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Conformational statistics of bent semiflexible polymers
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This paper extends previous methods for obtaining the probability distribution function of
end-to-end distance for semiflexible polymers, and presents a general formalism that can generate
conformational statistics of any continuum filament model of semiflexible chains with internal
bends and twists. In particular, our focus is distribution functions for chains composed of straight or
helical segments connected with discrete bends or twists. Prior polymer theories are not able to fully
account for the effects of these internal shape discontinuities. We use the operational properties of
the noncommutative Fourier transform for the group of rigid-body motions in three-dimensional
space. This general method applies to various stiffness models of semiflexible chainlike
macromolecules. Examples are given which apply the stiffness parameters defined in the Kratky–
Porod model, Yamakawa helical wormlike chain model, and revised Marko–Siggia double-helix
model to chains with intrinsic bends or twists in their undeformed~minimal energy! state. We
demonstrate how the location and magnitude of internal bends in the chain affect the distribution of
end-to-end distances for each of these models. This capability allows one to study the entropic
effects of intrinsic shape changes~e.g., bend angle! in various models, and may lead to
coarse-grained continuum mechanical models of processes that occur during transcription
regulation. © 2003 American Institute of Physics.@DOI: 10.1063/1.1596911#
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I. INTRODUCTION

The statistical mechanics of DNA and other semiflexib
~wormlike! chains has received much attention in the lite
ture. Many models have been put forth to predict the beh
ior of semiflexible chains and to explain experimental da
Among those models, the freely jointed chain1 and Kratky–
Porod ~wormlike chain! model2–4 are widely used to de
scribe intrinsically straight polymer molecules. As an imp
tant extension, Yamakawa introduced the more gen
helical wormlike chain model.5 The mechanical stiffness o
double-helical DNA has interested researchers since the
1970s.6 During the last ten years, experimental measu
ments of these properties has received consider
attention.7–9 The Marko–Siggia10 and revised
Marko–Siggia11 double-helix chain models have been intr
duced recently to describe the coupling of DNA stiffne
parameters.

A large body of work on polymer theory has sought
estimate the probability distribution and mean values of c
formational properties such as end-to-end distance and ra
of gyration. Common techniques are Monte Carlo, matr
generator, and direct enumeration.12–20 Path integration can
also be applied to provide ‘‘compact’’ analytical expressio
For some basic polymer models, ‘‘closed-form’’ path integ
formulas have been derived for the probability distributio
of loop length,21 segmental orientations,22 trajectories of a
segment,23 radius of gyration,24 end-to-end position and
distance,25–32 and moments.29,32,33 However, for sophisti-
cated models, the evaluation of path integrals can be har
handle, and usually requires extensive numerical calc
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tions. In previous work we showed that the probability de
sity function ~PDF! of the end-to-end relative position an
orientation for the most general model of an inextensi
semiflexible polymer chain can be obtained by either solv
a diffusion equation or convolving PDFs for short segme
of the chain.34–37 In doing so, the exponential growth in th
size of the sample space encountered in Monte Carlo
numerical path-integral methods is circumvented. More i
portantly, our model can generate the full six-degree-
freedom probability distribution of relative position and or
entation. This contains much more information than t
probability distribution of end-to-end distance and its m
ments. The distribution of end-to-end distance is only a o
dimensional marginal PDF of the six-dimensional distrib
tion that our method is capable of computing.

Whereas all of the studies mentioned above assume
trinsically straight or helical polymer chains, this paper p
sents a general formalism that can generate conformati
statistics of any continuum filament model of semiflexib
chains with internal bends and twists. The focus of this pa
is to compute probability distributions for these bent a
twisted semiflexible chains. First discovered in the ea
1980s,38 intrinsically bent DNAs are receiving more an
more attention~for example, see Fig. 1!. Bent DNAs have
been observed and studied experimentally.39–46 In addition,
models have been proposed to describe the relationship
tween bending stiffness and DNA sequence.47–49 However,
classical semiflexible polymer theories such as the KP mo
are inadequate to describe the conformational statistics
these systems. Matrix-generator and Monte Carlo meth
were used to study the influence of thermal fluctuation on
size and shape of bent DNA.50 Work was done by Rivetti
et al. to extend the applicability of the KP wormlike chai
il:
2 © 2003 American Institute of Physics
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4963J. Chem. Phys., Vol. 119, No. 9, 1 September 2003 Conformational statistics of bent semiflexible polymers
model to polymers containing bends.51 As a result, closed-
form expressions for mean square end-to-end distance
derived. However, no previous work has been published
how to calculate the full probability distributions of be
macromolecules with arbitrary chirality and stiffness para
eters. As an example of the importance of being able to c
pute statistical properties of intrinsically bent semiflexib
chains ~and hence the associated entropic forces!, we are
motivated by CAP as depicted in Fig. 1.46

Most research on semiflexible polymer statistics is ba
on wormlike chain models. It has been shown in recent w
that one methodology can be used to unify all previous
tistical models of short wormlike chains in dilute solution34

As an example of this generality, it was shown to include
Kratky–Porod, Yamakawa, Marko–Siggia, and revis
Marko–Siggia models as subcases. That general model,
the stiffness and chirality left as input parameters, is
starting point for this paper. In that model, the probabil
density function of the end-to-end relative pose~position and
orientation! of a semiflexible polymer chain with nonben
minimal energy conformation can be obtained by solving
partial differential equation which was derived from a pa
integral formalism. Pose statistics are directly relevant to
case when internal bends and twists are present in a s
flexible chain, because such relationships are rigid-body
tions that can generally not be described with the sim
classical models. On the basis of the above-mentioned
eral statistical model, this paper proposes a method for c
puting the probability density function of end-to-end relati
pose for intrinsically bent semiflexible chainlike macromo
ecules. Ignoring interactions between distal segments of
same polymer chain~which is reasonable for stiff chains tha
are short enough to make self contacts unlikely!, our method
applies to semiflexible inextensible chiral elastic macrom
ecules with internal bends and twists.

II. A GENERAL NONBENT SEMIFLEXIBLE
POLYMER MODEL

Let R be a rotation matrix parameterized byZXZ Euler
angles, and leta be a position vector in 3D space paramet
ized by spherical coordinates. That is,

FIG. 1. CAP~1run.pdb!: the DNA is a bent semiflexible polymer.
Downloaded 09 Oct 2003 to 128.220.2.42. Redistribution subject to AI
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a5S a1

a2

a3

D 5S a sinu cosf
a sinu sinf

a cosu
D , ~1!

where u and f are, respectively, the polar and azimuth
angles ofa, and

R5R~a,b,g!5ROT@e3 ,a#ROT@e1 ,b#ROT@e3 ,g#,
~2!

where ROT@ei ,w# denotes the rotation matrix describin
counterclockwise rotation byw about the natural basis vecto
ei which has elements (ei) j5d i , j . Hered i , j is the Kronecker
delta function. The pair~a,R! describes the pose~position
and orientation! of a frame of reference in space, or equiv
lently, the rigid-body motion required to move to the po
~a,R! from a reference frame defined by the identity orien
tion and zero translation,~0,1!. In this paper, this pair~a,R!
represents the relative pose between two frames of refere
one attached at the proximal end of a semiflexible polym
and the other attached at the distal end. Each pair~a,R! can
be thought of as an element of the group of rigid-body m
tions in three-dimensional space. This six-dimensional n
commutative Lie group is called SE~3!—the Special Euclid-
ean group of three-dimensional space.35 The group law is the
composition of rigid-body motions.

We define a local frame of reference attached to
polymer backbone such that thee3 direction of this frame
points along the tangent of the backbone of the polymer~see
Fig. 2!.

When a polymer is modeled as an inextensible ch
elastic chain, the position of any point at arc lengths with
respect to the frame of reference at the proximal end is

a~s!5E
0

s

R~e!e3de. ~3!

The elastic energy in the polymer is

E5E
0

L

Uds, ~4!

whereL is the total length of the polymer and

U5 1
2v~s!TBv~s!2bTv~s!1c. ~5!

HereB is a positive semidefinite symmetric matrix called t
stiffness matrix,b is a vector describing the chirality,c is a
constant, andv(s) is the spatial angular velocity of the poly
mer ~when s is interpreted as time rather than arc leng!
which satisfies

FIG. 2. Relationship between reference frames fixed at proximal and d
ends. (xpypzp) represents the frame of reference at the proximal e
(xp8yp8zp8) represents a frame located at the distal end but parallel to
frame of reference at the proximal end, and (xdydzd) represents the frame o
reference at the distal end.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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v~s!3r5RT
dR

ds
r , ;rPR3. ~6!

When v(s)5B21b, U is minimized. This constant angula
velocity yields a helical conformation of the polymer. Deno
ing v5uvu, and@n1 ,n2 ,n3#T5v/v, one can obtain the fol-
lowing closed-form formula fora(s) for an inextensible chi-
ral elastic chain in this lowest energy conformation,

a~s!5S n2

v
~12cosvs!1n1n3S s2

1

v
sinvsD

n1

v
~cosvs21!1n2n3S s2

1

v
sinvsD

s2~n1
21n2

2!S s2
1

v
sinvsD D . ~7!

When the chiral~helical! polymer is deformed from this
shape,U increases.

Defining D5@Dlk#5B21 and d5@dl #52B21b, one
can obtain the following diffusion equation that describ
how the PDF of relative pose between the frame of refere
at arc lengths and that at the proximal end of the cha
evolves:34,35

] f ~a,R,s!

]s
5S 1

2 (
k,l 51

3

DlkX̃l
RX̃k

R1(
l 51

3

dlX̃l
R2X̃6

RD f ~a,R,s!,

~8!

with initial conditions f (a,R,0)5d(a)d(R), whered is the
Dirac delta function. HereX̃i

R are differential operators fo
the group of rigid-body motions, SE~3!, where 1< i<6.
These are analogous to directional derivatives for functi
of Cartesian position. UsingZXZ Euler anglesa, b, andg to
parameterize rotationR, these operators have the followin
explicit form:

X̃1
R5cscb sing

]

]a
1cosg

]

]b
2cotb sing

]

]g
,

X̃2
R5cscb cosg

]

]a
2sing

]

]b
2cotb cosg

]

]g
,

X̃3
R5

]

]g
,

~9!

X̃4
R5~cosg cosa2sing sina cosb!

]

]a1

1~cosg sina2sing cosa cosb!
]

]a2

1sinb sing
]

]a3
,

X̃5
R5~2sing cosa2cosg sina cosb!

]

]a1

1~2sing sina2cosg cosa cosb!
]

]a2

1sinb cosg
]

]a3
,
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X̃6
R5sinb sina

]

]a1
2sinb cosa

]

]a2
1cosb

]

]a3
.

In previous work,34 a methodology for solving equation
such as Eq.~8! was developed based on operational prop
ties of the Fourier transform for SE~3!. The matrix elements
of this transform are35,52

f̂ l 8,m8; l ,m
r

~p!5E
SE~3!

f ~a,R!Ul ,m; l 8,m8
r

~a,R;p!dRda, ~10!

wheredRda5(1/8p2)sinbdadbdg sinua2dadudf is the in-
variant integration measure for SE~3!. The desired PDF can
be obtained by the inverse transform35,52

f ~a,R!5
1

2p2 (
r 52`

`

(
l 85ur u

`

(
l 5ur u

`

(
m852 l 8

l 8

(
m52 l

l E
0

`

f̂ l ,m; l 8,m8
r

~p!

3Ul 8,m8; l ,m
r

~a,R;p!p2dp, ~11!

where Ul 8,m8; l ,m
r (a,R;p)5( j 52 l

l @ l 8,m8up,r u l , j #(a)U j ,m
l (R)

are the elements of the infinite-dimensional irreducible u
tary representation matrices of the group SE~3!.35,52–54Here
Umn

l (R) are matrix elements of the irreducible unitary repr
sentation of the group of rotations SO~3!,35,55

Umn
l ~R~a,b,g!!5~21!n2me2 i ~ma1ng!Pm,n

l ~cosb!, ~12!

wherePm,n
l (x) are generalized Legendre functions,

Pm,n
l ~cosb!5F ~ l 2m!! ~ l 1m!!

~ l 2n!! ~ l 1n!! G1/2

3sinm2n
b

2
cosm1n

b

2
Pl 2m

~m2n,m1n!~cosb!,

~13!

andPl
(m,n)(x) are the Jacobi polynomials. Meanwhile,

@ l 8,m8up,r u l ,m#~a!

5
1

A4p
(

k5u l 82 l u

l 81 l

i kA~2l 811!~2k11!

~2l 11!
j k~pa!

3C~k,0;l 8,r u l ,r !C~k,m2m8; l 8,m8u l ,m!

3Yk
m2m8~u,f!, ~14!

where j k(x) is the kth spherical Bessel functions,Yk
m(u,f)

are spherical harmonics, andC(a,a;b,buc,g) are Clebsch–
Gordan coefficients.35 By applying the Fourier transform fo
SE~3! on both sides of Eq.~8!, one can obtain the following
system of linear ordinary differential equations with consta
coefficients:

df̂r

ds
5Br f̂ r . ~15!

This is because of operational properties of the SE~3!-
Fourier transform which convertX̃i

R operators into linear al-
gebraic operations in the SE~3! dual space.35 The elements of
Br have the explicit form,
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Bl 8,m8; l ,m
r

5Lm8,m
l d l 8,l2 ipk l 8,m8

r d l 821,ldm8,m

2 ip
m8r

l 8~ l 811!
d l 8,ldm8,m

2 ipk l ,m
r d l 8,l 21dm8,m . ~16!

Here,

k l 8,m8
r

5S ~ l 822m82!~ l 822r 2!

~2l 811!~2l 821!l 82D 1/2

, ~17!

and all elements ofL are zero except

Lm,m12
l 5S D112D22

8
1

iD 12

4 D cm11
l c2m21

l ,

Lm,m11
l 5S ~2m11!~D232 iD 13!

4
1

d11 id2

2 D c2m21
l ,

Lm,m
l 52

D111D22

8
~c2m

l cm21
l 1cm

l c2m21
l !

2
D33m

2

2
2 id3m, ~18!

Lm,m11
l 5S ~2m11!~D231 iD 13!

4
1

2d11 id2

2 D cm21
l ,

Lm,m12
l 5S D112D22

8
2

iD 12

4 D c2m11
l cm21

l ,

where

cn
l 5HA~ l 2n!~ l 1n11!, l>unu

0, otherwise.
~19!

Then, by solving Eq.~15!, one obtains

f̂ r ~p,s!5esBr
. ~20!

Substituting the elements off̂ r into Eq.~11!, one obtains the
distribution of pose of the frame attached to the polymer
arc lengths relative to the frame ats50. When it is obvious
which value ofs is of interest we use the notationf̂ r(p) in
place of f̂ r(p,s).

In practice, only an approximation to Eq.~20! is com-
puted because the infinite-dimensional matrixBr is trun-
cated before exponentiating. This step can be justi
mathematically.56

III. A GENERAL ALGORITHM FOR BENT
AND TWISTED SEMIFLEXIBLE POLYMER CHAINS

A bent polymer chain is depicted in Fig. 3. As a fram
traverses the backbone of the polymer chain, one can sim
divide the chain into two segments. Each of these segm
has a probability density function which describes the
semble of all possible motions of the distal end of a ch
segment relative to its own proximal end. Let the segme
have arc lengthL1 andL2 , respectively. The interaction be
tween the two segments is implemented by a full six-degr
of-freedom rigid-body motion. A bend or twist is a rotation
the separating point between the two segments with no tr
Downloaded 09 Oct 2003 to 128.220.2.42. Redistribution subject to AI
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lation. As a result, the PDF of end-to-end pose for an intr
sically bent semiflexible chain is a convolution of thre
PDFs, each of which is a function of six pose variables~three
position variables and three orientation variables!,

f ~a,R!5~ f 1* f 2* f 3!~a,R!. ~21!

Here f 1(a,R) is the pose probability distribution of the fram
of reference attached at the distal end of subchain 1 rela
to its own proximal end;f 3 is the pose probability distribu
tion of the distal end of subchain 2 relative to its own pro
mal end;f 2 is the pose probability distribution of the fram
of reference at the proximal end of subchain 2 relative to
frame at the distal end of subchain 1, describing the junct
between the two subchains. Heref 1(a,R) is obtained by set-
ting s5L1 in Eq. ~20! and substituting the result into Eq
~11!, and f 3(a,R) is obtained by settings5L2 and following
the same procedure. In contrast,f 2(a,R)5d(a)d(Rb

21R),
whereRb is the rotation made at the bend, and the fact t
the delta function for SE~3! is the product of those forR3 and
SO~3! has been used. Notice that the delta function in tra
lation is centered at the origin because the two subch
meet at a point rather than being translated in space rela
to each other; meanwhile, the delta in rotation is centered
the relative orientation between the connected segme
The convolution in Eq.~21! is a convolution on the group
SE~3!,37

~ f i* f j !~g!5E
SE~3!

f i~h! f j~h21+g!d~h!, ~22!

whereg5~a,R! andh denote members of SE~3!. This is not
to be confused with convolution in the sense most familiar
scientists and engineers. In the definition of convoluti
given in Eq.~22!, the little circle is the group multiplication
law for rigid-body motions. Previous work has made t
connection between this kind of convolution and polym
statistics,37 as well as provided algorithms for the efficie
computation of this kind of convolution.57

In the context of bent semiflexible polymer chains, t
Fourier transform for SE~3! provides a relatively easy way t
compute Eq.~21!. By applying the transform on both side
of Eq. ~21!, one obtains

f̂ r~p!5 f̂ 3
r ~p! f̂ 2

r ~p! f̂ 1
r ~p!. ~23!

It is a general property that the Fourier transform of a co
volution of functions is the product of the Fourier transform
of those functions multiplied in reverse order. Since in th

FIG. 3. Schematic diagram of a bent polymer chain. (xpypzp) represents the
frame of reference at the proximal end, (xdydzd) represents the frame o
reference at the distal end, andbb represents the angle between the tange
to the backbone at the bend.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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context the Fourier transforms are matrix-valued functio
the order of multiplication matters. One can computef̂ 1

r and
f̂ 3

r by using Eq.~20!, and obtainf̂ 2
r as

f̂ 2l 8,m8; l ,m
r

~p!5E
SE~3!

f ~a,R!Ul ,m; l 8,m8
r

~a,R;p!dRda

5E
SE~3!

d~a!d~Rb
21R!Ul ,m; l 8,m8

r
~a,R;p!dRda

5Ul ,m; l 8,m8
r

~0,Rb ;p!

5~21!~ l 82 l !~21!~m82m!d l ,l 8Ũ2m8,2m
l

~Rb!

5~21!~ l 82 l !d l ,l 8e
im8abPm,n

l ~cosbb!eimgb,

~24!

where ab , bb , and gb are ZXZ Euler angles ofRb . By
substituting the elements off̂r into Eq.~11!, one can compute
the PDF of end-to-end pose of bent polymer chains. Ifab

andgb are both zero butbb is not zero, we call this a ben
chain. In contrast ifbb is zero butab or gb is not zero, we
call this a twisted chain.

Because the distribution of end-to-end distance a
angle between the tangents at both the proximal end and
distal end are quantities that can be measured from exp
ments directly, these low-dimensional PDFs are of inter
The end-to-end distance isa5ua(L)u, and the angle betwee
the tangents at both ends is theb Euler angle ofR(L). By
using Eqs.~23! and ~20! and integrating Eq.~11!, one can
obtain f (a) from f (a,R) as

f ~a!5
a2

2p2 E0

pE
0

2pE
SO~3!

f ~a,R!sinudRdfdu

5
2a2

p E
0

`

f̂ 0,0;0,0
0 ~p!

sinpa

pa
p2dp. ~25!

Moreover, one can obtainf (a,b) as

f ~a,b!5
a2 sinb

8p2 E
0

pE
0

2pE
0

2pE
0

2p

f ~a,R!sinudadgdfdu

5
a2 sinb

2p E
0

`S (
r 52`

`

(
l 5ur u

`

f̂ l ,0;l ,0
r ~p!Pl~cosb!D

3 j 0~pa!p2dp, ~26!

wherePl(x) are Legendre polynomials.

IV. NUMERICAL RESULTS

By definition r PZ ~the integers! and 0<p,`, andBr

is infinite dimensional. To do numerical computations, o
must truncateBr at finite values ofr, l, andp. We truncate at
r 5r B , l 5 l B , and p5pB such that2r B<r<r B , 2 l B< l
< l B , and 0<p<pB . Whenf (a) is of interest, we only need
to considerr 50, as suggested by Eq.~25!. As far as units are
concerned, ‘‘a’’ is a distance andL is an arc length. They can
be measured in any length units that one chooses. In
computation, all the stiffness and length parameters are
malized by persistence length. The general formulation
Downloaded 09 Oct 2003 to 128.220.2.42. Redistribution subject to AI
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viewed in Sec. II applies to several stiffness models. Num
cal computations are now implemented with these differ
models.

The Kratky–Porod and Yamakawa models are w
known in polymer theory. For the Kratky–Porod wormlik
chain model, the stiffness matrix, chirality vector and co
stant in Eq.~5! are defined as2

B5S a0 0 0

0 a0 0

0 0 0
D , b5S 0

0
0
D , c50, ~27!

wherea0 is the stiffness parameter, which is related to te
peratureT, Boltzmann constantkB , and persistence lengthl p

as

a05kBTlp . ~28!

In Fig. 4, we compute as examplesf (a) and f (a,b) for a
Kratky–Porod chain witha050.1, L15L250.5, and Rb

5R(0,p/4,0). To computef (a,b), we set r B5 l B53, pB

550; to computef (a), we setl B56, pB5120. In general,
different values of the physical parameters will result in d
ferent probability distributions. Knowing this is useful fo
determining the properties of a polymer chain, such as s
ness, from experimentally measured PDFs.

By changing the bend anglebb over the range@0,p#, one
can see how it affects the resulting PDFs of end-to-end

FIG. 4. f (a,b) and f (a) for the Kratky–Porod model with a bend.~a!
Contour plot off (a,b). ~b! Plot of f (a).
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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4967J. Chem. Phys., Vol. 119, No. 9, 1 September 2003 Conformational statistics of bent semiflexible polymers
tance. By choosinga050.5, L15L250.5, l B56, and pB

5120, we compute a set off (a) curves with different values
of bb for the Kratky–Porod model~Fig. 5!.

By changing the bend location,L1 , over the range of
backbone arc length@0,0.5#, one can see how it affects th
resulting PDFs of end-to-end distance. By choosinga0

50.5,Rb5R(0,p/2,0), l B56, andpB5120, we computed a
set of curves forf (a) with different values ofL1 ~where
L11L251) for the Kratky–Porod model~Fig. 6!. Using
these curves, one can identify the location of a bend from
PDF of end-to-end distance.

For the Yamakawa helical chain model, the stiffness m
trix, chirality vector and constant in Eq.~3! are defined as5

B5S a0 0 0

0 a0 0

0 0 b0

D , b5S 0
a0k0

b0t0

D ,

~29!
c5 1

2~b0t0
21a0k0

2!,

wherek0 and t0 are the curvature and torsion of the he
respectively,a0 is defined as Eq.~28!, and

b05a0~11s!21, ~30!

FIG. 5. Evolution off (a) with respect to bend angle for the Kratky–Poro
model.

FIG. 6. Evolution of f (a) with respect to position of bending point fo
Kratky–Porod model.
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wheres is the Poisson ratio. With Eq.~7!, one obtains helical
chains as shown in Fig. 7.

In Fig. 8, we compute as examplesf (a) and f (a,b) for
a Yamakawa chain witha050.1, s50, k05t0530, L1

5L250.5, andRb5R(0,p/4,0). To computef (a,b), we set
r B5 l B53, pB550; to computef (a), we set l B56, pB

5120.
To study the impact of bending angle, we chosea0

50.5, s50, k05t0530, L15L250.5, l B56, and pB

5120, and computed a set of curves forf (a) with different
values of the bending anglebb for the Yamakawa mode
~Fig. 9!.

FIG. 7. Single-helical polymer chains modified from the Yamakawa mod
The left is a nonbent helix, the middle is a bent helix, and the right i
twisted helix.

FIG. 8. f (a,b) and f (a) for the Yamakawa model.~a! Contour plot of
f (a,b). ~b! Plot of f (a).
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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By choosinga050.5, l B56, pB5120,L15L250.5, but
k055, t051, we obtain another set of curves forf (a) with
different values ofb for the Yamakawa model, which show
quite different patterns caused by unequal curvature and
sion ~Fig. 10!.

For a polymer with a helical backbone such as
Yamakawa chain, a twist about the locale3 direction will
also affect the distribution of end-to-end relative pose.
study the impact of twisting angle, by choosinga050.5,
s50, k05t0530, L15L250.5, l B56, and pB5120, we
compute a set of curves off (a) with different values of the
twisting angleab for the Yamakawa model~Fig. 11! while
keepinggb andbb zero.

Because of its importance in studying double-strand
DNA molecules, we also use the revised Marko–Sig
model in which the stiffness matrix, chirality vector and co
stant in Eq.~3! are defined as11

B5S h1
j2

v
0 j

0 h 0

j 0 v

D , b5S jv0

0
vv0

D , c5 1
2vv0

2,

~31!

FIG. 9. Evolution of f (a) with respect to bending angle for Yamakaw
model with equal curvature and torsion.

FIG. 10. Evolution off (a) with respect to bending angle for the Yamakaw
model with different curvature and torsion.
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whereh is the bending persistent length,v is the twisting
persistent length,j is the bend–twist coupling constant, an
v0 is the spatial angular frequency of the helix. With Eq.~7!,
one obtains helical chains as shown in Fig. 12. Notice t
the backbone of each segment is straight, only the dou
helix twists about its axis.

In Fig. 13, we compute as examplesf (a) and f (a,b) for
the revised Marko–Siggia chain withh5v50.1, j50.5,
L15L250.5, v052p, and Rb5R(0,p/4,0). To compute
f (a,b), we setr B5 l B53, pB550; to computef (a), we set
l B56, pB5120.

To study the impact of bending angle, by choosingh
5v5j50.5, l B56, pB5120, L150.5, L250.5, v052p,
we compute a set of curves forf (a) with different values of
the bending anglebb for the revised Marko–Siggia mode
~Fig. 14!.

From Figs. 5, 9, 10, and 14, one observes the intuit
result that the peak of the polymer pose PDF will mo
towards the proximal end when the bending angle
proachesp. The methodology presented here allows one
obtain for any model of semiflexible polymers with intrins
shape discontinuities the probability density of relative en
to-end position and orientation~or any marginal probability
density thereof, such as the end-to-end distance distributi!.
This capability allows one to study the entropic effects
shape changes~e.g., bend angle! in various models, and may

FIG. 11. Evolution off (a) with respect to twisting angle for the Yamakaw
model.

FIG. 12. Double-helical macromolecules corresponding to the revi
Marko–Siggia model. The left is a nonbent double helix, the middle i
bent double helix, and the right is a twisted double helix.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



pr

in
ol
m
u
n

at
nic
ec-
o
eful
up
l-
nd

r a
d
n to

of
ore
ent
tiple
ly
o-
hips
be-

e

82.
the

-

d

4969J. Chem. Phys., Vol. 119, No. 9, 1 September 2003 Conformational statistics of bent semiflexible polymers
lead to coarse-grained continuum mechanical models of
cesses that occur during transcription regulation.

V. CONCLUSION

This paper presents an efficient method for determin
the conformational statistics of bent or twisted macrom
ecules given their stiffness, chirality and bend/twist para
eters. Probability distributions on the six-dimensional gro
of rigid-body motions and the concept of motion-group co

FIG. 13. f (a,b) and f (a) for the revised Marko–Siggia model.~a! Contour
plot of f (a,b). ~b! Plot of f (a).

FIG. 14. Evolution off (a) with respect to bending angle for the revise
Marko–Siggia model.
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volution are applied to the connection of chain segments
the bend or twist. The representation theory and harmo
analysis for the Euclidean motion group are used to eff
tively compute the two convolutions involved in jointing tw
semiflexible chains at a bend or twist. Certain new and us
operational properties of the Fourier transform for the gro
of rigid-body motions are derived, which are directly re
evant to the case of semiflexible polymers with bends a
twists. With this general model, the 6D pose density fo
semiflexible continuum filament with arbitrary chirality an
anisotropic elasticity can be obtained. Examples are give
show how this general method applies to different models
macromolecules. This method can apply to chains with m
than one bend by simply including more PDFs of nonb
segments and rotations concatenated by performing mul
convolutions. Moreover, it can apply to chains with not on
bending but also twisting discontinuities. In fact, the pr
posed method applies to more general spatial relations
between two neighboring segments of a polymer chain,
cause any such relationship is a rigid-body motion.
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