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Abstract— Error propagation in hybrid manipulators is ad-
dressed here within a rigorous mathematical framework. Un-
derstanding how errors propagate in serial manipulators and
cascades of platform manipulators is important for developing
better designs. In this paper we show that errors propagate by
convolution on the Euclidean motion group, SE(3). When local
errors are small, they can be described well as distributions on
the Lie algebra se(3). We show how the concept of a highly
concentrated Gaussian distribution on SE(3) is equivalent to
one on se(3). Numerical examples illustrate that convolution
and covariance propagation provide the same answers for small
errors.

I. INTRODUCTION

In this paper we address how errors propagate on the Euclid-
ean motion group, and specifically examine the accumulation
of errors in serial linkages and cascades of parallel platforms.
Our approach is to treat errors using probability densities on
the Euclidean group.

In the remainder of this section the relevant literature is
reviewed, and an overview of rigid-body motions is provided.
In Section II the motivating application of error accumulation
in serial (and hybrid serial-parallel) manipulators is discussed.
In Section III the concept of highly concentrated Gaussian
distributions is discussed and several theorems that state their
properties are proved. In Section IV closed-form expressions
for the convolution of these densities are derived. Section
V illustrates this closure with a numerical example. Section
VI presents our conclusions and discusses other potential
applications of this formulation.

A. Literature Review

Several distinct research fields relate to the work presented
in this paper. These include the theory of Lie groups, robot
kinematics, and methods for describing spatial uncertainty. We
review several of the most closely related works in each of
these areas here.

Murray, Li and Sastry [9], McCarthy [8] and Selig [12]
presented Lie-group-theoretic notation and terminology to
the robotics community, which has now become standard
vocabulary. Park and Brockett [11] showed how dexterity
measures can be viewed in a Lie group setting, and how this
coordinate-free approach can be used in robot design. Wang
and Chirikjian [19] showed that the workspace densities of
manipulators with many degrees of freedom can be generated

by solving a diffusion equation on the Euclidean group. Black-
more and Leu [1] showed that problems in manufacturing
associated with swept volumes can be cast within a Lie group
setting. Kyatkin and Chirikjian [2], [6] showed that many
problems in robot kinematics and motion planning can be
formulated as the convolution of functions on the Euclidean
group. The representation and estimation of spatial uncertainty
has also received attention in the robotics and vision literature.
Two classic works in this area are due to Smith and Cheeseman
[14] and Su and Lee [15]. Recent work on error propagation
by Smith, Drummond and Roussopoulos [13] describes the
concatenation of random variables on groups and applies this
formalism to mobile robot navigation.

B. Review of Rigid-Body Motions

The Euclidean motion group, SE(3), is the semi direct
product of IR3 with the special orthogonal group, SO(3). We
denote elements of SE(3) as g = (a, A) ∈ SE(3) where
A ∈ SO(3) and a ∈ IR3. For any g = (a, A) and h = (r, R) ∈
SE(3), the group law is written as g ◦ h = (a + Ar, AR),
and g−1 = (−AT a, AT ). Alternately, one may represent any
element of SE(3) as a 4 × 4 homogeneous transformation
matrix of the form

H(g) =

⎛
⎝ A a

0T 1

⎞
⎠ ,

in which case the group law is matrix multiplication.
For small translational (rotational) displacements from the

identity along (about) the ith coordinate axis, the homoge-
neous transforms representing infinitesimal motions look like

Hi(ε)
�
= exp(εẼi) ≈ 1I4×4 + εẼi

where

Ẽ1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ ;

Ẽ2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ;
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Ẽ3 =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ;

Ẽ4 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ;

Ẽ5 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ;

Ẽ6 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ .

In fact, it can be shown that elements of SE(3) can be
described with the exponential parametrization

g = g(x1, x2, ..., x6) = exp

(
6∑

i=1

xiẼi

)
. (1)

One defines the ‘vee’ operator, ∨, such that

(
6∑

i=1

xiẼi

)∨

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎟⎠

The total vector, x ∈ IR6, can be obtained from g ∈ SE(3)
from the formula

x = (log g)∨. (2)

II. PROPAGATION OF FINITE ERRORS IN SERIAL

LINKAGES

Intuitively, if two rigid parts are manufactured with errors,
and those parts are bolted together at an interface, the errors
will ‘add’ in someway. Likewise, a manipulator that is con-
structed from several subunits, each with some manufacturing
error and/or backlash, will have errors that accumulate as the
length from base to end effector is traversed. In this section
we quantify how errors accumulate in serial and hybrid serial-
parallel devices. We formulate this as a convolution of highly
concentrated error densities on SE(3).

Suppose we are given a manipulator consisting of two sub-
units. These units could be Stewart-Gough platforms or serial
links connected with revolute joints. One unit is stacked on top
of the other one. The proximal unit will be able to reach each
frame h1 ∈ SE(3) with some error when its proximal end is
located at the identity e ∈ SE(3). This error may be different
for each different frame h1. This is expressed mathematically
as a real-valued function of g1 ∈ SE(3) which has a peak
in the neighborhood of h1 and decays rapidly away from h1.

If the unit could reach h1 exactly, this function would be a
delta function. Explicitly the error density function may have
many forms depending on what error model is used. However,
it will always be the case that it is of the form ρ1(h1, g1)
for h1, g1 ∈ SE(3). That is, the error will be a function of
g1 ∈ SE(3) for each frame h1 that the top of the module
tries to attain relative to its base. Likewise, the second module
will have an error function ρ2(h2, g2) for h2, g2 ∈ SE(3)
that describes the distribution of frames around h2 that might
be reached when h2 is the expected end frame for module 2
relative to its base, and the base of module 2 is located at the
identity e ∈ SE(3).

The error distribution that results from the concatenation of
two modules with errors ρ1(·) and ρ2(·) results from sweeping
the error distribution of the second module by that of the first.
This is written mathematically as:

ρ(h1 ◦ h2, g)
= (ρ1 ⊗ ρ2)(h1 ◦ h2, g)
�
=

∫
SE(3)

ρ1(h1, g1)ρ2(h2, g
−1
1 ◦ g)d(g1).

(3)

Here d(g) is the unique bi-invariant integration measure for
SE(3) evaluated at g [2]. Sometimes this is simply written as
dg. In the case of no error, the multiplication of homogeneous
transforms h1 and h2 as h1 ◦ h2 represents the composite
change in position and orientation from the base of the lower
unit to the interface between units, and from the interface to
the top of the upper unit. In the case of inexact kinematics,
the error function for the upper unit is shifted by the lower
unit (ρ2(h2, g

−1
1 ◦ g)), weighted by the error distribution of

the lower unit (ρ1(h1, g1)) and integrated over the support of
the error distribution of the lower unit (which is the same as
integrating over all of SE(3) since outside of the support of
the error distribution the integral is zero). The result of this
integration is by definition the error density function around
the frame h1 ◦h2, and this is denoted as (ρ1⊗ρ2)(h1 ◦h2, g).
We illustrated (3) in Figure 1. Parametric distributions that can
be used for this application are discussed in Section III, but
it should be noted that (3) holds regardless of the size of the
errors or the form of the error density.

III. SPECIAL FEATURES OF CONCENTRATED PROBABILITY

FUNCTIONS

Errors in manufactured parts and in the assembly of those
parts into larger structures are typically small, but not so
small as to be ignored. Therefore, having a way to describe
small errors using concentrated probability density functions is
useful. This section focuses on the properties of concentrated
pdfs on the Euclidean group.

A. Probability Densities Concentrated at the Identity

Suppose instead of a deterministic and exactly measured
frame of reference h ∈ SE(3), we instead have a distribution
(or cloud) of frames of reference that are tightly clustered
around h. How do we describe such things in a quantitative
way? Let us first consider a cloud clustered closely around
the identity e ∈ SE(3). Such a distribution will have most of
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Fig. 1. Error Propagation in Serial Linkages

its mass contained within a ball of radius ε << 1 centered at
the identity. Here the radius is measured with respect to an
appropriate metric, such as can be found in [3]–[5], [7], [10].

A distribution that is concentrated in this way will essen-
tially be a pdf on the Lie algebra se(3), and we therefore can
use any number of parametric distributions that are used in
IRN . For example, the Gaussian distribution

ρ(g) = c exp
(
−1

2
xT Cx

)
(4)

can be used, where g = g(x1, x2, ..., x6) as in Equation 1 and
x is defined as in Equation 2.

We note that while the exponential mapping from se(3) to
SE(3) is not bijective, this is irrelevant for two reasons: (1) the
set of measure zero for which bijectivitity fails has no effect
on nonpathological probability density functions; (2) the small
errors to which this mapping is applied are not located at the
singularities of the mapping, which are far from the identity.

The normalization constant c is determined by setting∫
G

ρ(g)dg = 1

so as to make ρ(g) a probability density function. Here dg
is the unique bi-invariant integration measure for SE(3). In
exponential parameters,

dg = w(x1, x2, ..., x6)dx1dx2 · · · dx6.

Near the identity w ≈ 1. Therefore, when ρ(g) is tightly
concentrated around the identity,∫

G

ρ(g)dg ≈
∫

IR6
ρ(g(x1, x2, ..., x6))dx1dx2 · · · dx6.

This is true for exponential coordinates and a distribution
highly concentrated at the identity. Therefore, the constant c in
Equation 4 can be set in the usual way that it is for Gaussian

distributions. In particular, if Σ is the matrix of covariances
with elements defined by

σij =
∫

IR6
xixjρ(g(x1, x2, ..., x6))dx1dx2 · · · dx6, (5)

then

C = Σ−1 and c =
(
8π3|detΣ| 12

)−1

.

Given two probability densities on SE(3), their convolution
is defined as

(ρ1 ∗ ρ2)(g) =
∫

G

ρ1(h)ρ2(h−1 ◦ g)dh. (6)

This can be considered as a special case of (3) when the depen-
dence on h1 and h2 either does not exist or is suppressed for
notational convenience. If ρ1 describes a distribution of frames
of reference {h1, ..., hn}, and ρ2 describes a distribution of
frames of reference {g1, ..., gm}, then the convolution (ρ1∗ρ2)
is the distribution that describes the distribution of all pairs
{hi ◦ gj |(i, j) ∈ [1, 2, ..., n] × [1, 2, ...,m]}. In general, since
hi ◦ gj �= gj ◦ hi, it follows that (ρ1 ∗ ρ2)(g) �= (ρ2 ∗ ρ1)(g).
However convolutions of two distributions centered tightly
around the identity do commute.

In what follows, the functions ρi(g) are interpreted as
functions with argument in SE(3) described as 4 × 4 ho-
mogeneous transformations. These functions can be extended
to have argument in IR4×4 in a number of ways, e.g., by
setting ρ(k) = 0 for all k ∈ IR4×4 − SE(3), or by having
ρ(k) decay rapidly to zero as the distance between k and G
increases. When such extensions are smooth, then expanding
ρ in a Taylor series in IR4×4 yields

ρ(I + X + O(X2)) = ρ(I + X)(1 + O(‖x‖)), (7)

where ‖x‖ = (X,X)
1
2 and O(X2) is defined in a natural way,

i.e., O(X2) is a matrix with entries each of O((X,X)) with
(X,X) = 1

2 tr(XXT ).
Eq. 7 is useful in evaluating expressions in the proofs below.

Note that equalities that are presented below are true to O(ε)
in the sense that a(g) = b(g) denotes

∫
G
|a(g) − b(g)|d(g) =

O(ε). With this we have the following:

THEOREM 1: Convolution of two functions on SE(3), each
tightly focuses at the identity, is the same as convolution on
IR6 using exponential parameters as coordinates.

PROOF: Let g = exp
(∑6

i=1 xiẼi

)
and h =

exp
(∑6

i=1 ξiẼi

)
. Let ρi(g) for i = 1, 2 be functions

tightly focused at the identity. Then,

ρ1(h) = ρ1(I +
6∑

i=1

ξiẼi)
�
= ρ̃1(ξ).

Let us define ρ̃2(·) in an analogous way. Then, using Eq. 7
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and retaining zeroth order terms

ρ2(h−1 ◦ g)
= ρ2

(
exp(−∑6

i=1 ξiẼi) exp(
∑6

i=1 xiẼi)
)

= ρ2

(
(I − ∑6

i=1 ξiẼi)(I +
∑6

i=1 xiẼi)
)

= ρ2

(
I +

∑6
i=1(xi − ξi)Ẽi

)
= ρ̃2(x − ξ).

Then, the convolution (6) can be written in this special case
as

(ρ1 ∗ ρ2)(g) =
∫

IR6
ρ̃1(ξ)ρ̃2(x − ξ)w(ξ)dξ.

And since ξ≈ 0, w(ξ) ≈ 1. Therefore, we can write:

˜(ρ1 ∗ ρ2)(x) = (ρ̃1 � ρ̃2)(x) (8)

where � is the convolution of functions in IR6.

B. Convolution of Probability Densities Shifted from the Iden-
tity

The issue of how to describe tightly concentrated distribu-
tions around a frame of reference h is handled easily by left
translating a distribution defined around the identity:

ρh(g) = L(h){ρ(g)} = ρ(h−1g).

Given two shifted functions, f1
a (g) = f1(a−1 ◦ g) and

f2
b (g) = f2(b−1 ◦ g), the convolution is

(f1
a ∗ f2

b )(g)
=

∫
G

f1
a (h)f2

b (h−1 ◦ g)dh
=

∫
G

f1(a−1 ◦ h)f2(b−1 ◦ h−1 ◦ g)dh.

If we define the new variable k = a−1 ◦ h, then h−1 = k−1 ◦
a−1. Therefore,

(f1
a ∗ f2

b )(g) =
∫

G

f1(k)f2(b−1 ◦ k−1 ◦ a−1 ◦ g)dk.

If we define q such that g = a ◦ b ◦ q, then

(f1
a ∗ f2

b )(a ◦ b ◦ q) =
∫

G

f1(k)f2(b−1 ◦ k−1 ◦ b ◦ q)dk.

Now, if f1 and f2 have supports that are limited to a small
neighborhood around the identity, the only values of k that
matter will be close to the identity. The inverse of these values
of k also will be close to the identity. The automorphism k′ =
b−1 ◦ k−1 ◦ b preserves closeness to the identity. Therefore,
the fact that f2 has support only in a small neighborhood
around the identity, and the fact that k′ is close to the identity,
means that f2(k′ ◦ q) forces q to have importance only near
the identity.

Since k is close to the identity, k = I +
∑6

i=1 kiẼi Then,
by definition

(k − I)∨ = k ∈ IR6.

Likewise, it can be shown that

(b−1 ◦ k−1 ◦ b − I)∨ = −Adb−1k

where Adg is defined by the expression Adgk =
(g

(∑6
i=1 kiẼi

)
g−1)∨. See [2], [9] for the explicit form of

Ad(g) as a 6 × 6 matrix.
Since k and q are both close to the identity, an extension

of Theorem 1 can be applied to yield:

(f1
a ∗ f2

b )(a ◦ b ◦ q) =
∫
k∈IR6 f̃1(k)

f̃2(q − Adb−1k)dk.
(9)

Note that whereas q is close to the identity, g in general will
not be since a and b are not. In order to compute (f1

a ∗f2
b )(g),

one must substitute

q = (log[(a ◦ b)−1 ◦ g])∨

into the above expression.
Finally, we note that

(f1
a ∗ f2

b )(g) �= (f2
b ∗ f1

a )(g)

even though

(f1 ∗ f2)(g) ≈ (f2 ∗ f1)(g)

IV. FORM CLOSURE FOR CONVOLUTION OF

CONCENTRATED GAUSSIANS ON SE(3)

Let us assume that f1 and f2 are both concentrated SE(3)-
Gaussian functions of the form in Equation 4. This section
computes Equation 9 explicitly in closed form, and establishes
how the mean and variance of each of the initial concentrated
distributions ‘mix’ to result in the mean and variance of their
convolution.

We note that while form closure under convolution of
Gaussian functions as defined in Equation 4 results trivially
from Theorem 1, the case when both functions are shifted is
more challenging. Fundamental to all of the calculations in
this section is the identity [2]:∫

IRN exp(− 1
2x

T Mx − mT x)dx
= (2π)N/2|detM |− 1

2 exp
(

1
2m

T M−1m
) (10)

If f i(g) are taken to be of the form (4) then direct
substitution into (9) and use of (10) with N = 6 produces
the result

C1∗2 = C2 − C2(AdT
b C1Adb + C2)−1C2 (11)

This provides all that is required to propagate error densities
in closed form rather than numerically performing the con-
volution. Returning to error propagation and Equation 3, the
results of this section are directly applicable be observing that
one can define

ρi(hi, gi) = ci(hi)·
exp

(
[(log(h−1

i gi))∨]T Ci(hi)(log(h−1
i gi))∨

)
In other words, each error density is a Gaussian shifted from
the identity to hi and in addition the covariance matrix (Σi =
C−1

i ) and scalars ci depend on the amount of shift.
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V. NUMERICAL EXAMPLE

In this section we present an example in which a cascade
of two Stewart-Gough platforms, each with small errors in
their leg lengths, is analyzed using the covariance propagation
method presented earlier.

Consider a hybrid manipulator of two stacked 6-D Stewart
platforms shown in Figure 2. For this Stewart platform, the
coordinates of the six connection points at the base and the
platform are chosen as⎛

⎝ 2 sin(2(i − 1)π/3 ± π/12)
2 cos(2(i − 1)π/3 ± π/12)

0

⎞
⎠ ,

and ⎛
⎝ 2 sin(2(i − 1)π/3 ± 11π/12)

2 cos(2(i − 1)π/3 ± 11π/12)
0

⎞
⎠ ,

for i = 1, · · · , 3, respectively. The configurations of the first
and second module are taken as

g1 =

⎛
⎜⎜⎝

0.9755 −0.1010 0.1953 2
0.1545 0.9469 −0.2819 2
−0.1564 0.3052 0.9393 4

0 0 0 1

⎞
⎟⎟⎠ ,

and

g2 =

⎛
⎜⎜⎝

0.9799 −0.0972 0.1742 3
0.1552 0.9200 −0.3599 2
−0.1253 0.3797 0.9166 3

0 0 0 1

⎞
⎟⎟⎠ .

The orientation parts of g1 and g2 are generated using the
Z-Y-X Euler angles, i.e., (π/10, π/20, π/20) for g1 and
(π/8, π/25, π/20) for g2. Obviously, when two such platforms
are stacked, the frame of reference at the end, gee, is then
g1 ◦ g2.

With given g1 and g2, the six leg lengths of the first module
can be easily calculated as

L1 = [5.2692, 4.9044, 5.5869, 4.9083, 3.9383, 5.4231],

and those of the second module as

L2 = [4.8020, 5.7855, 4.3951, 4.2350, 5.4216, 4.1635].

In order to test the covariance formula derived in this
paper, we generated small deviations of their leg lengths
from the above ideal values by assuming that each leg length
has a uniformly random error of ±1%. Therefore, each leg
length was sampled at three values: Li, 0.99Li, 1.01Li. This
generates n = 36 different frames of reference {gi} that are
clustered around g. And while this distribution is not Gaussian,
as will be seen, the derived covariance propagation method still
works reasonably well. Here gi is obtained using the forward
kinematics method developed in [20].

We compute
xi = (g−1gi − e)∨

−2
0

2
4

6
8

−2

0

2

4

6
0

1

2

3

4

5

6

7

8

9

Fig. 2. A hybrid manipulator of two stacked 6-D Stewart-Gough platforms

and then the ‘experimental’ covariances as

Σ =
1
n

n∑
i=1

xixT
i .

and
C = Σ−1. (12)

For leg lengths with ±1% error, the experimental results for
the first and second module are computed respectively as

C1 =

⎛
⎝ 4670.5 529.4 −2380.7 −340.7 −245.4 −180.8

529.4 3238.7 −2422.6 −132.0 −11.0 237.4
−2380.7 −2422.6 3333.6 419.8 435.2 324.0
−340.7 −132.0 419.8 419.4 604.0 759.8
−245.4 −11.0 435.2 604.0 1176.4 1401.6
−180.8 237.4 324.0 759.8 1401.6 1818.9

⎞
⎠.

and

C2 =

⎛
⎝ 2014.7 −419.3 −1499.4 −223.8 87.4 57.6

−419.3 3090.1 −2261.3 100.4 76.4 290.6
−1499.4 −2261.3 4272.1 622.3 213.3 83.0
−223.8 100.4 622.3 1291.9 1102.4 1120.1
87.4 76.4 213.3 1102.4 1145.3 1011.2
57.6 290.6 83.0 1120.1 1011.2 1089.5

⎞
⎠.

Using the covariance propagation formula (11), the covari-
ance of the whole manipulator is obtained:

C1∗2 =

⎛
⎝ 1259.2 57.9 −984.8 −5.6 200.7 107.4

57.9 1520.5 −1501.4 −25.6 103.4 175.3
−984.8 −1501.4 2620.7 61.6 −272.2 −227.3
−5.6 −25.6 61.6 186.2 226.9 169.8
200.7 103.4 −272.2 226.9 405.9 260.7
107.4 175.3 −227.3 169.8 260.7 216.7

⎞
⎠.

To verify the proposed covariance propagation method,
brute force enumeration is also used to get the covariance of
the whole manipulator directly. In this case the formula in (12)
is used with the n2 discrete poses obtained by concatenating
every element of {gi} with every other, and one obtains:

Cbrute =

⎛
⎝ 1258.2 57.2 −983.1 −6.0 199.5 106.6

57.2 1521.8 −1499.8 −29.4 96.8 170.8
−983.1 −1499.8 2615.4 66.3 −263.4 −221.4
−6.0 −29.4 66.3 176.6 212.7 159.2
199.5 96.8 −263.4 212.7 384.3 244.8
106.6 170.8 −221.4 159.2 244.8 204.9

⎞
⎠.

As can be seen, these results are in excellent agreement,
which serves as a demonstration and validation of the derived
formula for the case of small errors. This agreement is quan-
tified in a single number defined using the Hilbert-Schmidt
(Frobenius) norm as

εr =
‖C − Cbrute‖

‖Cbrute‖ ,
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where εr is the error in the C computed by covariance
propagation relative to that generated by brute force, and
‖ · ‖ denoting the Hilbert-Schmidt (Frobenius) norm. For leg
lengths with ±1% error, we found ε = 0.0113 = 1.13%.

Of course, it is of interest to know what happens in the case
of other smaller and larger errors, and so we have repeated this
experiment with ±0.1%, ±0.5%, ±0.8%, ±2%, ±3%, and
±5% errors on leg lengths. The trend is graphed in Figure 3.
Clearly the approximations used in the derivation of covariance
propagation break down as the errors become large.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Error applied to the leg length, %

ε r

Fig. 3. The accuracy of the proposed propagation covariance method

VI. CONCLUSIONS

Quantifying the intuitive notion of how spatial errors ‘add’
has been addressed in this paper. It was shown that even
though the concept of a Gaussian distribution does not com-
pletely generalize when considering the case of Lie-group-
valued argument, an appropriate concept does exist when con-
sidering highly concentrated distributions. This paper worked
out the details of how Gaussian distributions are defined in
this context, what their properties are, and how they can
be applied to compute the propagation of covariances in
serial manipulators. Thoerems regarding the properties of these
distributions were proven. The computations performed show
that such distributions have the desired closure properties in
order for them to be useful in error propagation problems in
robotics.

VII. ACKNOWLEDGMENTS

This work was performed under grant NSF-RHA 0098382
“Diffusion Processes in Motion Planning and Control”

REFERENCES

[1] Blackmore, D., Leu, M.C., “Analysis of Swept Volume via Lie Groups
and Differential Equations,” The International Journal of Robotics
Research Vol. 11, No. 6, pp.516-537, Dec 1992.

[2] Chirikjian, G.S., Kyatkin, A.B., Engineering Applications of Noncom-
mutative Harmonic Analysis, CRC Press, Boca Raton, FL, 2001.

[3] Chirikjian, G.S., Zhou, S., “Metrics on Motion and Deformation of Solid
Models,” Journal of Mechanical Design, Vol. 120, pp. 252-261, June
1998.

[4] Fanghella, P., Galletti, C., “Metric Relations and Displacement Groups
in Mechanism and Robot Kinematic,” J. of Mechanical Design, Trans-
actions of the ASME, Vol. 117, 470-478, Sept. 1995.

[5] Kazerounian, K., Rastegar, J., “Object Norms: A Class of Coordinate
and Metric Independent Norms for Displacement,” Flexible Mechanisms,
Dynamics, and Analysis. ASME DE-Vol. Vol. 47, pp. 271-275, 1992.

[6] Kyatkin, A.B., Chirikjian, G.S., “Applications of Noncommutative Har-
monic Analysis in Robotics,” ROMANSY 12, Proceedings of the 12th
CISM-IFToMM Symposium on the Theory and Practice of Robots and
Manipulators, Paris, July, 1998, pp. 119-126.

[7] Martinez, J.M.R., Duffy, J., “On the Metrics of Rigid Body Displacement
for Infinite and Finite Bodies,” ASME Journal of Mechanical Design,
Vol. 117, pp., 41-47, March 1995.

[8] McCarthy, J.M., An Introduction to Theoretical Kinematics MIT Press,
Cambridge, Mass. 1990.

[9] Murray, R. M., Li, Z., Sastry, S.S., A Mathematical Introduction to
Robotic Manipulation, CRC Press, Ann Arbor MI, 1994.

[10] Park, F.C., “Distance Metrics on the Rigid-Body Motions with Appli-
cations to Mechanism Design,” J. of Mechanical Design, Transactions
of the ASME, Vol. 117, pp., 48-54 Mar. 1995.

[11] Park, F.C., Brockett, R.W., “Kinematic Dexterity of Robotic Mecha-
nisms,” The International Journal of Robotics Research, Vol. 13, No. 1,
pp. 1-15, February 1994.

[12] Selig, J.M., Geometrical Methods in Robotics, Springer, New York,
1996.

[13] Smith,P., Drummond, T., and Roussopoulos, K., “Computing MAP
trajectories by representing, propagating and combining PDFs over
groups,” Proceedings of the 9th IEEE International Conference on
Computer Vision, volume II, pages 1275-1282, Nice, 2003.

[14] Smith, R.C., Cheeseman, P., “On the Representation and Estimation of
Spatial Uncertainty,” The International Journal of Robotics Research,
Vol. 5, No. 4, pp. 56-68, 1986.

[15] Su, S., Lee, C.S.G., “Manipulation and Propagation of Uncertainty
and Verification of Applicability of Actions in assembly Tasks,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 22, No. 6, p. 1376-
1389, 1992.

[16] Sugiura, M., Unitary Representations and Harmonic Analysis, 2nd

edition, Elsevier Science Publisher, The Netherlands, 1990.
[17] Talman, J., Special Functions, W. A. Benjamin, Inc., Amsterdam, 1968.
[18] Vilenkin, N.J., Klimyk, A.U., Representation of Lie Group and Special

Functions, Vol. 1-3, Kluwer Academic Publishers, The Netherlands,
1991.

[19] Wang, Y.F., Chirikjian, G.S., “Workspace Generation of Hyper-
Redundant Manipulators as a Diffusion Process on SE(N),” IEEE
Transactions on Robotics and Automation, Vol. 20, No. 3, p.399-408,
June 2004.

[20] Wang, Y.F. “Numerical solution of the forward kinematics of stewart
platforms with application to the inverse kinematics of hybrid manipu-
lators,” in review.

1853




