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Conformational statistics of bent semiflexible polymers
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This paper extends previous methods for obtaining the probability distribution function of
end-to-end distance for semiflexible polymers, and presents a general formalism that can generate
conformational statistics of any continuum filament model of semiflexible chains with internal
bends and twists. In particular, our focus is distribution functions for chains composed of straight or
helical segments connected with discrete bends or twists. Prior polymer theories are not able to fully
account for the effects of these internal shape discontinuities. We use the operational properties of
the noncommutative Fourier transform for the group of rigid-body motions in three-dimensional
space. This general method applies to various stiffness models of semiflexible chainlike
macromolecules. Examples are given which apply the stiffness parameters defined in the Kratky—
Porod model, Yamakawa helical wormlike chain model, and revised Marko—Siggia double-helix
model to chains with intrinsic bends or twists in their undefornfeinimal energy state. We
demonstrate how the location and magnitude of internal bends in the chain affect the distribution of
end-to-end distances for each of these models. This capability allows one to study the entropic
effects of intrinsic shape changdg.g., bend ang)ein various models, and may lead to
coarse-grained continuum mechanical models of processes that occur during transcription
regulation. © 2003 American Institute of Physic§DOI: 10.1063/1.1596911

I. INTRODUCTION tions. In previous work we showed that the probability den-

The statistical mechanics of DNA and other semiflexiblesity function (PDF) of the end-to-end relative position and
(wormlike) chains has received much attention in the litera-orientation for the most general model of an inextensible
ture. Many models have been put forth to predict the behavsemiflexible polymer chain can be obtained by either solving
ior of semiflexible chains and to explain experimental data@ diffusion equation or convolving PDFs for short segments
Among those models, the freely jointed chaimd Kratky—  of the chair*~*"In doing so, the exponential growth in the
Porod (wormlike chain modef~* are widely used to de- Size of the sample space encountered in Monte Carlo and
scribe intrinsically straight polymer molecules. As an impor-numerical path-integral methods is circumvented. More im-
tant extension, Yamakawa introduced the more genergtortantly, our model can generate the full six-degree-of-
helical wormlike chain modeél.The mechanical stiffness of freedom probability distribution of relative position and ori-
double-helical DNA has interested researchers since the lagntation. This contains much more information than the
1970s° During the last ten years, experimental measureprobability distribution of end-to-end distance and its mo-
ments of these properties has received considerabl@ents. The distribution of end-to-end distance is only a one-
attention’®  The  Marko-Siggi and revised dimensional marginal PDF of the six-dimensional distribu-
Marko—Siggia® double-helix chain models have been intro- tion that our method is capable of computing.
duced recently to describe the coupling of DNA stiffness ~ Whereas all of the studies mentioned above assume in-
parameters. trinsically straight or helical polymer chains, this paper pre-

A large body of work on polymer theory has sought to sents a general formalism that can generate conformational
estimate the probability distribution and mean values of constatistics of any continuum filament model of semiflexible
formational properties such as end-to-end distance and radigains with internal bends and twists. The focus of this paper
of gyration. Common techniques are Monte Carlo, matrix-is to compute probability distributions for these bent and
generator, and direct enumeratign?® Path integration can twisted semiflexible chains. First discovered in the early
also be applied to provide “compact” analytical expressions.1980s% intrinsically bent DNAs are receiving more and
For some basic polymer models, “closed-form” path integralmore attentionfor example, see Fig.)1Bent DNAs have
formulas have been derived for the probability distributionsbeen observed and studied experiment&iiy® In addition,
of loop length?* segmental orientatiorf$, trajectories of a models have been proposed to describe the relationship be-
segment® radius of gyratior? end-to-end position and tween bending stiffness and DNA sequefite”® However,
distanc€®32 and moment&>?3 However, for sophisti- classical semiflexible polymer theories such as the KP model
cated models, the evaluation of path integrals can be hard t@re inadequate to describe the conformational statistics of
handle, and usually requires extensive numerical calculathese systems. Matrix-generator and Monte Carlo methods
were used to study the influence of thermal fluctuation on the
3Author to whom correspondence should be addressed. Electronic maifiZz€ and shape of bent DNR.Work was done by Rivetti

gregc@jhu.edu; Phone: 410-516-7127; Fax: 410-516-7254. et al. to extend the applicability of the KP wormlike chain
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FIG. 2. Relationship between reference frames fixed at proximal and distal
ends. &yy,z,) represents the frame of reference at the proximal end,
(XprYprZpr) represents a frame located at the distal end but parallel to the
frame of reference at the proximal end, angy(;z,) represents the frame of
reference at the distal end.

a asinfd cos¢
_ o a=| a,|=| asinésing |, (D)
FIG. 1. CAP(1run.pdh: the DNA is a bent semiflexible polymer.
as acosé

where 6 and ¢ are, respectively, the polar and azimuthal

model to polymers containing bentfsAs a result, closed- angles ofa, and
form expressions for mean square end-to-end distance were _
derived. However, no previous work has been published on R=R(a.8,7)=ROTl &, «]ROT &, AIROTL &5, 7], %)
how to calculate the full probability distributions of bent ) ) o
macromolecules with arbitrary chirality and stifiness param-Where ROTe& ,¢] denotes the rotation matrix describing
eters. As an example of the importance of being able to COmgoun'gerclockmse rotation by about the ngtural basis vector
pute statistical properties of intrinsically bent semiflexible & Which has elementss(); = 5; ; . Hered ; is the Kronecker
chains (and hence the associated entropic forcese are delta function. The paifaR) describes the posgposition
motivated by CAP as depicted in Figq. and onenta‘qqhof a frame_ of refergnce in space, or equiva-

Most research on semiflexible polymer statistics is basedfNtly the rigid-body motion required to move to the pose
on wormlike chain models. It has been shown in recent work®&R) from a reference frame defined by the identity orienta-
that one methodology can be used to unify all previous stalion and zero translatior{0,1). In this paper, this paifa,R)
tistical models of short wormlike chains in dilute solutih. represents the relative pose between two frames of reference:
As an example of this generality, it was shown to include thePn€ attached at the proximal end of a semiflexible polymer,
Kratky—Porod, Yamakawa, Marko—Siggia, and reviseg@nd the other attached at the distal end. Each (p&k) can
Marko—Siggia models as subcases. That general model, witpf thought of as an element of the group of rigid-body mo-
the stiffness and chirality left as input parameters, is thd/Ons In th.ree-d_|men3|or_1al space. This S|x—d|m§n3|ona_l non-
starting point for this paper. In that model, the probability Commutative Lie group is called $B—the Special Euclid-
density function of the end-to-end relative pdpesition and ~ €an group of three-dimensional spat@he group law is the
orientation of a semiflexible polymer chain with nonbent COMposition of rigid-body motions.
minimal energy conformation can be obtained by solving a e define a local frame of reference attached to the
partial differential equation which was derived from a pathPClymer backbone such that tfeg direction of this frame
integral formalism. Pose statistics are directly relevant to th@ints along the tangent of the backbone of the polytaee
case when internal bends and twists are present in a senfi9- 2. _ . ) )
flexible chain, because such relationships are rigid-body mo- When a polymer is modeled as an inextensible chiral
tions that can generally not be described with the simplélastic chain, the position of any point at arc lengthvith
classical models. On the basis of the above-mentioned gef€SPect to the frame of reference at the proximal end is

eral statistical model, this paper proposes a method for com- s
a(s)=f R(e)esde. 3

puting the probability density function of end-to-end relative o

pose for intrinsically bent semiflexible chainlike macromol-
ecules. Ignoring interactions between distal segments of théhe elastic energy in the polymer is
same polymer chaitwhich is reasonable for stiff chains that L

are short enough to make self contacts unliketyir method E= f
applies to semiflexible inextensible chiral elastic macromol-

ecules with internal bends and twists. wherelL is the total length of the polymer and
U=30(s) 'Bw(s)—bTw(s)+c. (5)

HereB is a positive semidefinite symmetric matrix called the
stiffness matrixb is a vector describing the chiralitg,is a

Let R be a rotation matrix parameterized BYXZ Euler  constant, and(s) is the spatial angular velocity of the poly-
angles, and led be a position vector in 3D space parameter-mer (when s is interpreted as time rather than arc length
ized by spherical coordinates. That is, which satisfies

Uds, (4)
0

Il. A GENERAL NONBENT SEMIFLEXIBLE
POLYMER MODEL
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Xr=RTR [ yreR? 6 XE—sin g sina ———si - ’
w(S)Xr= 45" reRS3. (6) 6_Sm’83ma(9711 sm,BCOSaaT12 cos,B(?Tla.

When e(s)=B"'b, U is minimized. This constant angular |n previous work®* a methodology for solving equations
Ve|OC|ty ylelds a helical conformation of the polymer. Denot- such as Eq(g) was de\/e|0ped based on 0perati0na| proper-

ing w=|w|, and[n;,n,,n3]"=w/w, one can obtain the fol- ties of the Fourier transform for $8. The matrix elements
lowing closed-form formula foa(s) for an inextensible chi-  of this transform ar&:>2

ral elastic chain in this lowest energy conformation,

ﬂ,’m,;hm(p):LE(S)f(a,R)U[’m;l,‘m,(a,R;p)dea, (10)

n, 1
—(1—cosws)+n N3l S— —SsiNws
w w

n, _ wheredRda= (1/872)sin BdadpBdy sin fa’daddde is the in-
a(s)=| —(cosws— 1)+n2n3(s— —sin wS) . () variant integration measure for & The desired PDF can
w w . .
be obtained by the inverse transfoRm?

s—(n?+n?)| s— isincus)
1 2 ® % S o0 1’ | .
r

When the chiral(helica) polymer is deformed from this f(a’R)_z_ﬂ.Zr;w |’§|r\ |;r‘ m,;, m§_| JO Flmitr e (P)
shapeU increases.

Defining D=[D]=B~! and d=[d,]=—B"b, one XU}, g m(@R:p)p2dp, (11)
can obtain the following diffusion equation that describes ; | . ) |
how the PDF of relative pose between the frame of referenc®¥here U, . n(@&R:p)==2;__[I".m [Pl i1(8) U] m(R)
at arc lengths and that at the proximal end of the chain are the elements of the infinite-dimensional irreducible uni-
evolvesd*3 tary representation matrices of the group(®E°>>>~>*Here
U'mn( R) are matrix elements of the irreducible unitary repre-

3 A .
sentation of the group of rotations §,>°°°

3
> DuXRXE+ > dXF-XR|f(aR,s),
o - ©® UniR(@B,7)=(~1)" "e M Mp] (cosp),  (12)

with initial conditionsf(a,R,0)= 8(a) §(R), whered is the WhereP'r,m(x) are generalized Legendre functions,
Dirac delta function. Her&[ are differential operators for

&f(a,R,s)_ 1
Js B 2«

- ) . (I—m)! (1 +m)1]2
the group of rigid-body motions, $8), where ki<6. p ! n(cosﬁ)=[—
These are analogous to directional derivatives for functions (I=mt+n)!
of Cartesian position. UsingXZ Euler anglesy, 8, andy to B B
parameterize rotatioR, these operators have the following ><sinm*”§ coé“*”i p(M_nMtN(cosB),

explicit form:
(13)

~ J d J
R_ H _ R i _ . . .
Xy=cscfsiny—— +cosy i cotp SNy 5y andP{™"(x) are the Jacobi polynomials. Meanwhile,

< A d [1",m’'|p,r[l,m](a)
2—csc,8c057&a smya/8 co Bcos;z&y, . v ST
= o ikPa)
vy’
9) X C(k,0;",r|l,r)C(k,m—m’;1",m’[I,m)
- S J
Xffz(cos;z COSa—Siny sina cosB) a_al xYE"m'( 0,4), (14)
. . wherej(x) is thekth spherical Bessel function¥'( 6, ¢)
+(cosysina—siny cosa cosp) Taz are spherical harmonics, a@a,«;b,B|c,y) are Clebsch—
Gordan coefficient2® By applying the Fourier transform for
. . d SH?3) on both sides of Eq8), one can obtain the following
+singsin 7,9?3’ system of linear ordinary differential equations with constant
coefficients:
~ J
XEFf:(—sinyCOSa—cos«y sina cospB) — dfr R
! AR (15
. . J
+(=siny sina—cosy cosa Cosp) Ja, This is because of operational properties of the(35E
Fourier transform which convek? operators into linear al-
+sing cos;zi, gebraic operations in the $8 dual spacé® The elements of
dag B" have the explicit form,
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r _AI . r
BI’,m';I,m_ m,'m5|/’|_|pK|,’m,§|r_1’|5m/’m
) m'r
_Iplr(|/+1) 5I’,I5m’,m

_ipKIr,m5I’,I—15m’,m- (16)

Here,

r
Kll’m!

|12_ 12 |12_ 2 172
(1"2—m’2)( r)) an

21"+ 1)(21"=1)1'?

and all elements ol\ are zero except
D,;—D iD

:( 11 22Jr 12) I

|
3 2 | Cm+1C-m-1,

[
-m-1:

_((2m+1)(D23—iD13) d,+id,
B 4 2

~ DutDap |

[ |
Am,m_ 8 (C—mcm—1+cmc—m—l

D3m?
2

—idgm, (18

|
m—1>

| _((2m+1)(D23+|D13) _dl+|d2)
a 4 2

_ Dll_D22 iD12 | |
- T_T Com+1Cm-1-

I=]|n|
(19

| [\/(I—n)(l+n+1),

Cn 0, otherwise.
Then, by solving Eq(15), one obtains

f'(p,s)=e®". (20)
Substituting the elements of into Eqg.(11), one obtains the

Conformational statistics of bent semiflexible polymers 4965

Subghain 2

FIG. 3. Schematic diagram of a bent polymer chaiqy(z,) represents the
frame of reference at the proximal endy¥4zy) represents the frame of
reference at the distal end, apg represents the angle between the tangents
to the backbone at the bend.

lation. As a result, the PDF of end-to-end pose for an intrin-
sically bent semiflexible chain is a convolution of three
PDFs, each of which is a function of six pose varialitasee
position variables and three orientation variahles

f(a,R):(fl*fz*fg)(a,R). (21)

Heref;(a,R) is the pose probability distribution of the frame

of reference attached at the distal end of subchain 1 relative
to its own proximal endf; is the pose probability distribu-
tion of the distal end of subchain 2 relative to its own proxi-
mal end;f, is the pose probability distribution of the frame
of reference at the proximal end of subchain 2 relative to the
frame at the distal end of subchain 1, describing the junction
between the two subchains. Herga,R) is obtained by set-
ting s=L; in Eqg. (20) and substituting the result into Eq.
(11), andf;(a,R) is obtained by setting=L, and following

the same procedure. In contra$g(a,R):5(a)5(RglR),
whereR,, is the rotation made at the bend, and the fact that
the delta function for S@) is the product of those fd®® and
SQ(3) has been used. Notice that the delta function in trans-
lation is centered at the origin because the two subchains
meet at a point rather than being translated in space relative
to each other; meanwhile, the delta in rotation is centered on
the relative orientation between the connected segments.

distribution of pose of the frame attached to the polymer affhe convolution in Eq(21) is a convolution on the group

arc lengths relative to the frame a=0. When it is obvious
which value ofs is of interest we use the notatidri(p) in
place off "(p,s).

In practice, only an approximation to E(R0O) is com-
puted because the infinite-dimensional matBx is trun-

SE(3),37
(fi*fj)(g):fSE(S)fi(h)fj(h_lOQ)d(h)a (22)

whereg=(a,R) andh denote members of $8. This is not

cated before exponentiating. This step can be justifie(ﬁo be confused with convolution in the sense most familiar to

mathematically®

Ill. A GENERAL ALGORITHM FOR BENT
AND TWISTED SEMIFLEXIBLE POLYMER CHAINS

scientists and engineers. In the definition of convolution
given in Eq.(22), the little circle is the group multiplication

law for rigid-body motions. Previous work has made the
connection between this kind of convolution and polymer
statistics’’ as well as provided algorithms for the efficient

A bent polymer chain is depicted in Fig. 3. As a frame computation of this kind of convolutiot!.

traverses the backbone of the polymer chain, one can simply In the context of bent semiflexible polymer chains, the
divide the chain into two segments. Each of these segmentsourier transform for S@) provides a relatively easy way to
has a probability density function which describes the encompute Eq(21). By applying the transform on both sides
semble of all possible motions of the distal end of a chairof Eq. (21), one obtains
segment relative to its own proximal end. Let the segments 2, . 2, .~ o
have arc lengtt., andL,, respectively. The interaction be- f'(p)=f3(p)f2(p)fi(p). (23
tween the two segments is implemented by a full six-degreel is a general property that the Fourier transform of a con-
of-freedom rigid-body motion. A bend or twist is a rotation at volution of functions is the product of the Fourier transforms
the separating point between the two segments with no trangf those functions multiplied in reverse order. Since in this
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context the Fourier transforms are matrix-valued functionsyiewed in Sec. Il applies to several stiffness models. Numeri-
the order of multiplication matters. One can compiffeand  cal computations are now implemented with these different

f%, by using Eq.(20), and obtairf}, as models.
The Kratky—Porod and Yamakawa models are well
‘:;w o m(p):f f(avR)U{m-w _(aR;p)dRda knoyvn in polymer theory. For the Krgtky—Porod wormlike
o SK3) e chain model, the stiffness matrix, chirality vector and con-

stant in Eq.(5) are defined &s

:f 5(@)8(R; R)UT . (aR;p)dRda
SK3) R

[2%0) O 0 0
: B=| 0 a; O b=| 0 c=0 (27
=U, ., (ORy; 0 : : :
I,m;l ,m( b:P) | 0 0 0 0
—(_ ("=l _ 2y(m'—m) 1]
(=1) (=1) 9,1V, ~m(Ro) whereay is the stiffness parameter, which is related to tem-
(- 1)('"')5|Y|,eim"*bP'm,n(COSBb)eimyb, ggratureT, Boltzmann constarkg , and persistence lengtp
24
( ) apg= kBTIp . (28)

where ay,, By, and y, are ZXZ Euler angles ofR,. By
substituting the elements &finto Eq.(11), one can compute
the PDF of end-to-end pose of bent polymer chainsayf
and y,, are both zero bug,, is not zero, we call this a bent
chain. In contrast if3, is zero butey, or vy, is not zero, we

In Fig. 4, we compute as exampléga) and f(a,B) for a
Kratky—Porod chain withay=0.1, L;=L,=0.5, andR,
=R(0,7/4,0). To computef(a,B), we setrg=15=3, pg
=50; to computef(a), we setlg=6, pg=120. In general,
call this a twisted chain. different vaIue_sf of the .phy.sical param_eters yvil_l result in dif-
Because the distribution of end-to-end distance anéerent prpbablllty d|str|put|0ns. Knowing th"?‘ Is useful for
angle between the tangents at both the proximal end and ﬂ%etermmlng the propernes of a polymer chain, such as stiff-
distal end are quantities that can be measured from expeljiless’ from experlmentally measured PDFs.
ments directly, these low-dimensional PDFs are of interest. By changl_ng the bend angléo_over the range0,77], one .
The end-to-end distanceds=|a(L)|, and the angle between can see how it affects the resulting PDFs of end-to-end dis-
the tangents at both ends is tBeEuler angle ofR(L). By
using Egs.(23) and (20) and integrating Eq(11), one can

obtainf(a) from f(a,R) as Kratky-Porod model with ae=0.1 and By=r/4
2 3 0
f(a)= a—fﬁrwf f(a,R)sin dRd¢d o ﬁ:‘?\
ox2)o Jo Jsas 25 0‘20.4/ EFN\M
2 o - 0.6
e R (25 : 1: ( ("'Zs ;\108 i\
Moreover, one can obtaif(a,8) as 1 Ofo¢ Mm .2
f(a,B)= az;_l:;'g foﬁf:ﬂf:ﬂf;ﬁf(a,R)sin fdadydpde 0.5[ O.Owﬁ‘
a2sing (= & . 00701 02 03 0.4 05 06 07 08 09 I
“ T 2m o (r_zm = fl 0:1.0(P) Pi(cOSB) @ 2

Kratky-Porod model with ao=0.1 and By=n/4

Xjo(pa)p?dp, (26) 3
whereP,(x) are Legendre polynomials.

IV. NUMERICAL RESULTS

By definitionr € Z (the integersand O<p<, andB'
is infinite dimensional. To do numerical computations, one
must truncatB" at finite values of, |, andp. We truncate at
r=rg, |=lg, and p=pg such that—rg=r<rg, —Ilg=lI
<lgz, and O<p=<pg. Whenf(a) is of interest, we only need
to consider =0, as suggested by E@5). As far as units are , L R .
concerned, &” is a distance and. is an arc length. They can 050 0102 03 04 05 0.6 07 08 09 1
be measured in any length units that one chooses. In our ®) 2
computation, all the stiffness and length parameters are Nogg. 4. f(a,8) and f(a) for the Kratky—Porod model with a benda)
malized by persistence length. The general formulation re€ontour plot off(a,8). (b) Plot of f(a).
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Kratky-Porod model with @¢=0.5

2.5
2
f(a)

1.5
1
0.5

0 FIG. 7. Single-helical polymer chains modified from the Yamakawa model.

X e The left is a nonbent helix, the middle is a bent helix, and the right is a

050 0.1 02 03 04 05 06 07 08 09 1 twisted helix.

a

FIG. 5. Evolution off (a) with respect to bend angle for the Kratky—Porod
model. whereo is the Poisson ratio. With Eq7), one obtains helical
chains as shown in Fig. 7.
In Fig. 8, we compute as examplé&) andf(a,B) for

tance. By choosingr,=0.5, Ly=L,=0.5, Iz=6, and pg a Yamakawa chain witheg=0.1, 0=0, xy=77=30, L,
— 120, we compute a set 6fa) curves with different values = L2=0.5, andR,=R(0,7/4,0). To computé(a, ), we set
of B, for the Kratky—Porod modefFig. 5). rg=Ig=3, pg=50; to computef(a), we setlg=6, pg

By changing the bend locatiot,;, over the range of =120. ) _
backbone arc lengtf0,0.5, one can see how it affects the 10 Study the impact of bending angle, we chasg
resuling PDFs of end-to-end distance. By choosig =09 0=0, x0=7=30, L;=L>=0.5, 1g=6, and pg
—0.5,R,=R(0,7/2,0), |g=6, andpg= 120, we computed a = 120, and computed a set of curves f¢g) with different
set of curves forf(a) with different values ofL, (where Values of the bending anglg, for the Yamakawa model
L,+L,=1) for the Kratky—Porod modeiFig. 6. Using (Fig. 9.
these curves, one can identify the location of a bend from a
PDF of end-to-end distance.

For the Yamakawa helical chain model, the stiffness ma- Yamakawa model with @o=0.1, ko=T¢=30 and fy=n/4
trix, chirality vector and constant in E¢Q) are defined as .

3

B= 0 (%)) 0 s b= doKop |,
0 0 B BoTo 2
(29 B s

1 2 2
c=3(BoToT @okp),

where ko and 7y are the curvature and torsion of the helix 1
respectively,a, is defined as Eq28), and

o5\ \. '

Bo=ao(1+a) ™1, (30) ‘ 2_/ o

00 0.1 02 03 04 05 06 07 08 09 I
a

Kratky-Porod model with @¢=0.5 Yamakawa model with @=0.1, ke=7¢=30 and Sy=n/4
3.5

3

2.5

2

f@) 15
1

0.5

0

050 01 02 03 04 05 06 07 08 09 1 050 01 02 03 04 05 06 07 08 09 1
a a

FIG. 6. Evolution off(a) with respect to position of bending point for FIG. 8. f(a,8) and f(a) for the Yamakawa modeka) Contour plot of
Kratky—Porod model. f(a,B). (b) Plot of f(a).
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Yamakawa model with @¢=0.5, ko=7¢=30 Yamakawa model with @¢=0.5, k=1c=30

-1 0701 02 03 04 05 06 07 08 09 1 1001 02 03 04 05 06 07 08 09 1

a a

FIG. 9. Evolution off(a) with respect to bending angle for Yamakawa FI!G. 11. Evolution off(a) with respect to twisting angle for the Yamakawa
model with equal curvature and torsion. model.

where 7 is the bending persistent length,is the twisting
By choosinga=0.5,1g=6, pg=120,L;=L,=0.5, but  persistent length¢ is the bend—twist coupling constant, and
ko=5, To=1, we obtain another set of curves fifa) with  , is the spatial angular frequency of the helix. With Eg),
different values ofg for the Yamakawa model, which shows one obtains helical chains as shown in Fig. 12. Notice that
quite different patterns caused by unequal curvature and tothe backbone of each segment is straight, only the double-

sion (Fig. 10. _ _ helix twists about its axis.
For a polymer with a helical backbone such as a |nFig. 13, we compute as examplis) andf(a,B) for
Yamakawa chain, a twist about the loaal direction will  the revised Marko—Siggia chain with=v=0.1, £=0.5,

also affect the distribution of end-to-end relative pose. To.;=L,=0.5, wo=2m, and R,=R(0,7/4,0). To compute
study the impact of twisting angle, by choosing=0.5, f(a,B), we setrg=1g=3, pg=50; to computd (a), we set
0':0, KOZTO:30, L1:L2:0.5, |B:6, and pB:120, we IB:6! pg= 120.

compute a set of curves dfa) with different values of the To study the impact of bending angle, by choosing
twisting anglea,, for the Yamakawa moddlFig. 11) while =p=¢=0.5,13=6, pg=120, L;=0.5, L,=0.5, wy=2r,
keepingy, and By, zero. we compute a set of curves féfa) with different values of

Because of its importance in studying double-strandedhe bending anglgs,, for the revised Marko—Siggia model
DNA molecules, we also use the revised Marko—SiggiaFig. 14.
model in which the stiffness matrix, chirality vector and con- From Figs. 5, 9, 10, and 14, one observes the intuitive

stant in Eq.(3) are defined a3 result that the peak of the polymer pose PDF will move
& towards the proximal end when the bending angle ap-
n+— 0 ¢ £wg proachesr. The methodology presented here allows one to
B= v b=| 0 c=1p w2 obtain for any model of semiflexible polymers with intrinsic
0 n O’ ’ o shape discontinuities the probability density of relative end-

¢ 0 v v @0 to-end position and orientatiofr any marginal probability

(31) density thereof, such as the end-to-end distance distribution
This capability allows one to study the entropic effects of
shape changeg.g., bend ang)en various models, and may

Yamakawa model with @p=0.5, x;=5 and 1o=1

fa)

T
P
>
=

.

—
>
P—

05 0 01 02 03 0.4 05 06 07 08 09 1

a
FIG. 12. Double-helical macromolecules corresponding to the revised

FIG. 10. Evolution off (a) with respect to bending angle for the Yamakawa Marko—Siggia model. The left is a nonbent double helix, the middle is a
model with different curvature and torsion. bent double helix, and the right is a twisted double helix.
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Revised Marko-Siggia model with n=v=0.1, £=0.5, w=2x and Bo=r/4 volution are applied to the connection of chain segments at
3 the bend or twist. The representation theory and harmonic
analysis for the Euclidean motion group are used to effec-
2.5 tively compute the two convolutions involved in jointing two
semiflexible chains at a bend or twist. Certain new and useful
2 operational properties of the Fourier transform for the group
B s ] of rigid-body motions are derived, which are directly rel-
evant to the case of semiflexible polymers with bends and
1 twists. With this general model, the 6D pose density for a
semiflexible continuum filament with arbitrary chirality and
0.5 anisotropic elasticity can be obtained. Examples are given to
0 T show how this general method applies to different models of
0 01 0203 0405 0607 08 09 1 macromolecules. This method can apply to chains with more
@ 2 than one bend by simply including more PDFs of nonbent
Revised Marko-Siggia Model with =v=0.1, ¢£=0.5, we=27 and Bo=n/4 segments and rotations concatenated by performing multiple
2.5 ' convolutions. Moreover, it can apply to chains with not only
bending but also twisting discontinuities. In fact, the pro-
2 posed method applies to more general spatial relationships
s between two neighboring segments of a polymer chain, be-
’ cause any such relationship is a rigid-body motion.
fa) 1
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