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Signal Detection on Euclidean Groups: Applications
to DNA Bends, Robot Localization,

and Optical Communication
Kevin C. Wolfe, Member, IEEE, and Gregory S. Chirikjian, Fellow, IEEE

Abstract—Three problems from disparate application areas are
presented and solved here using a unified framework: 1) estimating
the bend angle induced in DNA by a bound ligand such as a tran-
scription factor or anti-cancer drug; 2) determining the intent of
a mobile robot by observing its trajectories corrupted by environ-
mental noise; 3) estimating the bit-error probability function asso-
ciated with phase noise in optical communication systems, and the
associated problem of filter design. In all three problems, proba-
bility densities on the group of proper rigid-body motions of the
plane contain a hidden signal that needs to be detected in order
to advance the particular application area. Stochastic differential
equations and corresponding Fokker-Planck equations describing
random processes that evolve on this group (the Euclidean group)
are used to model each of these problems, and methods from har-
monic analysis and Lie theory are used to write approximate so-
lutions. From these ‘forward’ models the desired ‘signal’ (i.e., an
element, or a path, in the Euclidean group is extracted) to infer de-
sired physical parameters from data.

Index Terms—Bent DNA, exponential coordinates, group
Fourier analysis, phase noise, planar Euclidean group, robot
localization.

I. INTRODUCTION

T HREE seemingly unrelated problem areas are addressed
in this paper using a common set of mathematical tech-

niques built on classical Lie theory, noncommutative harmonic
analysis, and stochastic modeling. Though methods of classical
engineering mathematics (matrix algebra, ordinary and partial
differential equations, Fourier analysis, etc.) are heavily used in
signal processing, methods from differential geometry and ab-
stract algebra such as the representation theory of Lie groups,
analysis of stochastic sample paths on group manifolds, and
hybrid results that combine information theory and Lie-group
theory have been rare in the signal processing literature until re-
cently [1]–[3]. Therefore, in addition to solving the three prob-
lems described below, an additional goal of this presentation
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is to provide an exposition of methods that may find yet other
applications.
The first of the problems addressed here is that of finding

the angle induced by a drug or protein that binds to DNA at
an a priori known location along the length of a DNA segment
of known composition. Our methodology is demonstrated with
numerical data generated to model experimental data collection
via atomic force microscope, as described in [4]. In this con-
text bent DNA molecules float down to a planar substrate after
a ligand binds and induces a bend. When each bent DNA mol-
ecule lays flat on the planar substrate, it is modeled as a planar
persistent random walk, and our goal is to extract the hidden
signal (the relative rigid-body motion describing the angle of
the induced bend) from an ensemble of hundreds of such paths.
The angle itself can be quite subtle and in general cannot be dis-
tinguished by observing a single DNA shape due to stochastic
shape fluctuations. Yet such subtle bends are believed to have
important biophysical consequences. These sorts of structural
changes in DNA can be caused by a number of proteins and
compounds. In particular, a number of agents are known to
induce bending in DNA [5]–[14] as demonstrated in Fig. 1.
These changes can affect critical processes within a cell. For
example, many cancer drugs such as cisplatin target DNA and
induce bending and other structural changes which can disrupt
transcription and replication. If the cell is unable to repair the
damaged nucleotides, this bending can lead to apoptosis (cell
death) [15].
The second problem addressed here is that of robot local-

ization as described in [16], [17]. Consider a simple mobile
robot such as a unicycle or ‘kinematic cart’ (i.e., a two-wheeled
robot like a motorized wheelchair) for which the wheels roll
without slipping. We ask the following question: Suppose
that the robot and an external observer (such as an overhead
camera) have the same dictionary of intended maneuvers of
the robot (e.g., go straight for 1 second, follow a clockwise or
counterclockwise circular arc of fixed radius for 1 second, etc.),
and due to noise in observations, and in the robot’s execution
of its intended trajectory, can the observer infer the robot’s
intent and diagnose failure? Developing methodologies to solve
these sorts of problems have the potential to endow automated
systems with greater error correction capabilities, and represent
a merger between the theory of Lie groups in the sense of the
methods described in this paper, and information theory (where
the robot’s intent can be thought of as a message sent to the
observer through a noisy channel involving the mechanics of
the robot and its interaction with the environment, as well as
any interference, limits in resolution, and measurement noise
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Fig. 1. Four examples of DNA bending. Images generated from PDB data [20] using Jmol [21]. (PDB IDs: 3LPV [15], 2NP2 [22], 473D [23], 1CGP [24]).

on the side of the observer). We show that essentially the same
stochastic model that describes the shape of DNA on a planar
substrate can be used to describe the stochastic trajectory
of the robotic cart, and extracting the intent of the robot is
essentially the same problem, subject to the same solution
methods, as extracting the bend angle from ensembles of DNA
configurations.
The third problem also involves variations on the same math-

ematical theme in a completely different physical scenario. In
optical communication systems, spontaneous emissions of pho-
tons in the laser cavity lead to limitations in the amount of in-
formation that can be transmitted via fiber-optic cable. This is
referred to as the “phase-noise” problem [18], [19]. Associated
with phase noise is a stochastic differential equation describing
a process that evolves on the Euclidean group of the plane.
Solving the corresponding Fokker-Planck equation provides a
means for analysis of the bit-error function when a given filter
is used. Having efficient methods for solving these equations
for a given filter opens the opportunity to investigate the inverse
problem of filter design. Here the filter is the analogous quantity
to the bend angle or the robot path.
The remainder of this article is organized in the following

manner. Section II provides an overview of the planar Eu-
clidean motion group that will be used throughout the paper
including the exponential map, Jacobian and adjoint matrices,
irreducible unitary representations of the motion group, and the
noncommutative Fourier transform. Section III explains how
to define left-invariant stochastic differential equations and as-
sociated Fokker-Planck equations, and how to solve them. The
methods reviewed in these two sections will be used throughout
the rest of the paper. Section IV reviews the elastic-filament
model and techniques for solving the Fokker-Planck equation
associated with it, discusses how the bend is introduced to
the elastic model and how the desired probability density
functions are obtained, and presents the statistical method for
comparing the modeled distributions and sampled data. This
section also illustrates the effectiveness of the methods using
numerical simulations. Section V discusses two other prob-
lems using the same mathematical framework: (1) inferring
the intent of a mobile robot with a priori knowledge of its
dictionary of maneuvers and physical characteristics; and (2)
the phase-noise problem in coherent fiber-optic communication
systems. Section VI compares two approaches used to gen-
erate distributions that result from the stochastic differential
equations. Section VII provides conclusions and directions for
future efforts.

II. REVIEW OF SE(2)

The (special) Euclidean group of planar motions, is
the semidirect product of the plane, , and the special orthog-
onal group of 2 2 matrices, . Elements of can be
represented using 3 3 homogeneous transformation matrices
of the form

(1)

for

, and . The group operation is then
matrix multiplication. The translational portion of can also be
expressed in polar coordinates as .

A. Infinitesimal Motion
Associated with the group is the Lie algebra

which consists of matrices of the form

(2)

for

and

A bijective mapping and the reverse mapping
are respectively defined by the equations

and (3)

Given a rigid-body motion, , parameterized by arc length
or time, the “velocity” as experienced in a body-fixed frame can
be taken as

(4)
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These velocities can be separated into a rotational and transla-
tional component. If

then represents the rotational velocity and repre-
sents the body-fixed translational velocity.

B. The Exponential Map and Adjoints

Let and The matrix exponential,
, is a map defined by

(5)

We will often denote the 2 2 block at the upper left in
as , which is a rotation matrix. For the ex-

ponential becomes

(6)

In a similar fashion the matrix logarithm, , can be defined
to take any element from to an element in the subset
of defined by the condition . Restricting
the discussion to these subsets of and makes both
the exponential and logarithm invertible. And since the set de-
fined by in constitutes a set of measure zero, the
difference is inconsequential when integrating against smooth
probability densities.
Adjoint operators are commonly used for both and
. The adjoint operator for Lie groups can be defined to

satisfy

(7)

where is the composition of and . For , this
operator is then

(8)

C. Jacobian Matrices

Given any parametrization of defined by a coordinate
vector , such as exponential coordinates

or Cartesian coordinates , the associated
left-invariant Jacobian matrix is

Explicit expressions for the Jacobians for and other Lie
groups can be found in [2] and references therein.
To within an arbitrary scaling constant, , the bi-invariant

integration measure can be expressed in coordinates as

. We choose so as to make
the -Fourier reconstruction formula and Parseval equality
have a simple appearance.
When is expressed in coordinates as then the left-in-

variant “Lie derivatives” of any function , expressed as
, are of the form

(9)
where .

III. STOCHASTIC DIFFERENTIAL EQUATIONS AND
FOKKER-PLANCK EQUATIONS

A. Left-Invariant Stochastic Differential Equations and
Fokker-Planck Equations

Throughout this paper, we focus on left-invariant
Stratonovich stochastic differential equations on of
the form

(10)

where is a vector of uncorrelated unit-strength white noise.
The above expression is coordinate free, but it is sometimes
useful to introduce coordinates. In this case, (10) can be written
as the coordinate-dependent Stratonovich equation

or, equivalently,

(11)

Detailed derivation of the corresponding Fokker-Planck
equation can be found in [2], [25], resulting in

(12)

This expression, which is independent of coordinates, can be
made coordinate dependent by evaluating each using (9) and
replacing with .
In particular, if coordinates are used, evaluating (12)

with (9) and the parameters

and and

gives

(13)

The initial conditions are . If the no-
tation is used, then

. The term in parenthesis in (13)
is expressed in coordinates, is , and is

.
For details regarding derivations of the above equations, and

inter-conversion between Stratonovich and forms, see [2]
and the associated online addenda. An alternative derivation



WOLFE AND CHIRIKJIAN: SIGNAL DETECTION ON EUCLIDEAN GROUPS 711

of (12) using Gangolli-McKean injection and the SDE for-
malism is also possible, as described in [26], [27]. Rigorous
and thorough treatments of SDEs on manifolds can be found
in [28]–[30]. The added structure afforded by the Lie-group na-
ture of makes the formulation somewhat easier than in
the more general case of manifolds.
One can imagine extensions to (10) in which white noise is

replaced by Levy noise. In this case, methods described in [31],
[32] would become relevant. However, for this paper we limit
the discussion to white noise forcing.

B. Fourier-Based Solution Methods

The group Fourier transform and inversion formula for
can be written as

(14)

and

(15)

where is a “frequency” parameter from the unitary dual of
(denoted as ), (to within a normalizing constant),
and is a complete set of irreducible unitary
representation matrices [33], [34]. Formulas (14) and (15) gen-
eralize to wide classes of unimodular groups including all finite
and compact Lie groups (in which case becomes discrete
and becomes a counting measure), , ,

, the Poincaré groups, and the Heisenberg groups.
However, our concern here is only with , for which

. In analogy with the classical Fourier transform,
the above transform has associated operational properties. For
example,

(16)

where

(17)

is a Lie derivative and can be thought of as a directional deriva-
tive in the direction of . Explicitly,

For , these infinite-dimensional matrices are

(18)

(19)

(20)

When polar coordinates are used for , the irreducible represen-
tation matrices, , for are

(21)

is the th-order Bessel function, , and ma-
trices are indexed such that , .

The operational properties in (20) make the group Fourier
transform an ideal tool for analyzing diffusions on the group
since the diffusion equation is converted to a system of linear
ODEs in Fourier space.

C. The Gaussian Solution

1) Moments of Probability Density Functions on Lie Groups:
While the definition of a probability density function (pdf) fol-
lows directly from pdfs defined over , concepts of mean and
covariance on matrix Lie groups are not as straight-forward.
However, for pdfs that are relatively concentrated, definitions
used for mean and covariance have been extended from those
commonly used for pdfs on [35]–[37]. The mean of
a pdf can be defined such that

(22)

This concept of mean, which should not be confused with other
concepts such as those presented recently in [3], has some
particularly useful properties for our application, as described
below.
The covariance matrix for these concentrated pdfs can be

defined using

(23)

This too should not be confused with other concepts of covari-
ance that are reviewed in [2], [38], [39].
Along these lines, a pdf for Lie groups has been developed

that was inspired by the normal distribution on [25]. This
distribution has been called a Gaussian on exponential coordi-
nates and is given by

(24)

Here is a normalizing factor that ensures that is
a pdf. When the covariance is small this normalizing factor can
be approximated as

where is the dimension of . For , . In
related work, this approach has also been taken for in
which case [25].
2) Propagation ofMean andCovariance: Aswewill demon-

strate in subsequent sections, the convolution of pdfs can be
used to “piece together” distinct distributions. For example, if
two actions are described by their respective pdfs. The convo-
lution of the two pdfs gives the distribution that describes per-
forming the first action followed directly by the second action.
The convolution of two functions, and , on a Lie
group is given by

(25)

It is often convenient to determine the mean and covariance
of this third distribution given the mean and co-

variance of the two contributing pdfs and . If
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and are “concentrated” pdfs centered around and
, respectively, then several closed-form approximations have

been given for and . The details of these derivations
are given in [40] and [41] for Euclidean motion groups, such
as and . If and ,
then a “first-order”1 approximation can be used reliably. This
first-order propagation gives the following approximations for
mean and covariance:

(26)

and

(27)

Second-order closed-form approximations are also available in
[40] and [41] for situations when the underlying distributions
are more diffuse; however, these approximations will not be ex-
plored here.
In the small-time limit, and starting with the initial conditions

and equal to the group identity element, re-
peated application of the propagation formulas for the mean and
covariance can be iterated to give integrals for these quantities:

(28)

and

(29)

When is small enough, the resulting Gaussian distribution
solves the diffusion equation because if , then

.
In many numerical applications, the Gaussian solution out-

lined here may be advantageous to use over the Fourier method
described earlier (and which will be demonstrated in the next
section). In particular when is small enough to justify the
use of the Gaussian solution, the distribution being described
is very concentrated. Such a compact distribution requires
that a larger number of frequencies be used to numerically
integrate the Fourier inversion formula. The increased number
of frequencies means that larger truncations are required to
adequately represent the infinite dimensional Fourier matrices.
Both of these require significantly higher computational time
when compared with evaluating the closed-form Gaussian
solution. However, as the distribution becomes more dispersed,
smaller truncation sizes and few frequencies can be used to
faithfully represent the distribution using the Fourier approach.
In addition, more dispersion leads to violations of the assump-
tions that underlie (26) and (27). The difference of these two
methods is described further in Section VI.

IV. INEXTENSIBLE ELASTIC-ROD MODEL OF DNA

DNA is a relatively stiff molecule and is often modeled
as a homogeneous elastic rod. For fairly long DNA fragments
(longer than about 100 nm), thisworm-like chainmodel provides
a description that correlates well with experiments such as force

1First-order here refers to the number of terms kept in the Baker-Campbell-
Hausdorff expansion of where and are elements of the
associated Lie algebra. Additional details of the precise definition can be found
in [40] and [41].

Fig. 2. Simulated ensembles of stochastic trajectories for (30) with :
(top) Without a bend; (bottom) With a 60 bend. Bends are assumed to occur
with equal frequency in the positive and negative direction.

spectroscopy [42]–[44]. While this model can be expressed in a
general fashion to include axial elasticity along the length of the
molecule, it is often simplified and assumed to be inextensible
because of the stiff nature of DNA. This assumption results in
a model with Brownian forcing on the orientation only. For
DNA constrained to planar surfaces, this model can be written
as a stochastic differential equation (SDE) of the form

(30)

This model has a straight backbone such that the unperturbed
path has a constant drift or “velocity” in the direction. Here
represents the arc length of the molecule and corresponds

with the flexibility of the DNA. The top plot in Fig. 2 shows a
set of paths generated using this model for .
The Fokker-Planck equation associated with this model is

(31)

The Fokker-Planck equation represents the probability density
function describing the elastic filament model for a fixed value
of . If we let represent the full length of the DNA filament,

will represent the pdf of for . Assuming
Dirac delta initial conditions, , the solution to
(31) provides the distribution of relative positions and orienta-
tions with respect to the proximal end. It should be noted that
the formulation given in (30) and (31) does not account for ex-
cluded-volume effects. However, in the unconstrained plane,
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these models are generally assumed to be valid for a few per-
sistence lengths.
There are several methods that can be used to solve the

Fokker-Planck equation given in (31). However, for relatively
long filaments, the group Fourier transform has a number of
properties that make it useful for obtaining the corresponding
pdf.
For a homogeneous filament model such as (30), the opera-

tion properties allow us to use the matrix exponential to solve
the differential equation that results from applying the Fourier
transform to (31).
In particular, we can use (14), (15), and (16), to write

(32)

where ’s are determined using (20).
Using the matrix exponential to solve this differential equa-

tion in Fourier space then yields [45]

(33)

The probability distribution function can then be recovered
using the inverse Fourier transform defined in (15). This can
also be written as a double summation,

(34)

A. Adding a Static Bend

In order to compare the statistics of experimentally sampled
bent DNA data with those of the elastic model, we must add a
bend to the middle of the elastic model. This is done using con-
volution which allows us to take the distributions for two lengths
fixed lengths and obtain the overall distribution that would re-
sults from serially connecting the two fragments. For two frag-
ments with lengths and this convolution is defined to be

(35)

The use of the Fourier transform as defined in (14) to solve the
Fokker-Planck equation in (31) is particularly convenient when
the distribution of interest results from the convolution of func-
tions. This is because the Fourier transform of the convolution
of two functions can be written

(36)

Using convolution, we can write the overall distribution for a
strand of DNA with a bend in the middle as

where b(g) describes the bend or twist that is induced. A number
of forms for were given by Zhou and Chirikjian in [46]. For
the purposes of this work we will use a bend distribution of the
form

(37)

where is the Dirac delta and is the bend angle. More
information on the form of this bend function in can be
found in E.1.3 of [34]. The Fourier transform of this static bend
can be expressed as

(38)

where * denotes the Hermitian conjugate. The elements of
can then be written as

(39)

Using the fact that

if
otherwise

(40)

Equation (39) can be simplified to

(41)

In summary, if we want to determine the distribution of the in-
extensible elastic model with total length and a bend
at we can substitute

(42)

into the inverse Fourier transform given by (15) (or (34)). Then
since this distribution provides a full description of the relative
end-to-end motion of the model, a number of quantities of
interest can be computed, including end-to-end distance and
end-to-end orientation distributions. Next we will compute
some of the marginals of this distribution and demonstrate how
they may be used to determine model parameters of interest.

B. Marginal Distributions and Statistical Inference of
Parameters

1) Marginalization Over and : While the full distribution
of the model is available with respect to all of the coordinates of
as described above, accurate measurements of things such as

orientation or position may be more difficult to obtain experi-
mentally. For example, when measurements are taken using the
AFM techniques described in [45] and [4] the relative orienta-
tion between ends is not easily measured. Therefore, marginal-
ization can be used to obtain distributions that are only functions
of the coordinates of interest. Because the orientation, , is not
as easily measured experimentally, we can marginalize over it
to obtain a distribution that is only a function of position. This
can be done by looking at the inverse Fourier transform from
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Fig. 3. Distribution of the distal end position of the model relative to the prox-
imal end for : (top)Without a bend; (middle) With a 40 bend; (bottom)
With a 60 bend. These plots have been marginalized over orientation, . Also,
bends are assumed to occur with equal frequency in the positive and negative
directions.

(34) marginalized over which can be obtained by looking at
the integral

(43)

Here the inner integral on the right-hand side canbe expressed as

(44)

This comes about as for . Substituting
(44) into (43) yields

(45)
Distributions resulting from marginalization over are given
in Fig. 3 for three different bend angles: 0 , 40 , and 60 . For

these contour plots and . This flexibility
value was chosen as it closely resembles what was seen in the
AFM images given in [45] when the length of the imaged DNA
fragments was normalized. Also, because of the random overall
orientation of DNA samples during experimental imaging, these
distributions assume that both positive and negative values of
occur with equal frequency.
It should further be noted that because the Fourier-space op-

erator matrices in (18)–(20) are infinite dimensional, they need
to be truncated before they can be exponentiated. For these
plots (and the remaining analysis) the ’s were truncated to
101 101 before exponentiation. The resulting matrices were
further reduced to 51 51 before the inverse Fourier transform
was applied. It is clear from these distributions that increasing
the bend angle, , results in distributions that are more spread
out. As one would expect, a similar spreading effect can be seen
for increases in the flexibility parameter, .
Marginalization allows us to reduce the measurement uncer-

tainty by relying on quantities in whichwe aremost confident. In
[45], covariances in three dimensions were explored for both the
simulated and experimental ensembles; however, the sample co-
variances for the experimental data have additional uncertainty
associated with them because of manipulation that needs to be
performed to obtain the proximal and distal orientations. On the
other hand, end-to-end distances, which contain less informa-
tion, can be more accurately determined. The use of polar coor-
dinates helps to facilitate obtaining a pdf of end-to-end distance
values as this can be obtained by marginalizing over both and
. Integrating (45) over yields a distribution in just . This is
shown to be equal to

(46)

The inner integral on the right-hand side is computed as

(47)

Substituting this into (46) gives

(48)
Finally, we can substitute the center entry in (42) into this equa-
tion and use the Fourier inversion formula (41) to obtain the
end-to-end distance distribution.
2) Statistical Inference of Parameters: In the model defined

by (30) with fixed length and a bend at the midpoint, the two
parameters of interest are the flexibility, , and the angle of the
central bend, . We can now look at how the end-to-end dis-
tribution in (48) may be used to obtain values for these two pa-
rameters given two sets of sampled or experimental data. Let
us assume that we are given two sets of normalized end-to-end
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distances for DNA constrained to the plane: one for unperturbed
DNA and one for DNA with an induced bend in the middle. We
will assume that (1) the DNA fragments are well modeled using
(30) (or equivalently (31)) and (2) the bend only causes a local
structural change. Then, we can use the sampled data for unper-
turbed DNA to determine the value of the flexibility parameter
. This value can be coupled with the second data set to infer
the bend angle .
Let be the distribution obtained using (48) and

(42) for and fixed values of and . Also,
let and be the sets of normalized end-to-end
distance values for the naked/unperturbed DNA and bent DNA
data, respectively. We can then use the sum of log-likelihoods
to obtain , the value of that best describes . This
value is taken as

(49)

where

(50)

Using this value for the flexibility parameter allows us to deter-
mine in a similar manner. Specifically, we can take to be

(51)

The search space for is limited to , because
. Moreover, it is assumed that if the bend angle in

the model is taken to be , then approximately half of the frag-
ments will exhibit a bend of and the other half .
To demonstrate the effectiveness of these methods two se-

ries of numerical experiments were conducted. For all of the
data sets, 1,000 sample trajectories were numerically generated
using (30). All trajectories had unit total length
and all bends occurred at . Fig. 2 demonstrates several
smaller ensembles of simulated trajectories for different values
of .
For the first set of simulations, unbent DNA was simulated

using , the flexibility of each data set was varied, and the
resulting best fit as given by (49) was determined. The values of
used to generate the simulatedDNA fragments varied from 0.5
to 0.95. The resulting values of correlated very well as shown
in Fig. 4. Fig. 5 demonstrates how varies with
for three of these trials. It is clear that is a

smooth function with respect to and has a single maximum
very close to the value of used to generate the sample

set.
The second set of simulations used a constant flexibility of

and varied for each data set. Using the method de-
scribed above, was determined using (51) and the flexibility,

, that was determined for the unbent data set that had
been generated using . Bend values were varied from
10 to 80 . Fig. 6 shows the bend value used and the resulting
. Again, the values that maximize (50) are very close to those

used to generate the simulated ensembles. As was shown for ,
Fig. 7 demonstrates how varies with for
three data sets with different degrees of bending.
Determining structural characteristics of DNA is important,

particularly when developing drugs and processes that rely on
locally changing these characteristics. One example of such
local changes are bends that are induced by agents such as

Fig. 4. Best fit flexibility parameter for several data sets generated with
different values of .

Fig. 5. The log-likelihood function is plotted with respect to flexibility for the
unbent DNAmodel for three values of . The three plots peak near the flexibility
value used in each of the simulated data sets.

Fig. 6. Best fit bend angle for several data sets generated with different
values of and a fixed value of . These bend angles were determined
using , the value inferred from an unbent data set with .

drugs and proteins. Characterizing these bends and measuring
the angle of the bend induced have proven to be difficult given
the currently available sensing modalities. In this work we
presented a classic elastic model for DNA diffusing on the
plane and developed a method for determining the bend angle
by comparing the distributions of the model with experimental
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Fig. 7. The log-likelihood function is plotted with respect to bend angle for the
DNAmodel with an induced bend in the middle for three bend angles. The plots
peak near the bend value used in the corresponding simulated data set.

or sampled data. This method is intended to be used with
experimental measurements of end-to-end distances of DNA
constrained to a planar substrate. The ability to collect such
data has been previously established.
The model presented assumes a fixed value for the angle of

the bend. Future efforts may focus on modifying the model
to account for variability in this angle. We may also investi-
gate modifying the model to account for sequence dependent
flexibility.

V. APPLICATIONS IN ROBOTICS AND OPTICAL
COMMUNICATION SYSTEMS

A. Inferring Intent From Observations of Mobile Robots

It has been shown that a good model for a unicycle-like mo-
bile robot subjected to noise can be given by the same SDE
that describes DNA [16]. Indeed, many nonholonomic mobile
robots including the unicycle, the kinematic cart, and the Du-
bins kinematic car model all have similarities. The stochastic
forcing here can enter due to roughness of the terrain and other
effects. Therefore, a robot that executes an open loop trajec-
tory will never exactly follow the intended path. Such paths
could be constructed from segments of motion primitives such
as straight line segments and circular arcs that are stitched to-
gether to form a continuous trajectory. Each primitive can be
viewed as a letter in an alphabet, and a whole trajectory can
be viewed as a word. Suppose that an overhead camera records
images of the robot, and this camera is connected to a computer
equipped with a priori knowledge of the motion primitives. That
is, the robot and computer share the same dictionary. If the com-
puter’s job is to diagnose the health of the robot through its per-
formance, it can ask the robot to perform a task, observe the per-
formance, and compare that performance to normal behavior.
The range of normal behaviors can be modeled via SDEs with
a noise level that is determined a priori from physical experi-
ments, and the ensemble can be characterized by the solutions
of the Fokker-Planck equation. Then, if the robot is performing
within normal limits, the intended motion (or ‘signal’) can be
detected and recovered from the camera/computer system using
inference methods. In particular, if the robot is asked to move

forward with a speed , then the Fokker-Planck equation de-
scribing the probability density of its evolution will be exactly
the same as in the Phase-Noise problem described below, and
when , it will be exactly the same as in the DNA
problem. If it is asked to move in a more complicated pattern
in the plane, this will change the drift equation, but the same
methods will apply. That is, drift terms corresponding to mo-
tion in a straight line or circular arc have constant coefficients,
and the overall Fourier matrix for a whole ‘word’ can be written
as a product of matrix exponentials, one for each ‘letter.’ These
ideas are explained in more detail in [1], [2], [17] which draw a
number of connections between signals on Lie groups, the com-
munication of noise-corrupted versions of those signals, and the
extension of information-theoretic inequalities to the Lie-group
setting.

B. Phase Noise and Filter Design in Coherent Optical
Communications

The two major types of optical communication systems
are “direct” detection systems and “coherent” detection sys-
tems. Here we discuss how a Fokker-Planck equation on the
Euclidean group arises in the context of coherent detection
systems, and the corresponding signal detection problems.
Coherent systems have some theoretical advantages over di-

rect detection systems, but this comes at the cost of increased
complexity, and a problem called laser phase noise. In a co-
herent detection system, light is added to the incoming modu-
lated signal as part of the detection process via a local oscil-
lator, even if subsequent processing and demodulation ignore
the phase and frequency, as is the case of envelope detectors
[47]. Adding the input from the local oscillator to weak conven-
tional intensity modulation increases sensitivity of the system,
resulting in what is called a “weakly coherent system.”
In contrast to direct detection systems, coherent detection sys-

tems have the potential to detect the phase, frequency, ampli-
tude, and polarization of the incident light signal. Therefore, in
principle, information can be transmitted via phase, frequency,
amplitude, or polarization modulation. Of all the obstacles pre-
venting coherent techniques from being used widely in prac-
tice, laser phase noise is one of the largest. The phase of the
light emitted from a semiconductor laser exhibits random fluc-
tuations due to spontaneous emissions in the laser cavity [48].
This phenomenon is commonly referred to as phase noise. Be-
cause there are only about photons in the active region of a
semiconductor laser, the phase of the light is significantly per-
turbed by just one spontaneous photon. If there were no spon-
taneous emission, the output light spectrum would consist of
delta functions (each delta function corresponding to
one longitudinal mode at frequency ). As a result of random
spontaneous emissions, the spectrum is no longer a sum of delta
functions, but instead the spectrum is broadened and has a finite
nonzero linewidth around each . The amount of phase noise
is directly related to its so-called linewidth, the 3 dB linewidth
of its power spectrum density. The spectral width of a modern
microwave oscillator is less than 1 Hz, that of a DFB laser is
1 MHz. As of a few years ago, the best GaAsInp DFB lasers
had a linewidth less than 1 KHz [49], [50].
Phase noise has two important adverse effects on the perfor-

mance of coherent optical communications. One effect is the
broadening of the linewidth of a light source output mentioned
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Fig. 8. A comparison of the two approaches for obtaining distributions for the diffusion model with a 30 bend in the middle. Two values of are provided to
represent concentrated (top) and dispersed (bottom) distributions.

above. This results in inefficient use of the available bandwidth
and causes interchannel interference and thus necessitates wider
channel spacing. The second effect is that phase noise directly
corrupts the phase or frequency of a modulated carrier. It makes
the correct retrieval of the transmitted data bits (i.e., “signal de-
tection”) more difficult for the receiver. The system sensitivity
is degraded, as measured by the BER (bit error rate) [51]. For
a BER, this necessitates an increase in received signal power
compared to the ideal situation (power penalty). In some cases
the presence of phase noise creates a lower limit on the proba-
bility of a bit error (BER floor) below which the system cannot
operate.
Some methods to alleviate the influence of phase noise have

been proposed by [18], [52]. They involve receiver structures
and signaling mechanisms that are relatively insensitive to
phase uncertainty. As was pointed out in detail by [53] and
[54], to evaluate the phase noise effects on coherent optical
systems, the main issue is to find the statistical characterization
of the output of the IF filter. Analytical models that describe
the relationship between phase noise and the filtered signal
are found in [19], [53]–[55]. In particular, the Fokker-Planck
approach represents the most rigorous description of phase
noise effects [54], [56], [57]. To better apply this approach to
system design and optimization, an efficient and powerful com-
putational tool is necessary. The solution of the Fokker-Planck
equation has been described as a difficult problem, and herein
lies the connection with our paper.
Ultimately, in coherent optical communication systems, the

limitation on the amount of information that can be transmitted
due to laser phase noise is described using (13) as described
in [19], [53]–[55], [58]. This is the same equation as the DNA
equation, where now instead of being constant, it now de-
scribes the IF filter that can be chosen (i.e., “designed”). In
this context, and are the real and imaginary parts of the
noisy part of any signal being sent by the laser over an optical
fiber, and is the phase variable. is the magnitude of phase

noise in the coherent optical system used to send the signal
. Therefore, studying the relationship be-

tween this design choice and the resulting pdf is a sort of signal
detection problem. Themethods presented in this paper for com-
puting may therefore serve as a design tool wherein can-
didates for are evaluated so as to shape, to the extent pos-
sible, the resulting pdf and the associated marginal
densities of interest in coherent optical communication systems.

VI. COMPARISON OF THE FOURIER AND

GAUSSIAN APPROACHES

As discussed previously, the Fourier-based and Gaussian on
exponential coordinate solutions each have different strengths
and limitations. The Gaussian approach is much less computa-
tionally intensive, but limited to concentrated distributions. The
Fourier-based approach is more general, but is very computa-
tionally intensive for these same concentrated distributions. The
approach taken in Section IV relied primarily on the Fourier-
based approach because of the disperse nature of the underlying
phenomenon. However, if the diffusion coefficient were smaller,
as would be expected in the case of mobile robots, the Gaussian
method would also be applicable.
We will briefly demonstrate these differences using the bent

DNAmodel, but the results are equally applicable to the mobile
robot and phase noise problems discussed. If we consider (30)
along with the integral forms of and given in (28) and
(29), the mean and covariance for are found to be

(52)

and

(53)
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Fig. 9. Correlation between distributions resulting from the Fourier and
Gaussian approaches. These distributions were marginalized over orientation
before the difference was determined.

We can then use (26) and (27) with a mean and covariance rep-
resenting a discrete bend to find and . The
moments representing this bend are and

This propagated mean and covariance were used with (24) to
generate the plots given in Fig. 8 which all contain a bend of
30 . As before, . These plots qualitatively
demonstrate that the two methods provide similar distributions
for small values of diffusion, but the pdfs diverge as grows.
We can also demonstrate this by looking at the correlation of

the resulting pdfs. Fig. 9 shows the correlation of the two pdfs
that have been marginalized over orientation with respect to the
diffusion coefficient . This plot also shows that over a range
of values of the diffusion parameter the distributions are very
similar, but if the diffusion constant becomes too small, then
the Fourier method breaks down, and if the diffusion constant
becomes too large the Gaussian approximation degrades.

VII. CONCLUSION

In this work, we presented methods for extracting signals
from probability density functions associated with degenerate
diffusions on Euclidean groups. Such problems arise in three
very different scenarios: 1) finding the induced bend angle in
an inextensible elastic filament model of DNA that is confined
to a planar substrate, but exhibits planar diffusion; 2) inferring
intent of a kinematic cart with a known dictionary of maneu-
vers; 3) characterizing the bit-error function in the laser phase
noise problem and providing a methodology for testing the ef-
fects of different filters. These methods relied on several useful
properties of the group Fourier transform, and the Gaussian dis-
tribution in exponential coordinates.
In some of these scenarios the full distributions are used,

whereas in others marginal densities are required. For example,
in the bent DNA problem, densities were marginalized to ob-
tain distributions over end-to-end distance as this quantity is
more easily measured than the full relative pose of the proximal
and distal ends of DNA.Given these parameterized distributions
and end-to-end distance data sets for bent and unbent DNA, we

demonstrated how log-likelihood methods can be utilized to de-
termine the angle of the bend present in the bent DNA. The wide
variety of values of flexibility, , and bend angle, , used in the
numerical experiments highlight how effective these methods
may be for experimental data collected from samples with very
different structural properties. However, because the shape of
the functions in Figs. 5 and 7 are more concave downward for
lower values of and , we can assume that these methods
are more sensitive to changes in these regions. As such, we be-
lieve that thesemethods are best suited for stiffer molecules with
larger bend angles.
Finally, we explored the differences and similarities between

the Fourier-based and Gaussian of exponential coordinates ap-
proaches. Further exploration of which applications lend them-
selves to either approach should be performed. In particular,
determining methods for transitioning from one method to the
other as distributions spread out are of interest.
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