hi � �2 � k j �

�]T� (29)

While this equation is exact, it has the drawback of requir-
ing O�N1 � N2� arithmetic operations. In the first-order theory
of error propagation, we made the approximation

log�k�1 � q� � X � Y

or, equivalently,

[log�k�1 � q�]� � x� y�

where k � exp Y and q � exp X are elements of the Lie group
SE�3�. This decouples the summations and makes the com-
putation O�N1 � N2�. However, the first-order theory breaks
down for large errors. Therefore, we explore here the numeri-
cal accuracy of the second-order theory developed in the pre-
vious section.

4.1. Error Propagation in a PUMA Manipulator

Consider a spatial serial manipulator, the PUMA 560. The
link-frame assignments of PUMA 560 for Denavit-Hartenberg
(DH) parameters is the same as those given by Craig (2005).
Table 1 lists the DH parameters of the PUMA 560, where
a2 � 431�8 mm, a3 � 20�32 mm, d3 � 124�46 mm, and
d4 � 431�8 mm. The solution of forward kinematics is the ho-
mogeneous transformations of the relative displacements from
one DH frame to another multiplied sequentially.

In order to test these covariance propagation formulas, we
first need to simulate some kinematic errors. Since joint an-
gles are the only variables of the PUMA 560, we assume that
errors exist only in these joint angles. We generated errors by
deviating each joint angle from its ideal value with uniform
random absolute errors of ��. Therefore, each joint angle was
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sampled at three values: � i � �, � i , and � i � �. This generates
N � 36 different frames of references 
gi

ee� that are clustered
around desired gee. Here gee denotes the position and orienta-
tion of the distal end of the manipulator relative to the base in
the form of homogeneous transformation matrix.

It is important to note that while the cloud of frames 
gi
ee� is

clustered around gee, it may not be the case that gee is actually
the mean of this cloud. In the first-order theory, the cloud is
assumed to be so tightly focused around gee that the approx-
imation �ee � gee can be made without causing significant
errors. However, in the second-order theory, one needs to be
more precise. We can update our estimate of the mean as

�ee � gee � exp

�
1

N

N�
i�1

log�g�1
ee � gi

ee�

�
� (30)

In practice, for errors of moderate magnitude, only one such
update is required to obtain the exact mean. For very large er-
rors this formula can be iterated with the output, �ee, from one
iteration serving as the input, gee, for the next iteration. A sim-
ilar update to obtain �1 and �2 from the frame clouds around
the frames g1 and g2 (the relative frames from base to mid
point and mid point to distal end of the manipulator such that
g1 � g2 � gee) should also be performed.

Three different methods for computing the same error co-
variances for the whole manipulator are computed. The first is
to apply brute force enumeration, which gives the actual co-
variance of the whole manipulator:

� � 1

N

N�
i�1

xi xT
i � (31)

where xi � [log���1
ee � gi

ee�]
�, and (31) is used for all of the

36 different frames of references 
gi
ee�. The second method is

to apply the first-order propagation formula (1). The third is to
apply the second-order propagation formula (23). For the co-
variance propagation methods, we only need to find the mean
and covariance of each individual link. Then the covariance of
the whole manipulator can be recursively calculated using the
corresponding propagation formula.

In order to quantify the robustness of the two covariance
approximation methods, we define a measure of deviation of
results between the first-/second-order formula and the actual
covariance using the Hilbert–Schmidt (Frobenius) norm as

deviation � ��prop ��actual�
��actual� � (32)

where �prop is the covariance of the whole manipulator calcu-
lated using either the first-order (1) or the second-order (23)
propagation formula, �actual is the actual covariance of the
whole manipulator calculated using (31), and � � � denotes the
Hilbert–Schmidt (Frobenius) norm.

With all of the above information, we now can con-
duct the specific computation and analysis. The results of

Fig. 1. The deviation of the first- and second-order propagation
methods for configuration I.

two different configurations of the manipulator are illus-
trated here. The ideal joint angles of one configuration from
�1 to �6 were taken as [0� 
�2� �
�2� 0� 0� 
�2]. The
ideal joint angles of the other configuration were taken as
[
�4� 
�5� �
�4� 
�10� 
�8� 
 ]. As an initial test, the joint
angle errors � were taken from 0.1 to 0.6 rad, and the static
DH parameters of the links were assumed to be error free.
The covariances of the whole manipulator corresponding to
these kinematic errors were then calculated through the three
above-mentioned methods. The resulting deviations between
the covariance matrices computed directly using (31) and the
first-order and second-order propagation formulas are plotted
in Figures 1 and 2 with (32) on the y-axis for different amounts
of noise on the x-axis.

Since physical manipulators cannot be manufactured with
exact design parameters, and their real linkage parameters such
as the static DH parameters (�i � ai � di ) may have errors, the
propagation theory is applied now to the case with both joint
angle errors and linkage errors. The same sets of calculations
that were conducted for the case with only joint angle errors
are now conducted for this case with the additional linkage er-
rors. Our numerical simulations have shown that if the only
static DH parameters that have errors are the translational pa-
rameters ai and di , then they have essentially no effect on
the value of the deviation. In other words, both the first- and
second-order propagation formulas capture the covariances re-
sulting from these translational errors. However, the linkage
errors in the angular DH parameters such as �i create observ-
able effects on the accuracy of the propagation formulas. In
the given example, we assume that DH parameters �0, �1, and
�5 deviate from their ideal values with uniform random ab-
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Fig. 2. The deviation of the first- and second-order propagation
methods for configuration II.

solute errors of �0�2 rad. Therefore, they are sampled at three
values: �i�0�2, �i , and �i�0�2. Together with the six joint an-
gle errors, this generates N � 39 different frames of reference

gi

ee� that are clustered around the baseline gee. The results of
the first-order and second-order propagation formulas of these
cases were also plotted in Figures 1 and 2.

The numerical simulation results demonstrate that the prop-
agation formula can efficiently deal with all kinematic errors
including errors in joint angles and linkage parameters. It is
also clear that the second-order propagation formula makes
significant improvements in terms of accuracy when compared
with the first-order formula. The second-order propagation
theory is much more robust than the first-order formula over a
wide range of kinematic errors. These two methods both work
well for small errors, and deviate from the actual value more
and more as the errors become large. However, the deviation
of the first-order formula grows rapidly and breaks down while
the second-order propagation method still retains a reasonable
value.

To give the readers a sense of how these covariances look,
we list the values of the covariance of the whole manipulator
for the joint angle error � � 0�3 rad.

The ideal pose of the end effector can be found easily via
forward kinematics to be

gee �

���������

0�0000 �1�0000 0 0�0203

�1�0000 �0�0000 0 0�1245

0 0 �1�0000 �0�8636

0 0 0 1�0000

���������
�

The actual covariance of the whole manipulator calculated
using (31) is

the covariance using the first-order propagation formula (1) is

and the covariance using the second-order propagation for-
mula (23) is

4.2. Continuous-time Covariance Propagation: The
Stochastic Flexible Needle with a Bevel Tip

The previous example in this paper illustrated how to obtain
the mean and covariance of error pdfs resulting from convolu-
tions of densities centered around discrete joints in a manipula-
tor arm. In contrast, applications such as SLAM can be better
described with a model in which the error accumulates con-
tinuously over time. This section addresses that problem. In
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particular, estimates of the mean and covariance of a process
described by a stochastic differential equation (SDE) can be
obtained for small time intervals by numerical integration. The
second-order propagation formulas derived earlier in the paper
are then used to propagate these estimates for larger values of
time. The example that is used to illustrate this technique is
flexible needle steering.

Recently, a number of works have been concerned with the
steering of flexible needles with bevel tips through soft tissue
for minimally invasive medical treatments. (See, for example,
Webster et al. (2006), Park et al. (2005), and Alterovitz et al.
(2007)). In this problem, a flexible needle is rotated with the
angular speed ��t� around its tangent while it is inserted with
translational speed ��t� in the tangential direction. Owing to
the bevel tip, the needle will not follow a straight line when
��t� � 0 and ��t� is constant. Rather, in this case the tip of
the needle will approximately follow a circular arc with cur-
vature � when the medium is very firm and the needle is very
flexible. The specific value of the constant � depends on pa-
rameters such as the angle of the bevel, how sharp the needle
is, the and properties of the tissue. In practice � is fit to ex-
perimental observations of the needle bending in a particular
medium during insertions with ��t� � 0 and ��t� is constant.
Using this as a baseline, and building in arbitrary ��t� and
��t�, a non-holonomic kinematic model then predicts the time
evolution of the position and orientation of the needle tip (Park
et al. 2005�Webster et al. 2006).

In a reference frame attached to the needle tip with the local
x3-axis denoting the tangent to the “backbone curve” of the
needle, and x1 denoting the axis orthogonal to the direction
of infinitesimal motion induced by the bevel (i.e. the needle
bends in the x2–x3 plane), the non-holonomic kinematic model
for the evolution of the frame at the needle tip was developed
by Webster et al. (2006) and Park et al. (2005) as

� � �g�1 �g�� �
�
� 0 ��t� 0 0 ��t�

�T
� (33)

If everything were certain, and if this model were exact,
then g�t� could be obtained by simply integrating the ordinary
differential equation in (33). However, in practice a needle that
is repeatedly inserted into a medium such as gelatin (which is
used to simulate soft tissue) will demonstrate an ensemble of
slightly different trajectories.

A simple stochastic model for the needle is obtained by let-
ting (Park et al. 2005, 2008)

��t� � �0�t�� �1�1�t��

and
��t� � �0�t�� �2�2�t��

Here �0�t� and �0�t� are what the inputs would be in the ideal
case, �1�t� and �2�t� are uncorrelated unit Gaussian white
noises, and �i are constants.

Fig. 3. The deviation of the mean.

Thus, a non-holonomic needle model with noise is

�g�1 �g�� dt �

���������������

�

0

�0�t�

0

0

�0�t�

 !!!!!!!!!!!!!"
dt �

���������������

0 0

0 0

�1 0

0 0

0 0

0 �2

 !!!!!!!!!!!!!"

�
dW1

dW2

�
(34)

where dWi � Wi �t � dt� � Wi �t� � � i �t� dt are the non-
differentiable increments of a Wiener process Wi �t�. This
noise model is a SDE on SE�3�. As shorthand, we write this
as

�g�1 �g��dt � h�t� dt � H dW�t��

In this section, the second-order covariance propagation
formula is demonstrated by “pasting together” two ensembles
of needle trajectories from t � 0 to t � 1�2 and t � 1�2 to
t � 1 to obtain the mean and covariance of needle trajectories
from t � 0 to t � 1. These needle trajectories are generated by
integrating the SDE in (34) for these three time periods with
�t � 0�01 using a modified version of the Euler–Maruyama
method for generating sample paths of SDEs (Higham 2001).
The mean and covariance resulted from the second-order prop-
agation formula are then compared with those obtained by in-
tegrating the SDE from t � 0 to t � 1 as detailed below.

The reference frame g�t� is generated from ��t� �
�g�1 dg�� by the product of exponentials formula at multiples
of the small time step�t as
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Fig. 4. The deviation of the covariance.

g�n�t� � exp ����t� exp ���2�t� � � � exp ���n�t��

A cloud of frames 
g�i��n�t�� for the trials i � 1� � � � � 10�000
are created with � � 0�05 and a certain value of �1 and �2. The
actual SE�3� means and covariances of the cloud of frames

g�i��n�t�� are then computed using brute force enumera-
tion for the three time periods: t1 � [0� 1�2], t2 � [1�2� 1],
and t3 � [0� 1] by applying (30) and (31), respectively. With
the actual means and covariances of needle trajectories for
t1 � [0� 1�2] and t2 � [1�2� 1], the estimated means and co-
variances of needle trajectories for t3 � [0� 1] are derived us-
ing the second-order propagation formula (22) and (23). These
estimated means and covariances for period t3 � [0� 1] are
compared with their corresponding actual values. The com-
parison results are quantitively expressed through a definition
on deviation. The measure of deviation on the covariance is
defined as (32). Similarly, the measure of deviation on the
mean is defined as

deviation � ��prop � �actual�
��actual�

� (35)

where �prop is the mean calculated using the second-order
propagation formula (22), �actual is the actual mean calculated
using (30), and � � � denotes the Hilbert–Schmidt (Frobenius)
norm.

A range of values of �1 and �2 are tested to verify the
effectiveness of the second-order propagation formulas for
the mean and covariance. These values are �2

1 � �2
2 �

0�05� 0�1� 0�5� 1� 1�2� 1�5. These comparison results are illus-
trated through the graphs of deviation versus Gaussian white
noise constant �2 as shown in Figures 3 and 4. It can be ob-
served that the deviation of the mean is less than 0�3% and
the deviation of the covariance is less than 1% for � � 1,

where � � 1 is a fairly large noise constant. These compar-
isons have shown that the mean and covariance computed from
the second-order propagation formula are very good approxi-
mations to those obtained by integrating the SDE from t � 0
to t � 1.

5. Conclusions

In this paper, first-order kinematic error propagation formulas
have been modified to include second-order effects. This ex-
tends the usefulness of these formulas to errors that are not
necessarily small. In fact, in the example to which the method-
ology is applied, errors in orientation can be as large as a ra-
dian or more and the second-order formula appears to capture
the error well. The second-order propagation formula makes
significant improvements in terms of accuracy over the first-
order formula. The second-order propagation theory is much
more robust than the first-order formula over a wide range of
kinematic errors. This is demonstrated with the example of a
PUMA manipulator arm with substantial errors in the joints,
as well as stochastic trajectories of a non-holonomic kinematic
model of a flexible needle.
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Appendix A: Matrix Lie Groups in General

A matrix Lie group is a Lie group where G is a set of square
matrices and the group operation is matrix multiplication. In
this work, only the groups SO�3� and SE�3� are considered.

A.1. The Exponential and Logarithm Maps

Given a general matrix Lie group, elements sufficiently close
to the identity are written as g�t� � et X for some X � � (the
Lie algebra of G) and t near 0. Explicitly,

eX �
��

k�0

Xk

k!
� (36)

The matrix logarithm is defined by the Taylor series about the
identity matrix:

log�g� � log�I � �g � I �� �
��

k�1

��1�k�1 �g � I �k

k
� (37)
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For matrix Lie groups, operations such as g � I and division
of g by a scalar are well defined. The exponential map takes
an element of the Lie algebra and produces an element of the
Lie group. This is written as

exp : � � G�

The logarithm map does just the opposite:

log : G � ��
In other words, log�exp X� � X , and exp�log�g�� � g.

Given any smooth curve g�t� � G, we can compute
g�1 dg�dt and dg�dt g�1. These will be elements of �.

A.2. The Lie Bracket and the Adjoint Matrices Ad�g� and
ad�X�

The adjoint operator is defined as

Ad�g1�X � d

dt

�
g1et X g�1

1

� �t�0 � g1 Xg�1
1 � (38)

This gives a homomorphism Ad : G � GL��� from the
group into the set of all invertible linear transformations of �
onto itself. It is a homomorphism because

Ad�g1�Ad�g2�X � g1�g2 Xg�1
2 �g�1

1

� �g1g2�X �g1g2�
�1 � Ad�g1g2�X�

It is linear because

Ad�g��c1 X1 � c2 X2� � g�c1 X1 � c2 X2�g
�1

� c1gX1g�1 � c2gX2g�1

� c1 Ad�g�X1 � c2 Ad�g�X2�

In the special case of a one-parameter subgroup when g �
g�t� is an element close to the identity2, we can approximate
g�t� � I � t X for small t . Then we get Ad�I � t X�Y �
Y � t�XY � Y X�. The quantity

XY � Y X � [X� Y ] � d

dt
�Ad�g�t��Y � �t�0 (39)

is called the Lie bracket of the elements X� Y � �.
It is clear from the definition in (39) that the Lie bracket is

linear in each entry:

[c1 X1 � c2 X2�Y ] � c1[X1� Y ]� c2[X2� Y ]

and
[X� c1Y1 � c2Y2] � c1[X� Y1]� c2[X� Y2]�

2. In the context of matrix Lie groups, one natural way to measure distance is
as a matrix norm of the difference of two group elements.

Furthermore, the Lie bracket is antisymmetric:

[X� Y ] � �[Y� X ]� (40)

and, hence, [X� X ] � 0. Given a basis 
E1� � � � � En� for the
Lie algebra �, any arbitrary element can be written as

X �
n�

i�1

xi Ei �

The Lie bracket of any two elements will result in a linear com-
bination of all basis elements. This is written as

[Ei � E j ] �
n�

k�1

Ck
i j Ek �

The constants Ck
i j are called the structure constants of the Lie

algebra �. Note that the structure constants are antisymmetric:
Ck

i j � �Ck
ji .

It can be checked that for any three elements of the Lie
algebra, the Jacobi identity is satisfied:

[X1� [X2� X3]]� [X2� [X3� X1]]� [X3� [X1� X2]] � 0� (41)

It is often convenient to write the independent entries of any
X � � as a column vector using the notation x � X� where the
rule ei � E�i is used. The particular details of the � operator
for the cases of SO�3� and SE�3� are given in Appendices B
and C.

A matrix denoted as ad�X� can then be defined such that
for any X� Y � �

[X� Y ] � ad�X�y�

From (40), it follows that

ad�X�y � �ad�Y �x�

Appendix B: The Rotation Group, SO�3�

The Lie algebra so�3� consists of skew-symmetric matrices of
the form

X �

�����
0 �x3 x2

x3 0 �x1

�x2 x1 0

����� �
3�

i�1

xi Ei � (42)

The skew-symmetric matrices 
Ei � form a basis for the set of
all such 3 � 3 skew-symmetric matrices, and the coefficients

xi � are all real. The � operation is defined to extract these
coefficients from a skew-symmetric matrix to form a column
vector [x1� x2� x3]T � �3 such that Xy � x�y for any y � �3,
where � is the usual vector cross product.
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In this case, the adjoint matrices are

Ad�R� � R and ad�X� � X�

Furthermore,
[X�Y ]� � x� y�

It is well known (see Chirikjian and Kyatkin (2001) for the
derivation and references) that

R�x� � eX � I � sin �x�
�x� X � �1� cos �x��

�x�2
X2� (43)

where �x� � �x2
1�x2

2�x2
3�

1�2. Clearly, since the instantaneous
rotation axis is preserved under a rotation, R�x�x � x.

An interesting and useful fact is that except for a set of mea-
sure zero, all elements of SO�3� can be captured with the pa-
rameters within the open ball defined by �x� � 
 , and the
matrix logarithm of any group element parameterized in this
range is also well defined. It is convenient to know that the
angle of the rotation, ��R�, is related to the exponential para-
meters as ���R�� � �x�. Furthermore,

log�R� � 1

2

��R�

sin ��R�
�R � RT��

where

��R� � cos�1

�
trace�R�� 1

2



�

Invariant definitions of directional (Lie) derivatives and the
integration measure for SO�3� can be defined. When comput-
ing these invariant quantities in coordinates (including expo-
nential coordinates), a Jacobian matrix comes into play. There
are two such Jacobian matrices:

Jl�x� �
��
�R

�x1
RT


�
�

�
�R

�x2
RT


�
�

�
�R

�x3
RT


��
and

Jr�x� �
��

RT �R

�x1


�
�

�
RT �R

�x2


�
�

�
RT �R

�x3


��
�

The subscripts r and l denote the side where the partial deriva-
tive appears (right or left).

These two Jacobian matrices are related as

Jl � R Jr� (44)

Relatively simple analytical expressions have been derived
by Park (1991) for the Jacobian Jl and its inverse when rota-
tions are parameterized as in (43). These expressions are

Jl�x� � I � 1� cos �x�
�x�2

X � �x� � sin �x�
�x�3

X2 (45)

and

J�1
l �x� � I � 1

2
X �

�
1

�x�2
� 1� cos �x�

2�x� sin �x�



X2�

The corresponding Jacobian Jr and its inverse are then cal-
culated using (44) as in Chirikjian and Kyatkin (2001):

Jr�x� � I � 1� cos �x�
�x�2

X � �x� � sin �x�
�x�3

X2

and

J�1
r �x� � I � 1

2
X �

�
1

�x�2
� 1� cos �x�

2�x� sin �x�



X2�

Note that
Jl � J T

r �

The determinants are

� det�Jl�� � � det�Jr�� � 2�1� cos �x��
�x�2

�

Given a square-integrable function of rotation, f �R� �
L2�SO�3��, the proper (invariant) way to integrate using ex-
ponential coordinates is


SO�3�
f �R� d R � 1

8
2



�x��


f �R�x��� det J �x�� dx

where dx � dx1 dx2 dx3 and J can denote either Jr or Jl. The
normalization by 8
2 ensures that

#
SO�3� 1 d R � 1�

Appendix C: The Special Euclidean Group,
SE�3�

The Lie algebra se�3� consists of “screw” matrices of the form

X �

���������

0 �x3 x2 x4

x3 0 �x1 x5

�x2 x1 0 x6

0 0 0 0

���������
�

6�
i�1

xi 
Ei � (46)

The matrices 
 
Ei � form a basis for the set of all such 4 � 4
screw matrices, and the coefficients 
xi� are all real. The tilde
is used to distinguish between these basis elements and those
for SO�3�. The � operation is defined to extract these co-
efficients from a screw matrix to form a column vector X� �
[x1� x2� x3� x4� x5� x6]T � �6. The double use of � in the so�3�
and se�3� cases will not cause confusion, since the object to
which it is applied defines the sense in which it is used.

It will be convenient to define � � [x1� x2� x3]T, and v �
[x4� x5� x6]T, so that

X� � x �
�� �

v

�� �
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It can be shown that (Chirikjian 2009)

g�X�� � exp X �
��R��� Jl���v

0T 1

�� � (47)

This follows from the expression for the matrix exponential
given by Murray et al. (1994) and the definition of the SO�3�
Jacobian in (45). From the form of (47), it is clear that if g
has rotational part R, and translational part t, then the matrix
logarithm can be written in closed form as

X � log�g� �
��log R J�1

l ��log R���t

0T 0

�� �
and

X� �
�� �log R��

J�1
l ��log R���t

�� � (48)

The adjoint matrices for SE�3� are

Ad�g� �
�� R 03

T R R

�� � �6�6

where T� � t and

ad�X� �
��
 03

V 


�� � �6�6

where V � � v and 
� � �.
The Jacobians for SE�3� using exponential parameters are

then

�l�x� �
��

�g

�x1
g�1


�
�

�
�g

�x2
g�1


�
� � � � �

�
�g

�x6
g�1


��
and

�r�x� �
��

g�1 �g

�x1


�
�

�
g�1 �g

�x2


�
� � � � �

�
g�1 �g

�x6


��
�

The right Jacobian for SE�3� in exponential coordinates can
be computed from (47) as

�r�x� �
�� Jr��� 03

e�
 �
�� �Jl���v� Jr���

�� � (49)

where 03 is the 3�3 zero matrix. It becomes immediately clear
that

� det��r�x��� � � det�Jr�����2�

Given a square-integrable function of motion, f �g� �
L2�SE�3��, the proper (invariant) way to integrate using ex-
ponential coordinates is


SE�3�
f �g� dg

� 1

8
2



v��3



����


f �eX �� det�Jr�����2 d� dv�

The normalization by 8
2 is an artifact of the SO�3� case,
which is retained since SE�3� is not compact.
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