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ABSTRACT: Fluctuations in the bending angles at internal irregularities of DNA and RNA (such as symmetric
loops, bulges, and nicks/gaps) have been observed from various experiments. However, little effort has been
made to computationally predict and explain the statistical behavior of semiflexible chains with internal defects.
In this paper, we describe the general structure of these macromolecular chains as inextensible elastic chains
with one or more internal joints which have limited ranges of rotation and propose a method to compute the
probability density functions of the end-to-end pose of these macromolecular chains. Our method takes advantage
of the operational properties of the noncommutative Fourier transform for the group of rigid-body motions in
three-dimensional space, SE(3). Two representative types of joints, the hinge for planar rotation and the ball joint
for spatial rotation, are discussed in detail. The proposed method applies to various stiffness models of semiflexible
chainlike macromolecules. Examples are calculated using the KrRigod model with specified stiffness, angular
fluctuation, and joint locations. Entropic effects associated with internal angular fluctuations of semiflexible
macromolecular chains with internal joints can be computed using this formulation. Our method also provides a
potential tool to detect the existence of internal irregularities.

1. Introduction caused by symmetric internal loops in RNA and reported an
rms angular fluctuation of 16 5° for each basepair in the

The internal bending and flexibility of DNA has attracted absence of Mg and 13+ 4° in the presence of Md.12 As

considerable attention because of its important role in packaging,for bulge-induced bending, fluorescence resonance energy

reC(.)mblr)atlon, anq transcription. L transfer (FRET) measurements indicated a bending 650
First discovered in the early 198bmtrinsically bent DNAs 70° for an A3 DNA bulge and 85-105° for an A5 DNA

have been observed and studied experimentaflyLocal bulge® An NMR study also showed a bending angle of-80
structures, which are more complex than rigid bends, have alsoq 4 for an RNA bulge with five unpaired bases AAUA%and

been observed from various experiments. In particular, errors 73 4 11° for the A5 RNA bulge!s Furthermore, from the results
during replication and recombination of double-stranded DNA ¢ transient electric birefringence (TEB) measurements, Za-
may result in mismatched basepairs or the insertion/deletion of .harias and Hagerman gave an estimation of &—20°
nucleotides. This results in internal structures such as symmetricincrement of bending angle induced per extra B&3éey also
loops, bulges, and gaps/nicks. These structures usually haveiateq that a given bulge-induced bend could be regarded as a
different flexibility than regular double-helical DNA and may  rg|atively narrow distribution of angles with a nonzero mean

result in bends. Usually, these bends are not rigid but exhibit angle. Other works have shown strong agreement with the above
certain ranges of fluctuation. On the basis of gel electrophoresisggits regarding bulge-induced bend#fig?

experiments, Guo and Tullius showed that a single-nucleoside
gap in a DNA duplex leads to an anisotropic, directional bend
in the DNA helix axis? Moreover, a gap is a site of anisotropic
flexibility rather than a static, fixed bend. The bending angle

Although much experimental attention has been given to the
bending fluctuations caused by internal structures, so far no
previous work has been published on how to computationally

caused by a single gap was estimated at aroufdRdl et al predict and explain the statistical behavior of macromolecular

reported a fluctuating bending angle centered arourichilthe chains with those internal structures. )
nick site of DNA based on nuclear magnetic resonance (NMR) N contrast, many models have been put forth to describe the
experiments and molecular dynamics (MD) simulati#hsahn beh_awor of |ntr|nS|c§iIIy stralght semlerX|bIe_macromolecular
et al. studied the bending and flexibility induced by symmetric chains and to explain experimental data. Widely used models
internal loops by gel electrophoresis experiments and cyclization include the freely jointed chain mod#,the Kratky-Porod
kinetics analysis and found that the internal loop induced high Wormlike chain modet?~2* the Yamakawa helical wormlike
local isotropic flexibility They reported a root-mean-square chain modef? and the Marke-Siggia double-helix chain model
(rms) bending angle of 43 5° for 3-basepair loops, which  (describing the double-helix structure of DNA)?7 In our
reflects a fairly wide range of angular distribution. Moreover, Previous work, we proposed a general formulation for inexten-
the bending angle at a loop is essentially independent of the Sible semiflexible macromolecular chains, which includes
loop size. Zacharias and Hagerman quantified the bending anglesS€veral above-mentioned polymer models as subééses.
Meanwhile, various computational methods have been de-
t State University of New York at Stony Brook. velqped to estimate the confo.rmational statistics qf intrin;s,ically
* Johns Hopkins University. straight macromolecular chains. Common techniques include
* Corresponding author. E-mail: gregc@jhu.edu. Monte Carlo, matrix-generator, direct enumeration, and path
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integration?®-37 For some basic polymer models, closed-form
formulas have been derived for the probability distributions of
loop length3® segmental orientatior?, trajectories of a seg-
ment? radius of gyratiorf! end-to-end position and distarfée?®
and moment4%4950In our previous work, we showed that the
probability density function (PDF) of the end-to-end pose for
the most general model of the inextensible semiflexible mac-
romolecular chain can be obtained by either solving a diffusion
equation or convolving PDFs for short segments of the
chain?851-53

Recently some effort has been given to describing macro- Figure 1. Frames of reference attached to a semiflexible macromo-

molecular chains with internal rigid bends. Models have been '905”3&2:1;;‘-)((%2«3) retpr;ahser;ts the fr*f’ﬂm? of referert\ce atlthe gogimal
: : , : - end, K.YsZ,) represents the frame of reference at arc lergythn
proposed to describe the relationship between bending Stlﬁcness(XdeZd) represents the frame of reference at the distal end. In the plot,

and DNA sequenc@';% Matrix-generator and Mo.nte Carlo X axes are not displayed but can be derived fivandZ axes following
methods were the first tools used to study the influence of the right-hand rule.

thermal fluctuation on the size and shape of bent DiX/hile

classical semiflexible polymer theories are in general inadequate  Given a macromolecular chain, one can define a local frame
to describe the conformational statistics of these systems, Rivettiof reference attached to any point on the backbone of the
et al. made an effort to extend the applicability of the KP macromolecular chain such that tAexis of this frame points
wormlike chain model to bent DNA and derived closed-form @long the tangent of the backbone (Figure 1). The frame of
expressions for the mean-square end-to-end disf&rioeour reference at the proximal end of the chain is defined by
previous work, we proposed a general method to compute the(R(0).2(0)) = (1,0), and the pose of the frame of reference at
full probability distribution of the end-to-end pose for the bent &rc lengtis with respect to the frame of reference at the proximal
macromolecular chain with arbitrary stiffness and chirality ©nd is defined byR(s),a(s)). HereR(s) is a 3 x 3 rotation
parameter§? Ignoring the interactions between distal segments Matrix defining the relative orientation at arc lengifa(s) is a

of the same macromolecular chain, our method applies to 3 x ltran_slatlo_n vector defining the relative positidrienotes
semiflexible inextensible chiral elastic macromolecular chains the 3x 3 identity matrix, and. denotes the total arc length of

with internal rigid bends and twists. the chain. , o
. L . Under the assumption that the semiflexible macromolecular
Despite all these efforts, there is still a lack of effective tools

X ; ” N .~ chain is inextensible, and the variation of the conformation of
to estimate the conformatl_onal statistics of sem!flc_a_)qble chguns the chain is influenced by Gaussian white noise (i.e., Brownian
with a finite number of points of increased erX|l:_)|I|ty. In this motion forcing), the PDF of the pose of the frame of reference
Paper, We propose a metho_d C"?‘pab'e of computing the_PDF_ Ofat arc lengths with respect to the frame of reference at the
the end-to-end pose for semiflexible macromolecular chains with ,\.ima| end of the chain can be formulated as the path integral
mterna}I er>§|bIe strl.Jctures,. such as Ioop;, bulges, and nlcks/on the group of rotations in three-dimensional space, S&(3).
gaps, ignoring the interactions between distal segments of the
same macromolecular chain. In our work, the internal structures RO
involving a small number of basepairs are treated as joints with  f (a,R,s) = f

RO8@E — J7 Reeydeje S WIDIR(S)
limited ranges of rotation. Our method is based on our general (1)
statistical model of intrinsically straight inextensible semiflexible

macromolecular chaif$and uses the concept of the Fourier wheree; = [0,0,1] andd(.) is the Dirac delta function. Here
transform for the group of rigid-body motion in three- U(s) is the elastic energy per unit length measured in units of
dimensional space, SE(3). ksT, whereks denotes the Boltzmann constant ahdienotes

In section 2, we briefly review our general statistical model the temperature. It has the form

of intrinsically straight inextensible semiflexible macromolecular

chains and relevant mathematical background on the Fourier U(s) = lw(s)TBw(s) - bTa)(S) +c 2
transform for SE(3). In section 3, we present the idea of reducing 2
the internal flexible structures into joints with limited ranges
of motion, introduce a general method for computing the PDF
of the end-to-end pose for a jointed macromolecular chain, and
derive the formulas for two representative types of joints: the
hinge and the ball joint. In section 4, we discuss the extreme

the cosed for solution or the PDF of the end-to.end distance, '°14dNg he Kratky-Porod model, the Yamakawa model, and
In section 5, we demonstrate with examples how to implemenf the Marko-Siggia modeF.s After some mgthematlpal n_*nanlpul_a-
our methooi to compute the desired PDFs and discuss thetlon’ one can obtain fr_om Q) th_e following partial differential
computational results equation on SE(3) which descrlbgs the PDF of the pose of the

’ frame of reference at arc lengghwith respect to the frame of
reference at the proximal end of the chdin

wherew(s) is called the spatial angular velocity at arc length
(which replaces time in the current contexB,is a 3 x 3
positive semidefinite symmetric matrix called the stiffness
matrix, b is a 3 x 1 vector describing the chirality, ardis a
constant. Many elastic models fit into this general formulation,

2. Review of the General Inextensible Semiflexible

Macromolecular Chain Model o (@R,9) (1

3 3

YR YR YR YR

The method presented in this paper is built on a general model -5 Z DyXi™ X + Zdlxl — X%|f (aR.9)
A . . . . . 0s 2¢f=1 =

of the intrinsically straight inextensible semiflexible macromo- : (3)

lecular chain which was derived in our previous wétki\Ve

briefly review it in this section. with the initial conditionf (a,R,0) = d(a)o(R). In eq 3,D =
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B, d = —B~tb, andX] are the differential operators defined
for SE(3) (1< i < 6).

In our previous workg®5! a methodology for solving
equations such as (3) was developed using the technique of the
Fourier transform for SE(3). The matrix elements of this
transform are!-61

Segment 1 Joint Segment 2

flr,m;Lm(p,s) = j;E(s)f (a,R,S)U[mﬂ,m(a,R;p) dRda (4) Figure 2. Diagram of a macromolecular chain with an internal joint.
(XniYpiZpi) represents the frame of reference at the proximal end, and

N . . (XaiYaiZa) represents the frame of reference at the distal end. In the
where for eachr € Zandp € ", U'(a,R;p) is the irreducible  piot, X axes are not displayed but can be derived frmndZ axes
unitary representation matrix of SE(®)is the frequency factor  following the right-hand rule.

introduced by the transform, andRda is the invariant integra-
tion measure for SE(3). Applying the Fourier transform for SE- by a joint which allows random rotation within a certain range
(3) on both sides of (3), one can obtain a system of linear and following a certain probability distribution. As a result, the
ordinary differential equations in the form of PDF of the end-to-end pose for the whole chain can be obtained
. as the convolution of three PDFs
d'(p.s) _ ey e
s —B@fPs ®) f@R.L) = (f*f*f)@R.L) (8)

whereB' is a matrix function that is independentsﬁlnder the wheref; = fl(a,R'Ll) is the PDF of the pose of the frame of
assumption that the stiffness and chirality of the intrinsically reference attached at the distal end of segment 1 relative to its
straight macromolecular chain are constant along the whole own proximal endf, = f(a,R,Ly) is the PDF of the pose of the

chain. Solving (5), one obtains frame of reference attached at the distal end of segment 2 relative
. ) to its own proximal end, anf is the PDF of the pose of the
f(p,g) = P (6) frame of reference attached at the proximal end of segment 2

relative to the distal end of segmentfldescribes the junction
Then, the desired PDF can be obtained by the inverse between the two segments. Wheré#a,R,L;) can be obtained
transfornt 62 by solving (3) withs = L; andf,(a,R,L;) can be obtained by
solving (3) withs = Ly, f; has the following form

1 ® o o
f(a,R,5) =— _
@R 27° r=z—oo I';n |;| mr=z—|' m=z—| fi(aR)= o6(a) f(R) 9

Jo B POV} (@ RP)P dp (7) The Dirac delta function in translation means that the two
segments meet at a point rather than being translated in space
3. PDFs for the Semiflexible Macromolecular Chains with relative to each other. Meanwhile, the rotation at the joint
Internal Revolute Joints follows a certain probability distribution. The convolution in

; PESP ; 8) is a convolution defined on SE(3). Lettimgandh denote
The model represented by (3) applies to intrinsically straight ( . .
inextensible elastic macromolecular chains, and the solution 2N 9roup elements in SE(3), and lettifig) andfy(g) be two

represented by (6) applies to macromolecular chains with _arbitrary functions defined on SE(3), the convolution on SE(3)

constant stiffness and chirality. Some extensions need to be'S defined a8

made to the method reviewed in section 2 so that it can be

applied to computing the conformational statistics of chains with (fxf)(Q) = fsm)fa(h) f,(h "o g) d(h) (10)
the internal structures mentioned in section 1.

3.1. General Idea.From the collection of works describing
the internal structures of DNA and RNA which are of interest
in this papef, 20 we notice that those internal structures usually
introduce nonrigid local bending with angular fluctuation at
those irregular sites on the macromolecular chains, with either
larger ranges of rotation (e.g., symmetric loops) or smaller
ranges of rotation (e.g., bulges). We also notice that usually
only a small number of mismatched basepairs are involved in
those local structures (usually6 bps). Therefore, we model
the conformational statistics of this category of macromolecular
chains by representing internal structures as revolute (rotational)
joints with limited ranges of motion where rotation angles follow
certain probability distributions. ar Ar BT, AT

We consider the case of a macromolecular chain containing (p) = F2(P)f; (P)f1(P) (11)
one internal joint (Figure 2), though the same methodology can
be easily extended to fit the multijoint case. As a frame of It is a general property that the Fourier transform of a
reference traverses the backbone of the chain, one can simplyconvolution of functions is the product of the Fourier transforms
divide the chain into two segments. Each segment has a PDFof those functions multiplied in the reverse order. Since in this
describing the ensemble of all possible motions of its distal end context the Fourier transforms are matrix-valued functions, the
relative to its proximal end. The two segments are connected order of multiplication matters. Wheree% and f'z can be

where the little circle is the group multiplication operator for
rigid-body motions. Equation 8 can be extended further to solve
the multijoint case by convolving more PDFs of involved
segments and joints.

Since each PDF is a function of six pose variables (three
position variables and three orientation variables), it is very
complicated to calculate (8) directly, and the situation will
become worse when more joints are involved. However, the
Fourier transform for functions of SE(3)-valued argument
provides a relatively easy way to compute (8). Applying the
transform on both sides of (8), one obt&if¥
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computed from (G)fjr can be obtained as the Fourier transform
of f; with matrix elements

B m®) = fsge @Ry m(@.R;p) dR da

- ISE(3)6(a) f (R)U| iy m(@R:P) dR da

= Jso@ | RVl mm(OR;p) dR (12)
Figure 4. Workspace of a hinge with a limited range of rotation.
Then, Substitutiné' into (7), one obtains the PDF of the end- (Xa1YarZaa) represents the frame of reference at the distal end of segment

~ : : : 1, and Ky2YpoZpo) represents the frame of reference at the proximal
to-end pose of the macromolecular chain with an internal end of segment 2X(Y'Z') is an intermediate frame of reference obtained

revolute joint. Equation 11 can be easily extended to the py rotating Kq:YaiZa:) by an angle ofx about itsZ axis followed by

multijoint case by multiplying the SE(3) Fourier transforms of rotating the current frame an angle &f about itsX axis. XnYnZy) is

more PDFs of involved segments and joints in the reverse order.obtained by rotatingX'Y'Z’) an angle ofy, about itsZ axis.
Besides the full PDF of the end-to-end pose, the PDF of the

end-to-end distance is of particular interest because it is possible Zi

to be measured from experiments. Here, we parametrize the

translation with spherical coordinates, with the lettexr” “

denoting the radial distance from the origfhgenoting the polar

angle, and denoting the azimuthal angle. We also parametrize Bn

the rotation with th&XZ Euler angles, withw, 3, andy denoting i ) ] )

the three Euler angles. Then one can compute the PDF of theFigure 5. Workspace of a hinge constrained to move inYheZ plane.

end-to-end distancé(a), by integrating out other variables from

Yd]

d
" where
f(a)=i2f”f2”f f (aR) sin6 drR dg do
5200 Jo Jso@) \% a €[0,27], B €[0,7], andy €[0,27] (15)
28’ ooy sinpa
= Js Boodp) 527 do (13)  and

Whereas we have shown a general method to compute the _ -1
PDF of the end-to-end pose of a macromolecular chain with fi@R(a,f.,y)) = 6(R(0to,f0:70) "R(af,7))0(a)

internal joints, in the following we will focus on the PDF at 0@)0(o. — 0)d(B — Loy — vo)
the revolute jointfj(a,R), and its Fourier transform. Here, two = %o - oAUV~ Yo (16)
representative types of revolute joints, the hinge and the ball sin
joint, will be discussed in detail. SAS(F(R)S

3.2. The Hinge CaseWhen the angular fluctuation at an fa(aR(,By)) = G (sir)wiiﬁ) ) 17)
internal structure is constrained to move in a plane, the local
structure can be modeled as a planar revolute joint, i.e., a hinge
(Figure 3). Then the Fourier transform §fa,R) on SE(3) can be obtained

as
Segment 1 Yai Segment 2
\ Yoz / 2r 2r 2r
fi(P) = fiz(P) Fj2(P) (18)
Zpa where

Figure 3. Diagram of a macromolecular chain with an internal hinge.

The workspace of a hinge with a limited range of rotation f,-rl.,m;.ym(p) = fSE(a)fjl(a,R(a,ﬂ,y))U[mu.m(a,R;p) dR da
can be depicted as a sector with a unit radius (Figure 4). In
Figure 4,X, represents the orientation of the hinge axis which o(@d(oe — 0g)0(B — Loy — vo)
is determined by th&XZEuler angleso, S0, andyo. The rigid- = fsaa) sin 8 X
body motion at a hinge consists of only one rotatifrabout

Xi. Ul mr m(@R;p) dR da
We notice that an arbitrarily located sector with a unit radius, _ _ _
as shown in Figure 4, results from moving a sector of same — f O(a ~ )05 —~ Bo)oly Vo)Ur . (O,R:;p) dR
. LY. - . SO(3) Inﬂ (RN AN L]
area, which is inside th&—Z plane (Figure 5), to the new S
position determined by, o, andyo (Figure 4). Therefore, in 3oL — 0SB — BAS(v —
general, denoting (8r) as the probability distribution of the =, fi/(’)” 02” ( o (ﬂ_ POty ~ 7o) X
bending angle8, at the hinge, the PDF of rigid-body motion ' e e Is'nﬁ .
on SE(3) at this hinge can be obtained as a convolution e (=1)" P, m(cosB)e™” sin B da. dp dy

f@aR(@B.7) = (f*f)@R(e,b.7)) (14) = 0,,8™P} (CoSB)e™ (19)
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fjrzr,mm,m(p) = fsag)sz(aaR(a-ﬂW))Ulr,mn',m(a,R;p) dR da

@@ By T = =
= [ @ (gl?q éﬁ) (V)U[m;r,m(a,R;p) &R da

o()f (B -
- LO(S)%?;MU[MI’M(QR;@ dR

7 o p2x O()f (B)O(y)
=9 02./;3 o2 W x
€™ (—1)"""P ,(cosB)e™” sinp da df dy

= 8y, /£ (B)P nfcOSP) 0B

(20)

where d;; is the Kronecker delta function arﬂnvn(x) is the
generalized Legendre functiGh®2

In particular, whenf () is a uniform distribution on the
domain Pn1,fnz with Sn = Bc — AB andpnz = fc + AB, one
obtains

1) =533 (21)
o(a)o(a)o
WaRE@AN =i @2
. Oy s
ot = 5255 Prin(COSB) A6 (23)

3.3. The Ball Joint. If the angular fluctuation of the

macromolecular chain at an internal structure is not constrained
to a plane, the local structure can be modeled as a spatial

revolute joint, the ball joint (Figure 6).

Segment 1 Segment 2

Figure 6. Diagram of a macromolecular chain with an internal ball
joint.

With the rotation being parametrized using tB¥Z Euler

Macromolecules, Vol. 39, No. 5, 2006

the local structure. The workspace of a ball joint with a limited
range of rotation covers a certain area on the unit sphere (Figure
7).

In general, denoting the PDF of the bending angjend the
twisting anglea. on the unit sphere ag(a,3), one has the
corresponding PDF of rigid-body motion defined on SE(3) as

fi(aR(a,8,7)) = o(@)f(c.5)o(y)

Then the Fourier transform ¢fa,R) on SE(3) can be obtained
as

(24)

?jr'"m?"m(p) - .[SE(s)fi(a'R(a’ﬁ'V))Ulr,m;l',m(avR;p) dR da
= Jorof @@AOG] . (aR:p) IR da
= Jooaf @RIy (OR:P) R

= 0 fi A1) B (cospE™ <
sin5 do. df dy
= 6|,|'j(‘1’ﬁf ((X,ﬂ)eimaplmym(cosﬂ) Sinﬂ da dﬂ (25)

In particular, let us look at the case whigfa,3) is a uniform
distribution on a circular region on the unit sphere (Figure 8).

Figure 8. A ball joint with the uniform distribution on an arbitrary
circular region on the unit sphere.

Here, we denot@. as the position vector of the center of the
circular region on the unit sphere and dengeas the position

vector of an arbitrary point on the boundary of the circular
region.op andfy are the polar angle and the azimuthal angle

angles, the rigid-body motion at the ball joint can be considered of p.. Clearly,p. = [sin o Sin a, sin B cosao, cosAg]. Since

as consisting of a rotation about theZ axis, followed by a
rotation 8 about the currenX axis, followed by a rotatiory
about the currenZ axis, with no translation in any direction.

In fact, two Euler angles are enough to define the relative pose
of the two segments connected by the ball joint (Figure 7). The

Figure 7. Workspace of a ball joint with a limited range of rotation.

ball joint model applies to the macromolecular chain which has
not only bending fluctuations but also twisting fluctuation at

the circular region keeps a constant surface area when moving
on the unit sphere, one can obtain from Figure 9 that inside the

z

Figure 9. A ball joint with the uniform distribution on a circular region
symmetric with respect to th2 axis on the unit sphere.

circular region

1

)= 27(1 — cosApP) (26)



Macromolecules, Vol. 39, No. 5, 2006

and the corresponding PDF on SE(3) is

0(@)o(y)

27(1 — cosAp) @7)

fj(avR(arﬁvy)) =

It is clear that when the circular region is symmetric with

respect to th& axis (Figure 9), the support 6{a,3) is defined

asp € [0,Af] anda € [0,27]. However, when the circular region

moves away from th& axis, 5 € [fo — AB, fo + AB], but

o. 0 [0,27]. To find how o varies, one can obtain from the law

of cosines
1P, — P> =2 — 2 cosAB (28)

Then lettingp, = [sin 3 sin a, sin § cosa, cos 3], one can
obtain

COSAp — cosp cosf,
sinf sinf,

o=a,+ cos™

(29)

which gives the upper and lower boundsooforresponding to
any specific value of5.

Then the Fourier transform ofi(a,R) on SE(3) can be
obtained as

Oy
27(1 — cosAp) x

fotAB  ragtcos (cosAB—cogicogo)/(sinBsindo)] eimu
Bo—AS l/;o—cosfl[(cosA,B—cog?cos(i@/(sirﬁsirﬁ@] x

/fjrl’,m;l,m(p) =

P, m(cOSp) sin da. df

Oy

= - X
2rm(1 — cosAp)i
BotAB (eim[a0+co§1(cosAﬁfcosﬁcosﬁo)/(sirﬁsirﬁo)] _
Bo—Ap

eim[ao—c0§1(cosA,8—cos’)’cos(io)/(sin@sin@o)])le’m(cosﬁ) sinﬂ dﬁ (30)

In fact, fj(a,R) for the uniform ball joint can also be obtained

Macromolecular Chains with Internal Joint4955

where

ot = fogofir(@ROBYNU] my m(@R;P) AR da

= I E(S)é(a)é(a — )08 — ﬁO)é(y)—Ulr,m;l’,rr{ @Rp) R da

sing
o — o) — oY)y ————
= fos (a ao)sm(ﬂﬁ Bo) (V)U[m;r,m(O,R;p) &R
7 p2n 00— 0)0(B — B)O(y)
=oufy Jo Sy - 0Losinﬁ =

™ (—1)"""P}, ;(cosp)e™” sin 3 da df dy

= 0,,€™P]; (COSBy) (35)
ot = fegafi2@REBYNU] . m(@R:P) IR da

o@oy) o
- fSE(s)Zm_—(m);Amul,m;l'm(aaR,P) dR da

_ ) 7 o
o j;O(S) 2.7'[(1 _ COSAﬁ)Ul,m:l',m’(oerp) drR

_ s O()
= 5I,I’ﬁ> 0 Jo 27(1— cosAp)
€™ (—1)"""P,, ,(cosB)e™ sinB da df dy

__OuOmo  eas
1— cosApJ0

4. PDF of the End-to-End Distance for the Rigid Chain
with an Internal Joint

As mentioned before, the PDF of end-to-end distance is of
particular interest and is a marginal density of the full PDF of
end-to-end pose. Moreover, when the macromolecular chain is
completely rigid, it is possible to derive the closed form solution

Pl o(cOsp) sinB dp (36)

using the convolution on SE(3). We notice that a circular region for the PDF of the end-to-end distance. In this section, we take
arbitrarily located on the unit sphere results from moving a g |ook at the case of two rigid rods connected by a joint (Figure
circular I’egIOI’I with the same I‘adIUS, which is SymmetI’IC to the lo) Our method can eas”y be extended to the mult”O'nt case

Z axis (Figure 9), to the new position determineddayand o

(Figure 8). Therefore, the PDF of rigid-body motion on SE(3)

at this ball joint can be obtained as a convolution
fi@R(p.y)) = (" fid(@R(p.y) (31)
where
fii@R(eB,7)) = 0(@)d(R(cpB0.0) "R(,8.7))

_0(a)0(a — 0g)o(B — Po)(y)
N sing

0(a)o(y)
27(1 — cosAp)

(32)

f@R(B.7)) = (33)

Then the Fourier transform ofi(a,R) on SE(3) can be

obtained as

fio) =)o) (34)

Segment 1

N

Figure 10. Diagram of two rigid rods connected by a joint.

by using geometric relationships.

In general, knowing the PDF of the bending angig), one
can derive the PDF of the end-to-end distarf¢a), from the
following relationship

f@ = p() L 37)

where
_ 2a
V(L + L) - )@ — (L~ L))

Sl

(38)
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Equation 38 can be derived from
a’=L,>+L,>— 2L,L,cosfr — f) (39)

which is obtained from the law of cosine.

When the joint is a hinge with a limited range of rotation,

one can obtain from Figure 4

cosf} = —sinf,cosy,sin B, + cosp,cosf  (40)
from which one can further obtain
_ dpn _ ki(By)
p(B) = f (ﬁh)|£| = mf By (41)
where
k (By) = \/1 — (—sinf,cosy,sinf, + cosp,cosp,)?
(42)
K, (Br) = IsinBycosy,cosp,, + cospysing,|  (43)
Substituting (41) into (37), one obtains
2
(@)= LV ~1(5,(@)
keB@W (L + L) — (@ — (Ly — L))
(44)
where
Br(a) = cos™

(k3(a) cosfy+ J ky(8)? cog i, — (co B, + sin’ i, cog yy) (ks(a)® — sin? B, cos yo)‘

co f, + sinf f,cos v,
(45)
a’— L2 — L2
ky(@) = ————— (46)

2,0,

In particular, wherf () is a uniform distribution on the domain
[Bc — AB, Bc + AB], one obtains

aky(5(2))

ABRB@W (L + L) — a)(& — (L, — L))
(47)

f(@=

When the joint is a ball joint with a limited range of rotation,
andf (a,3) is a uniform distribution on a circular region of the

unit sphere, one obtains from (33)

(ﬁ) — fa0+co§1[(cosA/}7co$cos30)l(sinﬁsinﬁo)] sinﬁ o
P ap—Cos Y(cosAB—cogBcosBo)/(sin Bsin Bo)] 27-[(1 — COSAﬂ)
. _,[COSAB — cosf3 cosf,
sinf cos . -
B sing sinf, 48)
(1 — cosAp)
Substituting (48) into (37), one obtains

2L,L, cosAB — (a® — L, — L, cosp,

VL + L= a)@ — (L, — L)dsing,
7L, L,(1 — cosAp)

acos?!

f(@=

(49)
5. Examples and Discussion

In this section, we will show how to implement our method
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Figure 11. Variation of the PDF of the end-to-end distance of a
macromolecular chain with a limited hinge in the middle with respect
to the stiffness.

Table 1. Values of Computation Parameters Used in the Hinge

Example
2z ls Po b4 Ib Po
0.1 3 50 1.0 7 130
0.2 4 60 2.0 11 150
0.3 4 80 3.0 13 150
0.4 5 80 4.0 16 190
0.5 5 100 5.0 18 200

our results in the form off (a) instead off (a,R) for the
convenience of display, thoudt{a,R) contains more informa-
tion thanf (a) and can be obtained using our methods.

The general formulation reviewed in section 2 applies to
several stiffness models. Here we use the KratRgrod model
in our examples. However, other models, such as the Yamakawa
model and the Marke Siggia model, also fit into our general
formulation. For the Kratky-Porod wormlike chain model, the
stiffness matrix, chirality vector, and constant term in (2) are
defined as®

c=0 (50)

000 0

wherey is known as the stiffness parameter. The definitions of
the stiffness matrix, chirality vector, and constants for the
Yamakawa model and MarkeSiggia models can be found in

ref 28. In our computation, the stiffness is measured in units of
ksT. Moreover, all the stiffness and length parameters are
normalized by the total arc length of the macromolecular chain.

When implementing the Fourier transform for SE(3), by
definition (as shown in eq 7), € Z, p €[0,], andB" is an
infinite dimensional matrix. To do numerical computations,
however, one must truncatel, I, andp at finite values and®'
at finite dimension. In particular, whein(a) is of interest, we
only need to consider = 0, as suggested by (13).

As shown in Figure 11, we compuitéa) of a macromolecular
chain with a limited uniform hinge in the middle under different
values of stiffness. In this example, we choose the range of
rotation agin €[/3, 27/3] with ap = o = yo = 0. The choices
of the computation parameters are listed in Table 1, where
[=lplp), 1 € [r,lp), I" € [r,lg], andp € [O,py]-

As shown in Figure 12, we compufdga) for a macromo-
lecular chain with a limited uniform ball joint in the middle
under different values of stiffness. In this example, we choose
the range of rotation as a circular region on the unit sphere
centered atyy = o = 7/2 with A = /6. The choices of the
computation parameters are listed in Table 2, wheré—Iy,lp),

[ €[rlg], I' € [r,lp), andp € [0,py].
Itis clear from our examples that, given the type of the joint

derived in the last two sections by examples. We will present and the range of rotation, the macromolecular chains with
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nm?%* At the high end, a molecular ruler based on plasmon
coupling of single gold and silver particles can measure
intermolecular distances continuously up to 70%ikleanwhile,
single-molecule high-resolution colocalization (SHREC) of
fluorescent probes can measure the intramolecular distances
from 10 to 200 nm over time and has been used to generate the
distribution of the end-to-end distance of DNA fragmefsts.
Besides these distance-measuring methods, the distribution of
the end-to-end distance of a free macromolecular chain can also
be retrieve from the forceextension experimengs.5® By

0 02 04 06 08 1 holding different end-to-end distances and measuring the average
Fiqure 12. Variation of the PDF of the end-to-end distance of a holding forces, one can establish a forextension relation and
meglcromolecular chain with a limited ball joint in the middle with respect retrieve the distribution of the end-to-end distance base_'d on
to the stiffness. [FO= —[olog(f (a))/0a], wherelFF[denotes the average holding

force®” The holding experiment can be implemented by laser
0.2 trap and atomic force microscof¥.

In addition to these direct measurement techniques, indirect
0.15 methods that measure moments of the end-to-end distance
distribution also exist. The following section discusses how the
e(x) 0.1 radius of gyration for semiflexible chains with internal defects
(which can be computed from our model) relates to light
scattering experiments.

0.05

6. Detecting Joints in Semiflexible Chains Based on

05 : 5 5 4 Radius of Gyration

x The proposed method also provides a potential tool for
Figure 13. Root-mean-square difference between the PDF of the hinge detecting the existence of joint-like internal structures in single
example and that of the ball joint exampégy) denotes the root-mean-  macromolecular chains based on the radius of gyration measured
square difference between the PDF of the hinge case and that of thef.o i, the |aser light scattering experiment, which achieves a

ball joint case. It is defined a&y) = y/ o(fungd @) —fom(@x))’da. In precision of 2-4%8%71
the case of the rigid chain with a joint in the middje= o, which is

not shown on the plotle(y = ®) ~ 0.55. In principle, the radius of gyration of a chain with internal
joints will be different from that of an intrinsically straight chain.
Table 2. Values of Computation Parameters Used in the Ball Joint For a single macromolecular chain, one can measure the radius
Example of gyration from the light scattering experiment. One can also
x Ip Po x Ip Po compute the radius of gyration of a comparable intrinsically
0.1 3 50 1.0 7 130 straight chain with same stiffness. By comparing the measured
0.2 4 70 2.0 11 180 radius of gyration with the calculated one, one can determine
0.3 4 80 3.0 13 170 whether there is a joint-like internal structure on the chain.
0.4 5 80 4.0 16 190 . _ _ i
05 5 100 To study the feasibility of detecting the existence of internal

joints on single macromolecular chains based on the radius of
yration, we compute and compare the radius of gyration of
oth intrinsically straight chain and jointed chain based on the

. - X PDFs generated by the proposed method. Here we use the
the experimentally measured PDF. Meanwhile, knowing the macromolecular chain with a limited hinge in the middle as

stiffness of a macromolecular chain with an internal joint, it is our example of the jointed chain, witiy = o = y0 = 0 and

also possible to distinguish between hinge-like and ball-like B : : :
O . h € [—Ap, B+Ap]. B is the central bending angle at the hinge,
joints from experimentally measured PDFs. From our computa- andAf is the half range angle. Denoting the radius of gyration

tion, we notice that the difference between the PDF of a : :
' L : o Re, I h f A Re.
macromolecular chain with a hinge and that of a chain with a asRe, we will study the impact of botf§ and Af on

ball joint is small when the stiffness is low and increases as the 1 n€ radius of gyration of a single macromolecular chain can
stiffness gets higher (Figure 13). Therefore, it would be easier & computed from the PDFs of its point-to-point distances.
to identify the type of the joint from experimentally obtained D|scret|;|ng a chain into segments, one can calculate the radius
end-to-end distance distributions for a stiffer macromolecular ©f gyration ag?
chain than that for a more flexible chain.

A variety of experimental methods can be used to directly non
measure the end-to-end distance of a macromolecular chain and Z mijzm
generate the PDF of the end-to-end distance. Single molecule =1s
FRET is the most widely adopted way to study the conforma- Re=——"—" (51)
tional distribution and dynamics of individual macromolecules, x/En
which efficiently measures the intramolecular distances from 3
to 10 nm%3-66 At the low end, fluorescence quenching by where
TEMPO measures the sub-3 nm distances with a resolution of
0.5 nm®3 and a single-molecule optical switch based on Cy5 320 li %
and Cy3 can measure the intramolecular distances as short as 1 i ﬁ) T

different values of stiffness will have different PDFs of end-
to-end distance. This means that one can determine the stiffnes
of a macromolecular chain with a known internal joint from

i (ry) dr; (52)

[
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straight B=EQB=@ Bz;@ stra}ight
|

0.25

AB=57/6 AB=2n/3

0.1 0.1
o 1 2 3 4 5 o 1 2 3 4 5
x x
Figure 14. Comparison inRs between the intrinsically straight and  Figure 16. Comparison inRs between the intrinsically straight and
hinged macromolecular chains with= 0 and differentAg. hinged macromolecular chains witk3 = 7/6 and differentg.
a 006 a 015
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Figure 15. Difference inRs between the intrinsically straight chain  Figure 17. Difference inRs between the intrinsically straight chain
and the hinged chains with = 0 and differentAf. Here, AR = and the hinged chains with3 = 7/6 and differen{3. Part a presents

Rss — Ran, whereRss denotes the radius of gyration of the intrinsically  the difference in absolute value, and part b presents the difference in
straight chain anRgh denotes the radius of gyration of the hinged percentage.
chain. Part a presents the difference in absolute value, and part b

presents the difference in percentage. Table 3. Percentage Difference irRg between the Straight Chain
. . . and the Jointed Chains with Zero =1

Here,r;; denotes the distance between two poirdadj on the PGa=1

chain, I denotes the arc length betweerand j, and f;(rij) AB 6 3 2 2nl3 Srl6 T

ARs/Reh 0.64% 2.88% 6.55% 11.40% 16.98% 22.52%

denotes the PDF of the distance betweandj which can be % 100%

generated using the method presented in previous sections.
Equation 51 applies to both intrinsically straight and jointed more distinguishable from the intrinsically straight chain. Table
chains. 3 presents the percentage differenc&gfwheny = 1, between

In Figure 14 and Figure 15, we study the impactAgf on the intrinsically straight chain and the jointed chains with zero
Rg, with = 0. In this case, the jointed chain fluctuates around . The table shows that a jointed chain witj$ > 77/2 is highly
a straight conformation. A DNA with a symmetric internal loop detectable on the basis of experimentally measRegdccord-
belongs to this category. ing to the reported measurement precisivr?!

By changingy, we obtain a class dRs —y curves for the In Figure 16 and Figure 17, we study the impacfiain Rg,
intrinsically straight chain and the jointed chains with different with A = x/6. In this case, the jointed chain fluctuates around
Ap. Figure 14 shows that in general: [®g of a jointed chain a bent conformation. A DNA with a bulge or a gap belongs to
is smaller than that of an intrinsically straight chain with same this category.
stiffness because the joint causes the chain to fold baclRd{2) By changingy, we obtain a class dRs —y curves for the
of a flexible chain is small because the conformation of such a intrinsically straight chain and the jointed chains with different
chain is usually an entangled coil. (8 of the chain increases . Figure 16 shows a similar relation betwedRgnandy as Figure
asy increases because the conformation of a stiffer chain tends14 does. MoreovelR; of a jointed chain with a largef tends
to stretch out. Moreover, a stiffer chain behaves more like a to be smaller becauggforces the chain to fold back.
rigid chain. ThereforeRg of a jointed chain converges to that The difference irRs between the intrinsically straight chain
of the rigid chain ag increases. (4R; of a jointed chain with and the jointed chains witt\f = x/6 and differents is
a largerAp tends to be smaller because such a chain is more presented in Figure 17.
likely to fold back. Figure 17 shows thaf\Rg increases ag increases. This

The difference irRs between the intrinsically straight chain  means that an internal joint with a larger bending is more
and the jointed chains with = 0 and differentAf is presented distinguishable from the intrinsically straight chain. Table 4
in Figure 15. presents the percentage differencérgf wheny = 1, between

Figure 15 shows thaAR; increases adp increases. This  the intrinsically straight chain and the jointed chains with
means that an internal joint with a larger fluctuation range is Af = x/6. The table shows that a jointed chain withe> 7/4
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Figure 18. Difference inRs between the intrinsically straight chain
and the hinged chains with differefiandAgS. Part a shows the contour
plot of the percentage difference whgn= 1, and part b shows the
contour plot of the percentage difference wherr 2.

Table 4. Percentage Difference irRs between the Straight Chain
and the Jointed Chains withAf = #/6 (y = 1)

B nl6 a4 73 72 273 51/6 =&
ARG/Rgh x 100% 2.98% 5.93% 10.17% 22.89% 41.28% 61.45% 71.13%
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