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ABSTRACT: Fluctuations in the bending angles at internal irregularities of DNA and RNA (such as symmetric
loops, bulges, and nicks/gaps) have been observed from various experiments. However, little effort has been
made to computationally predict and explain the statistical behavior of semiflexible chains with internal defects.
In this paper, we describe the general structure of these macromolecular chains as inextensible elastic chains
with one or more internal joints which have limited ranges of rotation and propose a method to compute the
probability density functions of the end-to-end pose of these macromolecular chains. Our method takes advantage
of the operational properties of the noncommutative Fourier transform for the group of rigid-body motions in
three-dimensional space, SE(3). Two representative types of joints, the hinge for planar rotation and the ball joint
for spatial rotation, are discussed in detail. The proposed method applies to various stiffness models of semiflexible
chainlike macromolecules. Examples are calculated using the Kratky-Porod model with specified stiffness, angular
fluctuation, and joint locations. Entropic effects associated with internal angular fluctuations of semiflexible
macromolecular chains with internal joints can be computed using this formulation. Our method also provides a
potential tool to detect the existence of internal irregularities.

1. Introduction

The internal bending and flexibility of DNA has attracted
considerable attention because of its important role in packaging,
recombination, and transcription.

First discovered in the early 1980s,1 intrinsically bent DNAs
have been observed and studied experimentally.2-8 Local
structures, which are more complex than rigid bends, have also
been observed from various experiments. In particular, errors
during replication and recombination of double-stranded DNA
may result in mismatched basepairs or the insertion/deletion of
nucleotides. This results in internal structures such as symmetric
loops, bulges, and gaps/nicks. These structures usually have
different flexibility than regular double-helical DNA and may
result in bends. Usually, these bends are not rigid but exhibit
certain ranges of fluctuation. On the basis of gel electrophoresis
experiments, Guo and Tullius showed that a single-nucleoside
gap in a DNA duplex leads to an anisotropic, directional bend
in the DNA helix axis.9 Moreover, a gap is a site of anisotropic
flexibility rather than a static, fixed bend. The bending angle
caused by a single gap was estimated at around 12°. Roll et al.
reported a fluctuating bending angle centered around 17° at the
nick site of DNA based on nuclear magnetic resonance (NMR)
experiments and molecular dynamics (MD) simulations.10 Kahn
et al. studied the bending and flexibility induced by symmetric
internal loops by gel electrophoresis experiments and cyclization
kinetics analysis and found that the internal loop induced high
local isotropic flexibility.11 They reported a root-mean-square
(rms) bending angle of 43( 5° for 3-basepair loops, which
reflects a fairly wide range of angular distribution. Moreover,
the bending angle at a loop is essentially independent of the
loop size. Zacharias and Hagerman quantified the bending angles

caused by symmetric internal loops in RNA and reported an
rms angular fluctuation of 16( 5° for each basepair in the
absence of Mg2+ and 13( 4° in the presence of Mg2+.12 As
for bulge-induced bending, fluorescence resonance energy
transfer (FRET) measurements indicated a bending of 50°-
70° for an A3 DNA bulge and 85°-105° for an A5 DNA
bulge.13 An NMR study also showed a bending angle of 90(
14° for an RNA bulge with five unpaired bases AAUAA14 and
73( 11° for the A5 RNA bulge.15 Furthermore, from the results
of transient electric birefringence (TEB) measurements, Za-
charias and Hagerman gave an estimation of a 10°-20°
increment of bending angle induced per extra base.16 They also
stated that a given bulge-induced bend could be regarded as a
relatively narrow distribution of angles with a nonzero mean
angle. Other works have shown strong agreement with the above
results regarding bulge-induced bending.17-20

Although much experimental attention has been given to the
bending fluctuations caused by internal structures, so far no
previous work has been published on how to computationally
predict and explain the statistical behavior of macromolecular
chains with those internal structures.

In contrast, many models have been put forth to describe the
behavior of intrinsically straight semiflexible macromolecular
chains and to explain experimental data. Widely used models
include the freely jointed chain model,21 the Kratky-Porod
wormlike chain model,22-24 the Yamakawa helical wormlike
chain model,25 and the Marko-Siggia double-helix chain model
(describing the double-helix structure of DNA).26,27 In our
previous work, we proposed a general formulation for inexten-
sible semiflexible macromolecular chains, which includes
several above-mentioned polymer models as subcases.28

Meanwhile, various computational methods have been de-
veloped to estimate the conformational statistics of intrinsically
straight macromolecular chains. Common techniques include
Monte Carlo, matrix-generator, direct enumeration, and path

† State University of New York at Stony Brook.
‡ Johns Hopkins University.
* Corresponding author. E-mail: gregc@jhu.edu.

1950 Macromolecules2006,39, 1950-1960

10.1021/ma0512556 CCC: $33.50 © 2006 American Chemical Society
Published on Web 02/11/2006



integration.29-37 For some basic polymer models, closed-form
formulas have been derived for the probability distributions of
loop length,38 segmental orientations,39 trajectories of a seg-
ment,40 radius of gyration,41 end-to-end position and distance,42-49

and moments.46,49,50In our previous work, we showed that the
probability density function (PDF) of the end-to-end pose for
the most general model of the inextensible semiflexible mac-
romolecular chain can be obtained by either solving a diffusion
equation or convolving PDFs for short segments of the
chain.28,51-53

Recently some effort has been given to describing macro-
molecular chains with internal rigid bends. Models have been
proposed to describe the relationship between bending stiffness
and DNA sequence.54-56 Matrix-generator and Monte Carlo
methods were the first tools used to study the influence of
thermal fluctuation on the size and shape of bent DNA.57 While
classical semiflexible polymer theories are in general inadequate
to describe the conformational statistics of these systems, Rivetti
et al. made an effort to extend the applicability of the KP
wormlike chain model to bent DNA and derived closed-form
expressions for the mean-square end-to-end distance.58 In our
previous work, we proposed a general method to compute the
full probability distribution of the end-to-end pose for the bent
macromolecular chain with arbitrary stiffness and chirality
parameters.59 Ignoring the interactions between distal segments
of the same macromolecular chain, our method applies to
semiflexible inextensible chiral elastic macromolecular chains
with internal rigid bends and twists.

Despite all these efforts, there is still a lack of effective tools
to estimate the conformational statistics of semiflexible chains
with a finite number of points of increased flexibility. In this
paper, we propose a method capable of computing the PDF of
the end-to-end pose for semiflexible macromolecular chains with
internal flexible structures, such as loops, bulges, and nicks/
gaps, ignoring the interactions between distal segments of the
same macromolecular chain. In our work, the internal structures
involving a small number of basepairs are treated as joints with
limited ranges of rotation. Our method is based on our general
statistical model of intrinsically straight inextensible semiflexible
macromolecular chains28 and uses the concept of the Fourier
transform for the group of rigid-body motion in three-
dimensional space, SE(3).

In section 2, we briefly review our general statistical model
of intrinsically straight inextensible semiflexible macromolecular
chains and relevant mathematical background on the Fourier
transform for SE(3). In section 3, we present the idea of reducing
the internal flexible structures into joints with limited ranges
of motion, introduce a general method for computing the PDF
of the end-to-end pose for a jointed macromolecular chain, and
derive the formulas for two representative types of joints: the
hinge and the ball joint. In section 4, we discuss the extreme
casesthe completely rigid chain with internal jointssand derive
the closed form solution for the PDF of the end-to-end distance.
In section 5, we demonstrate with examples how to implement
our method to compute the desired PDFs and discuss the
computational results.

2. Review of the General Inextensible Semiflexible
Macromolecular Chain Model

The method presented in this paper is built on a general model
of the intrinsically straight inextensible semiflexible macromo-
lecular chain which was derived in our previous work.28 We
briefly review it in this section.

Given a macromolecular chain, one can define a local frame
of reference attached to any point on the backbone of the
macromolecular chain such that theZ axis of this frame points
along the tangent of the backbone (Figure 1). The frame of
reference at the proximal end of the chain is defined by
(R(0),a(0)) ) (I ,0), and the pose of the frame of reference at
arc lengthswith respect to the frame of reference at the proximal
end is defined by (R(s),a(s)). Here R(s) is a 3 × 3 rotation
matrix defining the relative orientation at arc lengths, a(s) is a
3 × 1 translation vector defining the relative position,I denotes
the 3× 3 identity matrix, andL denotes the total arc length of
the chain.

Under the assumption that the semiflexible macromolecular
chain is inextensible, and the variation of the conformation of
the chain is influenced by Gaussian white noise (i.e., Brownian
motion forcing), the PDF of the pose of the frame of reference
at arc lengths with respect to the frame of reference at the
proximal end of the chain can be formulated as the path integral
on the group of rotations in three-dimensional space, SO(3).28

wheree3 ) [0,0,1]′ andδ(.) is the Dirac delta function. Here
U(s) is the elastic energy per unit length measured in units of
kBT, wherekB denotes the Boltzmann constant andT denotes
the temperature. It has the form

whereω(s) is called the spatial angular velocity at arc lengths
(which replaces time in the current context),B is a 3 × 3
positive semidefinite symmetric matrix called the stiffness
matrix, b is a 3× 1 vector describing the chirality, andc is a
constant. Many elastic models fit into this general formulation,
including the Kratky-Porod model, the Yamakawa model, and
the Marko-Siggia model.28 After some mathematical manipula-
tion, one can obtain from (1) the following partial differential
equation on SE(3) which describes the PDF of the pose of the
frame of reference at arc lengths with respect to the frame of
reference at the proximal end of the chain28

with the initial conditionf (a,R,0) ) δ(a)δ(R). In eq 3,D )

Figure 1. Frames of reference attached to a semiflexible macromo-
lecular chain. (XpYpZp) represents the frame of reference at the proximal
end, (XsYsZs) represents the frame of reference at arc lengths, and
(XdYdZd) represents the frame of reference at the distal end. In the plot,
X axes are not displayed but can be derived fromYandZ axes following
the right-hand rule.
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B-1, d ) -B-1b, andX̃i
R are the differential operators defined

for SE(3) (1e i e 6).
In our previous works,28,51 a methodology for solving

equations such as (3) was developed using the technique of the
Fourier transform for SE(3). The matrix elements of this
transform are51,61

where for eachr ∈ Z andp ∈ R+, Ur(a,R;p) is the irreducible
unitary representation matrix of SE(3),p is the frequency factor
introduced by the transform, and dRda is the invariant integra-
tion measure for SE(3). Applying the Fourier transform for SE-
(3) on both sides of (3), one can obtain a system of linear
ordinary differential equations in the form of

whereBr is a matrix function that is independent ofs under the
assumption that the stiffness and chirality of the intrinsically
straight macromolecular chain are constant along the whole
chain. Solving (5), one obtains

Then, the desired PDF can be obtained by the inverse
transform51,61

3. PDFs for the Semiflexible Macromolecular Chains with
Internal Revolute Joints

The model represented by (3) applies to intrinsically straight
inextensible elastic macromolecular chains, and the solution
represented by (6) applies to macromolecular chains with
constant stiffness and chirality. Some extensions need to be
made to the method reviewed in section 2 so that it can be
applied to computing the conformational statistics of chains with
the internal structures mentioned in section 1.

3.1. General Idea.From the collection of works describing
the internal structures of DNA and RNA which are of interest
in this paper,9-20 we notice that those internal structures usually
introduce nonrigid local bending with angular fluctuation at
those irregular sites on the macromolecular chains, with either
larger ranges of rotation (e.g., symmetric loops) or smaller
ranges of rotation (e.g., bulges). We also notice that usually
only a small number of mismatched basepairs are involved in
those local structures (usually<6 bps). Therefore, we model
the conformational statistics of this category of macromolecular
chains by representing internal structures as revolute (rotational)
joints with limited ranges of motion where rotation angles follow
certain probability distributions.

We consider the case of a macromolecular chain containing
one internal joint (Figure 2), though the same methodology can
be easily extended to fit the multijoint case. As a frame of
reference traverses the backbone of the chain, one can simply
divide the chain into two segments. Each segment has a PDF
describing the ensemble of all possible motions of its distal end
relative to its proximal end. The two segments are connected

by a joint which allows random rotation within a certain range
and following a certain probability distribution. As a result, the
PDF of the end-to-end pose for the whole chain can be obtained
as the convolution of three PDFs

wheref1 ) f1(a,R,L1) is the PDF of the pose of the frame of
reference attached at the distal end of segment 1 relative to its
own proximal end,f2 ) f2(a,R,L2) is the PDF of the pose of the
frame of reference attached at the distal end of segment 2 relative
to its own proximal end, andfj is the PDF of the pose of the
frame of reference attached at the proximal end of segment 2
relative to the distal end of segment 1.fj describes the junction
between the two segments. Whereasf1(a,R,L1) can be obtained
by solving (3) withs ) L1 and f2(a,R,L2) can be obtained by
solving (3) withs ) L2, fj has the following form

The Dirac delta function in translation means that the two
segments meet at a point rather than being translated in space
relative to each other. Meanwhile, the rotation at the joint
follows a certain probability distribution. The convolution in
(8) is a convolution defined on SE(3). Lettingg andh denote
any group elements in SE(3), and lettingfa(g) andfb(g) be two
arbitrary functions defined on SE(3), the convolution on SE(3)
is defined as51

where the little circle is the group multiplication operator for
rigid-body motions. Equation 8 can be extended further to solve
the multijoint case by convolving more PDFs of involved
segments and joints.

Since each PDF is a function of six pose variables (three
position variables and three orientation variables), it is very
complicated to calculate (8) directly, and the situation will
become worse when more joints are involved. However, the
Fourier transform for functions of SE(3)-valued argument
provides a relatively easy way to compute (8). Applying the
transform on both sides of (8), one obtains51,60

It is a general property that the Fourier transform of a
convolution of functions is the product of the Fourier transforms
of those functions multiplied in the reverse order. Since in this
context the Fourier transforms are matrix-valued functions, the
order of multiplication matters. Whereasf̂1

r and f̂2
r can be

f̂ l′,m′;l,m
r (p,s) ) ∫SE(3)

f (a,R,s)Ul,m;l′,m′
r (a,R;p) dR da (4)

df̂ r(p,s)
ds

) Br(p) f̂ r(p,s) (5)

f̂ r(p,s) ) esBr(p) (6)

f (a,R,s) )
1

2π2
∑

r)-∞

∞

∑
l′)|r|

∞

∑
l)|r|

∞

∑
m′)-l′

l′

∑
m)-l

l

∫0

∞
f̂ l,m;l′,m′
r (p,s)Ul′,m′;l,m

r (a,R;p)p2 dp (7)

Figure 2. Diagram of a macromolecular chain with an internal joint.
(XpiYpiZpi) represents the frame of reference at the proximal end, and
(XdiYdiZdi) represents the frame of reference at the distal end. In the
plot, X axes are not displayed but can be derived fromY andZ axes
following the right-hand rule.

f (a,R,L) ) (f1* fj* f2)(a,R,L) (8)

fj(a,R)) δ(a) f(R) (9)

(fa* fb)(g) ) ∫SE(3)
fa(h) fb(h

-1 o g) d(h) (10)

f̂ r(p) ) f̂2
r (p)f̂ j

r(p)f̂1
r (p) (11)
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computed from (6),f̂ j
r can be obtained as the Fourier transform

of fj with matrix elements

Then, substitutingf̂r into (7), one obtains the PDF of the end-
to-end pose of the macromolecular chain with an internal
revolute joint. Equation 11 can be easily extended to the
multijoint case by multiplying the SE(3) Fourier transforms of
more PDFs of involved segments and joints in the reverse order.

Besides the full PDF of the end-to-end pose, the PDF of the
end-to-end distance is of particular interest because it is possible
to be measured from experiments. Here, we parametrize the
translation with spherical coordinates, with the letter “a”
denoting the radial distance from the origin,θ denoting the polar
angle, andφ denoting the azimuthal angle. We also parametrize
the rotation with theZXZEuler angles, withR, â, andγ denoting
the three Euler angles. Then one can compute the PDF of the
end-to-end distance,f (a), by integrating out other variables from
(7)

Whereas we have shown a general method to compute the
PDF of the end-to-end pose of a macromolecular chain with
internal joints, in the following we will focus on the PDF at
the revolute joint,fj(a,R), and its Fourier transform. Here, two
representative types of revolute joints, the hinge and the ball
joint, will be discussed in detail.

3.2. The Hinge Case.When the angular fluctuation at an
internal structure is constrained to move in a plane, the local
structure can be modeled as a planar revolute joint, i.e., a hinge
(Figure 3).

The workspace of a hinge with a limited range of rotation
can be depicted as a sector with a unit radius (Figure 4). In
Figure 4,Xh represents the orientation of the hinge axis which
is determined by theZXZEuler anglesR0, â0, andγ0. The rigid-
body motion at a hinge consists of only one rotationâh about
Xh.

We notice that an arbitrarily located sector with a unit radius,
as shown in Figure 4, results from moving a sector of same
area, which is inside theY-Z plane (Figure 5), to the new
position determined byR0, â0, andγ0 (Figure 4). Therefore, in
general, denotingf (âh) as the probability distribution of the
bending angleâh at the hinge, the PDF of rigid-body motion
on SE(3) at this hinge can be obtained as a convolution

where

and

Then the Fourier transform offj(a,R) on SE(3) can be obtained
as

where

f̂ jl ′,m′;l,m
r (p) ) ∫SE(3)

fj(a,R)Ul,m;l′,m′
r (a,R;p) dR da

) ∫SE(3)
δ(a) f (R)Ul,m;l′,m′

r (a,R;p) dR da

) ∫SO(3)
f (R)Ul,m;l′,m′

r (0,R;p) dR (12)

f (a) ) a2

2π2∫0

π∫0

2π∫SO(3)
f (a,R) sin θ dR dφ dθ

) 2a2

π ∫0

∞
f̂0,0;0,0
0 (p)

sinpa
pa

p2 dp (13)

Figure 3. Diagram of a macromolecular chain with an internal hinge.

fj(a,R(R,â,γ)) ) (fj1* fj2)(a,R(R,â,γ)) (14)

Figure 4. Workspace of a hinge with a limited range of rotation.
(Xd1Yd1Zd1) represents the frame of reference at the distal end of segment
1, and (Xp2Yp2Zp2) represents the frame of reference at the proximal
end of segment 2. (X′Y′Z′) is an intermediate frame of reference obtained
by rotating (Xd1Yd1Zd1) by an angle ofR0 about itsZ axis followed by
rotating the current frame an angle ofâ0 about itsX axis. (XhYhZh) is
obtained by rotating (X′Y′Z′) an angle ofγ0 about itsZ axis.

Figure 5. Workspace of a hinge constrained to move in theY-Z plane.

R ∈[0,2π], â ∈[0,π], andγ ∈[0,2π] (15)

fj1(a,R(R,â,γ)) ) δ(R(R0,â0,γ0)
-1R(R,â,γ))δ(a)

)
δ(a)δ(R - R0)δ(â - â0)δ(γ - γ0)

sin â
(16)

fj2(a,R(R,â,γ)) )
δ(a)δ(R)f(â)δ(γ)

sin â
(17)

f̂ j
r(p) ) f̂ j2

r (p) f̂ j1
r (p) (18)

f̂ j1l′,m′;l,m
r (p) ) ∫SE(3)

fj1(a,R(R,â,γ))Ul,m;l′,m′
r (a,R;p) dR da

) ∫SE(3)

δ(a)δ(R - R0)δ(â - â0)δ(γ - γ0)

sin â
×

Ul,m;l′,m′
r (a,R;p) dR da

) ∫SO(3)

δ(R - R0)δ(â - â0)δ(γ - γ0)

sin â
Ul,m;l′,m′

r (0,R;p) dR

) δl,l′∫0

2π∫0

π∫0

2π δ(R - R0)δ(â - â0)δ(γ - γ0)

sin â
×

eimR(-1)m′-mPm,m′
l (cosâ)eim′γ sin â dR dâ dγ

) δl,l′e
imR0Pm′,m

l (cosâ0)e
im′γ0 (19)
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where δi,j is the Kronecker delta function andPm,n
l (x) is the

generalized Legendre function.51,62

In particular, whenf (âh) is a uniform distribution on the
domain [âh1,âh2] with âh1 ) âc - ∆â andâh2 ) âc + ∆â, one
obtains

3.3. The Ball Joint. If the angular fluctuation of the
macromolecular chain at an internal structure is not constrained
to a plane, the local structure can be modeled as a spatial
revolute joint, the ball joint (Figure 6).

With the rotation being parametrized using theZXZ Euler
angles, the rigid-body motion at the ball joint can be considered
as consisting of a rotationR about theZ axis, followed by a
rotation â about the currentX axis, followed by a rotationγ
about the currentZ axis, with no translation in any direction.
In fact, two Euler angles are enough to define the relative pose
of the two segments connected by the ball joint (Figure 7). The

ball joint model applies to the macromolecular chain which has
not only bending fluctuations but also twisting fluctuation at

the local structure. The workspace of a ball joint with a limited
range of rotation covers a certain area on the unit sphere (Figure
7).

In general, denoting the PDF of the bending angleâ and the
twisting angleR on the unit sphere asf (R,â), one has the
corresponding PDF of rigid-body motion defined on SE(3) as

Then the Fourier transform offj(a,R) on SE(3) can be obtained
as

In particular, let us look at the case whenf (R,â) is a uniform
distribution on a circular region on the unit sphere (Figure 8).

Here, we denotepc as the position vector of the center of the
circular region on the unit sphere and denotepb as the position
vector of an arbitrary point on the boundary of the circular
region.R0 andâ0 are the polar angle and the azimuthal angle
of pc. Clearly,pc ) [sin â0 sin R0, sinâ0 cosR0, cosâ0]. Since
the circular region keeps a constant surface area when moving
on the unit sphere, one can obtain from Figure 9 that inside the

circular region

f̂ j2l′,m′;l,m
r (p) ) ∫SE(3)

fj2(a,R(R,â,γ))Ul,m;l′,m′
r (a,R;p) dR da

) ∫SE(3)

δ(a)δ(R)f (â)δ(γ)
sin â

Ul,m;l′,m′
r (a,R;p) dR da

) ∫SO(3)

δ(R)f (â)δ(γ)
sin â

Ul,m;l′,m′
r (0,R;p) dR

) δl,l′∫0

2π∫â∫0

2π δ(R)f (â)δ(γ)
sin â

×
eimR(-1)m′-mPm,m′

l (cosâ)eim′γ sin â dR dâ dγ

) δl,l′∫â
f (â)Pm′,m

l (cosâ) dâ (20)

f (âh) ) 1
2∆â

(21)

fj2(a,R(R,â,γ)) )
δ(a)δ(R)δ(γ)

2∆â sin â
(22)

f̂ j2l′,m′;l,m
r (p) )

δl,l′

2∆â∫âc-∆â

âc+∆â
Pm′,m

l (cosâ) dâ (23)

Figure 6. Diagram of a macromolecular chain with an internal ball
joint.

Figure 7. Workspace of a ball joint with a limited range of rotation.

fj(a,R(R,â,γ)) ) δ(a)f(R,â)δ(γ) (24)

f̂ jl ′,m′;l,m
r (p) ) ∫SE(3)

fj(a,R(R,â,γ))Ul,m;l′,m′
r (a,R;p) dR da

) ∫SE(3)
δ(a)f(R,â)δ(γ)Ul,m;l′,m′

r (a,R;p) dR da

) ∫SO(3)
f(R,â)δ(γ)Ul,m;l′,m′

r (0,R;p) dR

) δl,l′∫0

2π∫R,â
f(R,â)δ(γ)eimR(-1)m′-mPm,m′

l (cosâ)eim′γ ×
sin â dR dâ dγ

) δl,l′∫R,â
f (R,â)eimRPm′,m

l (cosâ) sin â dR dâ (25)

Figure 8. A ball joint with the uniform distribution on an arbitrary
circular region on the unit sphere.

Figure 9. A ball joint with the uniform distribution on a circular region
symmetric with respect to theZ axis on the unit sphere.

f (R,â) ) 1
2π(1 - cos∆â)

(26)

1954 Zhou and Chirikjian Macromolecules, Vol. 39, No. 5, 2006



and the corresponding PDF on SE(3) is

It is clear that when the circular region is symmetric with
respect to theZ axis (Figure 9), the support off (R,â) is defined
asâ ∈ [0,∆â] andR ∈ [0,2π]. However, when the circular region
moves away from theZ axis, â ∈ [â0 - ∆â, â0 + ∆â], but
R ∉ [0,2π]. To find howR varies, one can obtain from the law
of cosines

Then lettingpb ) [sin â sin R, sin â cos R, cosâ], one can
obtain

which gives the upper and lower bounds ofR corresponding to
any specific value ofâ.

Then the Fourier transform offj(a,R) on SE(3) can be
obtained as

In fact, fj(a,R) for the uniform ball joint can also be obtained
using the convolution on SE(3). We notice that a circular region
arbitrarily located on the unit sphere results from moving a
circular region with the same radius, which is symmetric to the
Z axis (Figure 9), to the new position determined byR0 andâ0

(Figure 8). Therefore, the PDF of rigid-body motion on SE(3)
at this ball joint can be obtained as a convolution

where

Then the Fourier transform offj(a,R) on SE(3) can be
obtained as

where

4. PDF of the End-to-End Distance for the Rigid Chain
with an Internal Joint

As mentioned before, the PDF of end-to-end distance is of
particular interest and is a marginal density of the full PDF of
end-to-end pose. Moreover, when the macromolecular chain is
completely rigid, it is possible to derive the closed form solution
for the PDF of the end-to-end distance. In this section, we take
a look at the case of two rigid rods connected by a joint (Figure
10). Our method can easily be extended to the multijoint case

by using geometric relationships.
In general, knowing the PDF of the bending angle,p(â), one

can derive the PDF of the end-to-end distance,f(a), from the
following relationship

where

fj(a,R(R,â,γ)) )
δ(a)δ(γ)

2π(1 - cos∆â)
(27)

||pb - pc||2 ) 2 - 2 cos∆â (28)

R ) R0 ( cos-1(cos∆â - cosâ cosâ0

sin â sin â0
) (29)

f̂ jl ′,m′;l,m
r (p) )

δl,l′

2π(1 - cos∆â)
×

∫â0-∆â

â0+∆â ∫R0-cos-1[(cos∆â-cosâcosâ0)/(sinâsinâ0)]

R0+cos-1[(cos∆â-cosâcosâ0)/(sinâsinâ0)] eimR ×

Pm′,m
l (cosâ) sin â dR dâ

)
δl,l′

2πm(1 - cos∆â)i
×

∫â0-∆â

â0+∆â
(eim[R0+cos-1(cos∆â-cosâcosâ0)/(sinâsinâ0)] -

eim[R0-cos-1(cos∆â-cosâcosâ0)/(sinâsinâ0)])Pm′,m
l (cosâ) sin â dâ (30)

fj(a,R(R,â,γ)) ) (fj1* fj2)(a,R(R,â,γ)) (31)

fj1(a,R(R,â,γ)) ) δ(a)δ(R(R0,â0,0)-1R(R,â,γ))

)
δ(a)δ(R - R0)δ(â - â0)δ(γ)

sin â
(32)

fj2(a,R(R,â,γ)) )
δ(a)δ(γ)

2π(1 - cos∆â)
(33)

f̂ j
r(p) ) f̂ j2

r (p)f̂ j1
r (p) (34)

f̂ j1l′,m′;l,m
r (p) ) ∫SE(3)

fj1(a,R(R,â,γ))Ul,m;l′,m′
r (a,R;p) dR da

) ∫SE(3)

δ(a)δ(R - R0)δ(â - â0)δ(γ)

sin â
Ul,m;l′,m′

r (a,R;p) dR da

) ∫SO(3)

δ(R - R0)δ(â - â0)δ(γ)

sin â
Ul,m;l′,m′

r (0,R;p) dR

) δl,l′∫0

2π∫0

π∫0

2π δ(R - R0)δ(â - â0)δ(γ)

sin â
×

eimR(-1)m′-mPm,m′
l (cosâ)eim′γ sin â dR dâ dγ

) δl,l′e
imR0Pm′,m

l (cosâ0) (35)

f̂2l′,m′;l,m
r (p) ) ∫SE(3)

fj2(a,R(R,â,γ))Ul,m;l′,m′
r (a,R;p) dR da

) ∫SE(3)

δ(a)δ(γ)

2π(1 - cos∆â)
Ul,m;l′,m′

r (a,R;p) dR da

) ∫SO(3)

δ(γ)

2π(1 - cos∆â)
Ul,m;l′,m′

r (0,R;p) dR

) δl,l′∫0

2π∫0

∆â∫0

2π δ(γ)

2π(1 - cos∆â)
×

eimR(-1)m′-mPm,m′
l (cosâ)eim′γ sin â dR dâ dγ

)
δl,l′δm,0

1 - cos∆â∫0

∆â
Pm′,0
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Figure 10. Diagram of two rigid rods connected by a joint.

f(a) ) p(â)|dâ
da

| (37)

dâ
da

) - 2a

x((L1 + L2)
2 - a2)(a2 - (L1 - L2)

2)
(38)
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Equation 38 can be derived from

which is obtained from the law of cosine.
When the joint is a hinge with a limited range of rotation,

one can obtain from Figure 4

from which one can further obtain

where

Substituting (41) into (37), one obtains

where

In particular, whenf (âh) is a uniform distribution on the domain
[âc - ∆â, âc + ∆â], one obtains

When the joint is a ball joint with a limited range of rotation,
andf (R,â) is a uniform distribution on a circular region of the
unit sphere, one obtains from (33)

Substituting (48) into (37), one obtains

5. Examples and Discussion

In this section, we will show how to implement our method
derived in the last two sections by examples. We will present

our results in the form off (a) instead of f (a,R) for the
convenience of display, thoughf (a,R) contains more informa-
tion thanf (a) and can be obtained using our methods.

The general formulation reviewed in section 2 applies to
several stiffness models. Here we use the Kratky-Porod model
in our examples. However, other models, such as the Yamakawa
model and the Marko-Siggia model, also fit into our general
formulation. For the Kratky-Porod wormlike chain model, the
stiffness matrix, chirality vector, and constant term in (2) are
defined as28

whereø is known as the stiffness parameter. The definitions of
the stiffness matrix, chirality vector, and constants for the
Yamakawa model and Marko-Siggia models can be found in
ref 28. In our computation, the stiffness is measured in units of
kBT. Moreover, all the stiffness and length parameters are
normalized by the total arc length of the macromolecular chain.

When implementing the Fourier transform for SE(3), by
definition (as shown in eq 7),r ∈ Z, p ∈[0,∞], and Br is an
infinite dimensional matrix. To do numerical computations,
however, one must truncater, l, l′, andp at finite values andBr

at finite dimension. In particular, whenf (a) is of interest, we
only need to considerr ) 0, as suggested by (13).

As shown in Figure 11, we computef (a) of a macromolecular
chain with a limited uniform hinge in the middle under different
values of stiffness. In this example, we choose the range of
rotation asâh ∈[π/3, 2π/3] with R0 ) â0 ) γ0 ) 0. The choices
of the computation parameters are listed in Table 1, wherer ∈
[-lb,lb], l ∈ [r,lb], l′ ∈ [r,lb], andp ∈ [0,pb].

As shown in Figure 12, we computef (a) for a macromo-
lecular chain with a limited uniform ball joint in the middle
under different values of stiffness. In this example, we choose
the range of rotation as a circular region on the unit sphere
centered atR0 ) â0 ) π/2 with ∆â ) π/6. The choices of the
computation parameters are listed in Table 2, wherer ∈ [-lb,lb],
l ∈ [r,lb], l′ ∈ [r,lb], andp ∈ [0,pb].

It is clear from our examples that, given the type of the joint
and the range of rotation, the macromolecular chains with

a2 ) L1
2 + L2

2 - 2L1L2 cos(π - â) (39)

cosâ ) -sin â0 cosγ0 sin âh + cosâ0 cosâ (40)

p(â) ) f (âh)|
dâh

dâ
| )

k1(âh)

k2(âh)
f (âh) (41)

k1(âh) ) x1 - (-sin â0 cosγ0 sin âh + cosâ0 cosâh)
2

(42)

k2(âh) ) |sin â0 cosγ0 cosâh + cosâ0 sin âh| (43)

f (a) )
2ak1(âh(a))

k2(âh(a))x((L1 + L2)
2 - a2)(a2 - (L1 - L2)

2)
f(âh(a))

(44)

âh(a) ) cos-1

(k3(a) cosâ0 ( xk3(a)2 cos2 â0 - (cos2 â0 + sin2 â0 cos2 γ0)(k3(a)2 - sin2 â0 cos2 γ0)

cos2 â0 + sin2 â0 cos2 γ0
)

(45)

k3(a) )
a2 - L1

2 - L2
2

2L1L2
(46)

f (a) )
ak1(âh(a))

∆âk2(âh(a))x((L1 + L2)
2 - a2)(a2 - (L1 - L2)

2)

(47)

p(â) ) ∫R0-cos-1[(cos∆â-cosâcosâ0)/(sin âsin â0)]

R0+cos-1[(cos∆â-cosâcosâ0)/(sinâsinâ0)] sin â
2π(1 - cos∆â)

dR

)
sin â cos-1(cos∆â - cosâ cosâ0

sin â sin â0
)

π(1 - cos∆â)
(48)

f (a) )

a cos-1( 2L1L2 cos∆â - (a2 - L1
2 - L2

2) cosâ0

x((L1 + L2)
2 - a2)(a2 - (L1 - L2)

2)sin â0
)

πL1L2(1 - cos∆â)
(49)

Figure 11. Variation of the PDF of the end-to-end distance of a
macromolecular chain with a limited hinge in the middle with respect
to the stiffness.

Table 1. Values of Computation Parameters Used in the Hinge
Example

ø lb pb ø lb pb

0.1 3 50 1.0 7 130
0.2 4 60 2.0 11 150
0.3 4 80 3.0 13 150
0.4 5 80 4.0 16 190
0.5 5 100 5.0 18 200

B ) (ø 0 0
0 ø 0
0 0 0), b ) (000), c ) 0 (50)
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different values of stiffness will have different PDFs of end-
to-end distance. This means that one can determine the stiffness
of a macromolecular chain with a known internal joint from
the experimentally measured PDF. Meanwhile, knowing the
stiffness of a macromolecular chain with an internal joint, it is
also possible to distinguish between hinge-like and ball-like
joints from experimentally measured PDFs. From our computa-
tion, we notice that the difference between the PDF of a
macromolecular chain with a hinge and that of a chain with a
ball joint is small when the stiffness is low and increases as the
stiffness gets higher (Figure 13). Therefore, it would be easier
to identify the type of the joint from experimentally obtained
end-to-end distance distributions for a stiffer macromolecular
chain than that for a more flexible chain.

A variety of experimental methods can be used to directly
measure the end-to-end distance of a macromolecular chain and
generate the PDF of the end-to-end distance. Single molecule
FRET is the most widely adopted way to study the conforma-
tional distribution and dynamics of individual macromolecules,
which efficiently measures the intramolecular distances from 3
to 10 nm.63-66 At the low end, fluorescence quenching by
TEMPO measures the sub-3 nm distances with a resolution of
0.5 nm,63 and a single-molecule optical switch based on Cy5
and Cy3 can measure the intramolecular distances as short as 1

nm.64 At the high end, a molecular ruler based on plasmon
coupling of single gold and silver particles can measure
intermolecular distances continuously up to 70 nm.65 Meanwhile,
single-molecule high-resolution colocalization (SHREC) of
fluorescent probes can measure the intramolecular distances
from 10 to 200 nm over time and has been used to generate the
distribution of the end-to-end distance of DNA fragments.66

Besides these distance-measuring methods, the distribution of
the end-to-end distance of a free macromolecular chain can also
be retrieve from the force-extension experiments.67,68 By
holding different end-to-end distances and measuring the average
holding forces, one can establish a force-extension relation and
retrieve the distribution of the end-to-end distance based on
〈F〉 ) -[∂log(f (a))/∂a], where〈F〉 denotes the average holding
force.67 The holding experiment can be implemented by laser
trap and atomic force microscopy.68

In addition to these direct measurement techniques, indirect
methods that measure moments of the end-to-end distance
distribution also exist. The following section discusses how the
radius of gyration for semiflexible chains with internal defects
(which can be computed from our model) relates to light
scattering experiments.

6. Detecting Joints in Semiflexible Chains Based on
Radius of Gyration

The proposed method also provides a potential tool for
detecting the existence of joint-like internal structures in single
macromolecular chains based on the radius of gyration measured
from the laser light scattering experiment, which achieves a
precision of 2-4%.69-71

In principle, the radius of gyration of a chain with internal
joints will be different from that of an intrinsically straight chain.
For a single macromolecular chain, one can measure the radius
of gyration from the light scattering experiment. One can also
compute the radius of gyration of a comparable intrinsically
straight chain with same stiffness. By comparing the measured
radius of gyration with the calculated one, one can determine
whether there is a joint-like internal structure on the chain.

To study the feasibility of detecting the existence of internal
joints on single macromolecular chains based on the radius of
gyration, we compute and compare the radius of gyration of
both intrinsically straight chain and jointed chain based on the
PDFs generated by the proposed method. Here we use the
macromolecular chain with a limited hinge in the middle as
our example of the jointed chain, withR0 ) â0 ) γ0 ) 0 and
âh ∈ [â-∆â, â+∆â]. â is the central bending angle at the hinge,
and∆â is the half range angle. Denoting the radius of gyration
asRG, we will study the impact of bothâ and∆â on RG.

The radius of gyration of a single macromolecular chain can
be computed from the PDFs of its point-to-point distances.
Discretizing a chain inton segments, one can calculate the radius
of gyration as72

where

Figure 12. Variation of the PDF of the end-to-end distance of a
macromolecular chain with a limited ball joint in the middle with respect
to the stiffness.

Figure 13. Root-mean-square difference between the PDF of the hinge
example and that of the ball joint example.e(ø) denotes the root-mean-
square difference between the PDF of the hinge case and that of the

ball joint case. It is defined ase(ø) ) x∫0
1(fhinge(a,ø)-fball(a,ø))2da. In

the case of the rigid chain with a joint in the middle (ø ) ∞, which is
not shown on the plot),e(ø ) ∞) ≈ 0.55.

Table 2. Values of Computation Parameters Used in the Ball Joint
Example

ø lb pb ø lb pb

0.1 3 50 1.0 7 130
0.2 4 70 2.0 11 180
0.3 4 80 3.0 13 170
0.4 5 80 4.0 16 190
0.5 5 100

RG )
x∑

j)1

n

∑
i)1

n

〈rij
2〉

x2n

(51)

〈rij
2〉 ) ∫0

lijrij
2fij(rij) drij (52)
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Here,rij denotes the distance between two pointsi andj on the
chain, lij denotes the arc length betweeni and j, and fij(rij)
denotes the PDF of the distance betweeni and j which can be
generated using the method presented in previous sections.
Equation 51 applies to both intrinsically straight and jointed
chains.

In Figure 14 and Figure 15, we study the impact of∆â on
RG, with â ) 0. In this case, the jointed chain fluctuates around
a straight conformation. A DNA with a symmetric internal loop
belongs to this category.

By changingø, we obtain a class ofRG -ø curves for the
intrinsically straight chain and the jointed chains with different
∆â. Figure 14 shows that in general: (1)RG of a jointed chain
is smaller than that of an intrinsically straight chain with same
stiffness because the joint causes the chain to fold back. (2)RG

of a flexible chain is small because the conformation of such a
chain is usually an entangled coil. (3)RG of the chain increases
asø increases because the conformation of a stiffer chain tends
to stretch out. Moreover, a stiffer chain behaves more like a
rigid chain. Therefore,RG of a jointed chain converges to that
of the rigid chain asø increases. (4)RG of a jointed chain with
a larger∆â tends to be smaller because such a chain is more
likely to fold back.

The difference inRG between the intrinsically straight chain
and the jointed chains withâ ) 0 and different∆â is presented
in Figure 15.

Figure 15 shows that∆RG increases as∆â increases. This
means that an internal joint with a larger fluctuation range is

more distinguishable from the intrinsically straight chain. Table
3 presents the percentage difference ofRG, whenø ) 1, between
the intrinsically straight chain and the jointed chains with zero
â. The table shows that a jointed chain with∆â g π/2 is highly
detectable on the basis of experimentally measuredRG, accord-
ing to the reported measurement precision.69-71

In Figure 16 and Figure 17, we study the impact ofâ on RG,
with ∆â ) π/6. In this case, the jointed chain fluctuates around
a bent conformation. A DNA with a bulge or a gap belongs to
this category.

By changingø, we obtain a class ofRG -ø curves for the
intrinsically straight chain and the jointed chains with different
â. Figure 16 shows a similar relation betweenRG andø as Figure
14 does. Moreover,RG of a jointed chain with a largerâ tends
to be smaller becauseâ forces the chain to fold back.

The difference inRG between the intrinsically straight chain
and the jointed chains with∆â ) π/6 and differentâ is
presented in Figure 17.

Figure 17 shows that∆RG increases asâ increases. This
means that an internal joint with a larger bending is more
distinguishable from the intrinsically straight chain. Table 4
presents the percentage difference ofRG, whenø ) 1, between
the intrinsically straight chain and the jointed chains with
∆â ) π/6. The table shows that a jointed chain withâ g π/4

Figure 14. Comparison inRG between the intrinsically straight and
hinged macromolecular chains withâ ) 0 and different∆â.

Figure 15. Difference inRG between the intrinsically straight chain
and the hinged chains withâ ) 0 and different∆â. Here, ∆RG )
RGs - RGh, whereRGs denotes the radius of gyration of the intrinsically
straight chain andRGh denotes the radius of gyration of the hinged
chain. Part a presents the difference in absolute value, and part b
presents the difference in percentage.

Figure 16. Comparison inRG between the intrinsically straight and
hinged macromolecular chains with∆â ) π/6 and differentâ.

Figure 17. Difference inRG between the intrinsically straight chain
and the hinged chains with∆â ) π/6 and differentâ. Part a presents
the difference in absolute value, and part b presents the difference in
percentage.

Table 3. Percentage Difference inRG between the Straight Chain
and the Jointed Chains with Zero â (ø ) 1)

∆â π/6 π/3 π/2 2π/3 5π/6 π
∆RG/RGh

× 100%
0.64% 2.88% 6.55% 11.40% 16.98% 22.52%
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is highly detectable on the basis of experimentally measured
RG, according to the reported measurement precision.69-71

Figure 18 shows the combined effect of bothâ and∆â on
RG. In general, a jointed chain with largerâ and/or∆â is more
distinguishable from the intrinsically straight chain.

7. Conclusion

In this paper, we proposed an effective computational method
to estimate the conformational statistics of semiflexible mac-
romolecular chains with internal structures which can be
represented as joints with limited capability of rotation, such
as DNAs containing symmetric loops, bulges, and nicks/gaps.
Our method can compute the PDF of the end-to-end pose of a
macromolecular chain with any stiffness and chirality in its
minimum-energy states. Other marginal PDFs and statistical
quantities can be further calculated from this full PDF. The
proposed method extends our previous general formulation of
classical polymer theory and can be used with different stiffness
models, including the Krathy-Porod model, the Yamakawa
model, and the Marko-Siggia model. This capability allows
one to study the entropic effects of internal angular fluctuations
on semiflexible macromolecular chains with internal joints. Our
method also provides a potential tool to detect the existence of
internal joints. With the complete spectrum of computational
results obtained using this method, it is possible in principle to
retrieve the stiffness, joint type, and joint location of a
macromolecular chain with an internal defect from experimen-
tally measured PDFs. The current method ignores the interac-
tions among the segments of the same macromolecular chain.
This will become a topic of our future work.
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Table 4. Percentage Difference inRG between the Straight Chain
and the Jointed Chains with ∆â ) π/6 (ø ) 1)

â π/6 π/4 π/3 π/2 2π/3 5π/6 π
∆RG/RGh × 100% 2.98% 5.93% 10.17% 22.89% 41.28% 61.45% 71.13%

Macromolecules, Vol. 39, No. 5, 2006 Macromolecular Chains with Internal Joints1959



(56) Olson, W. K.; Zhurkin, V. B.Biol. Struct. Dyn., 2, Proc. Ninth ConV.
Discipline Biomol. Stereodyn.1996, 341-370.

(57) Olson, W. K.; Marky, N. L.; Jernigan, R. L.; Zhurkin, V. B.J. Mol.
Biol. 1993, 232, 530-551.

(58) Rivetti, C.; Walker, C.; Bustamante, C.J. Mol. Biol. 1998, 280, 41-
59.

(59) Zhou, Y.; Chirikjian, G. S.J. Chem. Phys.2003, 119, 4962-4970.
(60) Kyatkin, A. B.; Chirikjian, G. S.Appl. Comput. Harmonic Anal.2000,

9, 220-241.
(61) Miller, W. Commun. Pure Appl. Math.1964, 17, 527-540.
(62) Vilenkin, N. J.; Klimyk, A. U. Representation of Lie Groups and

Special Functions; Kluwer Academic Publishers: Dordrecht, Holland,
1991.

(63) Zhu, P.; Clamme, J.; Deniz, A. A.Biophys. J.: Biophys. Lett.2005,
L37-L39.

(64) Bates, M.; Blosser, T. R.; Zhuang, X.Phys. ReV. Lett. 2005, 94,
108101.1-4.

(65) Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P.Nat.
Biotechnol.2005, 23, 741-745.

(66) Churchman, L. S.; Okten, Z.; Rock, R. S.; Dawson, J. F.; Spudich, J.
A. Proc. Natl. Acad. Sci. U.S.A.2005, 102, 1419-1423.

(67) Ranjith, P.; Kumar, P. B. S.; Menon, G.Phys. ReV. Lett. 2005, 94,
138102.1-4.

(68) Keller, D.; Swigon, D.; Bustamante, C.Biophys. J.2003, 84, 733-
738.

(69) Lai, E.; Zanten, J. H. V.Biophys. J.2001, 80, 864-873.
(70) Zhou, H.; Miller, A. W.; Sosic, Z.; Buchholz, B.; Barron, A. E.; Kotler,

L.; Karger, B. L.Anal. Chem.2000, 72, 1045-1052.
(71) Jeng, L.; Balke, S. T.; Mourey, T. H.; Wheeler, L.; Romeo, P.J. Appl.

Polym. Sci.1993, 49, 1359-1374.
(72) Johnson, C. S.; Gabriel, D. A.Laser Light Scattering; Dover: Mineola,

NY, 1994.

MA0512556

1960 Zhou and Chirikjian Macromolecules, Vol. 39, No. 5, 2006


