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Abstract—Distributions in position and orientation are central
to many problems in robot localization. To increase efficiency,
a majority of algorithms for planar mobile robots use Gaus-
sians defined on positional Cartesian coordinates and heading.
However, the distribution of poses for a noisy two-wheeled robot
moving in the plane has been observed by many to be a “banana-
shaped” distribution, which is clearly not Gaussian/normal in
these coordinates. As uncertainty increases, many localization
algorithms therefore become “inconsistent” due to the normality
assumption breaking down. We observe that this is because the
combination of Cartesian coordinates and heading is not the
most appropriate set of coordinates to use, and that the banana
distribution can be described in closed form as a Gaussian in an
alternative set of coordinates via the so-called exponential map.

With this formulation, we can derive closed-form expressions
for propagating the mean and covariance of the Gaussian in
these exponential coordinates for a differential-drive car moving
along a trajectory constructed from sections of straight segments
and arcs of constant curvature. In addition, we detail how to
fuse two or more Gaussians in exponential coordinates together
with given relative pose measurements between robots moving
in formation. These propagation and fusion formulas utilized
here reduce uncertainty in localization better than when using
traditional methods. We demonstrate with numerical examples
dramatic improvements in the estimated pose of three robots
moving in formation when compared to classical Cartesian-
coordinate-based Gaussian fusion methods.

I. INTRODUCTION

A rich area of robotics research known as SLAM or
simultaneous localization and mapping consists of a robot
mapping its environment while estimating where it may be in
this map. To incorporate uncertainty, one strategy represents
all possible poses of the robot with a probability density
function (pdf). The goal then is to maintain and update this
pdf as the robot moves. One solution is to propagate the entire
pdf such as with Fourier transform techniques [26]. However,
these techniques can be too numerically intensive for real-time
SLAM applications.

According to Durrant-Whyte and Bailey, the two most com-
mon tools used to increase efficiency for SLAM algorithms are
the extended Kalman filter (EKF) and the Rao-Blackwellized
(RB) particle filter [8]. EKF-SLAM is based on the classic
work of Smith et al. in which linearized models are used
to propagate uncertainty of the non-linear motion and obser-
vations [21]. Several strategies for improving the efficiency
for large scale SLAM problems using this technique are
documented by Bailey and Durrant-Whyte [2]. By using the
RB particle filter, Murphy observed that the SLAM problem

(a)

x

y

θ

l

(x,y)
2 r

(b)

Fig. 1. (a) Banana-shaped distribution for position of a differential-drive
robot moving along a straight line with noisy wheel speeds. (b) Notation for
differential-drive robot.

could be decomposed in to a robot localization problem and
several independent landmark estimation problems [18]. With
this factorization, many efficient SLAM algorithms known as
FastSLAM have been proposed [16, 17, 11].

An inherent technique utilized in EKF-SLAM and many
FastSLAM algorithms for robots operating in the plane is
to represent all distributions with Gaussians in Cartesian
coordinates (x, y) and orientation heading angle (θ). This
Gaussian/normal representation can be fully parameterized by
a mean and covariance in these variables. Equal probabil-
ity density contours of these distributions are described by
ellipses. However, if we command a differential-drive robot
to drive along a straight path, the resulting distribution from
many sample paths may look similar to Fig. 1(a). Originally
described by Thrun et al. [23], [24], this distribution is gen-
erally referred to as the “banana-shaped” distribution, which
does not have elliptical probability density contours in the
variables (x, y, θ). As the uncertainty grows, this assumption
of normality breaks down and the maps inevitably become
inconsistent [14].

Many have studied the problem of inconsistency for the
EKF-SLAM [14], [3], [5], [13], and [6]. Julier and Ulhmann
proved that this inconsistency is a direct result of linearization
of the non-linear models in EKF-SLAM [14]. The extent of
the inconsistency was studied by Bailey et al. in the context of
heading uncertainty. They showed that if the standard deviation
on the heading was larger than one or two degrees the map
ultimately failed, specically with regards to excessive infor-
mation gain and jagged vehicle trajectories [3]. In addition,
the quality of the normal assumption in these coordinates was



studied for the RB particle filter in [22], which demonstrated
that several real-world examples were not well described by
Gaussians.

In the majority of existing algorithms, there is an inherent
assumption that the distribution should be represented by
Gaussians in Cartesian coordinates. In this paper, we propose
to use exponential coordinates and Lie groups to represent
the robot’s pose. We demonstrate that a Gaussian in these
coordinates for planar robots provides a much better fit
than a Gaussian in Cartesian coordinates as the uncertainty
increases. By using this approach, we can derive closed-form
propagation and fusion formulas that can be used to estimate
the mean and covariance of the robot’s pose.

In the last few years, the idea of using the Lie group nature
of rigid body transformations has drawn some attention for the
SLAM problem, particularly in the area of monocular camera
SLAM [15], [20], [10]. General robot motion utilizing rigid
body transformations has been applied with Consistent Pose
Registration (CPR) [1] and complementary filters [4].

The outline of the paper is as follows. In Section II, we
derive the stochastic differential equation for the differential-
drive robot operating in the plane. We review rigid body
motions and their relationship to exponential coordinates in
Section III. We provide the definitions for the mean, covari-
ance and the Gaussian probability density function in these
coordinates in Section IV. A comparison between the Gaussian
in Cartesian coordinates and the Gaussian in exponential
coordinates is detailed in Section V. In Section VI, we derive
closed-form expressions that can be used to propagate the
mean and covariance of the Gaussian in exponential coor-
dinates. We conclude by deriving closed-form formulas for
fusing two (or more) Gaussians in exponential coordinates in
Section VII. These fusion formulas are then applied to multiple
robots moving in formation.

II. STOCHASTIC DIFFERENTIAL EQUATION

The example we will be considering in this paper is the
kinematic cart or differential-drive robot. This robot has two
wheels each of radius r which can roll but not slip. The two
wheels share an axis of rotation and are separated by a length
`. The configuration of the robot can be represented as x =
[x, y, θ]T where (x, y) is the Cartesian position in the plane
of the center of the axle and θ is the orientation of the robot
as shown in Fig. 1(b). For the configuration coordinates x, the
governing differential equations are

dx =
r cos θ(dφ1 + dφ2)

2
, dy =

r sin θ(dφ1 + dφ2)

2
,

and dθ =
r

`
(dφ1 − dφ2),

where the rate of spinning of each wheel is given by ωi =
dφi/dt for i = 1 or 2. If the wheel speeds are governed by
stochastic differential equations (SDE) as

dφi = ωi(t)dt+
√
Ddwi for i = 1 or 2 (1)

where dwi are unit-strength Wiener processes and D is a noise
coefficient, then one obtains the SDE

dx =

 dx
dy
dθ

 =

 r
2 (ω1 + ω2) cos θ
r
2 (ω1 + ω2) sin θ

r
` (ω1 − ω2)

 dt

+
√
D

 r
2 cos θ r

2 cos θ
r
2 sin θ r

2 sin θ
r
` − r

`

( dw1

dw2

)
.

(2)

In this paper, we focus on the distributions for the robot,
which deterministically would be driving straight or driving
along an arc of constant curvature. For deterministic driving
straight forward at speed v, the constant wheel speeds are

ω1 = ω2 =
v

r
. (3)

For deterministic driving along an arc of radius a counter-
clockwise at rate α̇, the wheel speeds can be shown to be

ω1 =
α̇

r
(a+

`

2
), ω2 =

α̇

r
(a− `

2
). (4)

III. REVIEW OF RIGID-BODY MOTIONS

The planar special Euclidean group, G = SE(2), is the
semidirect product of the plane, R2, with the special orthogo-
nal group, SO(2). The elements of SE(2) can be represented
with a rotational part R ∈ SO(2) and a translational part
t = [t1, t2]T as 3 x 3 homogeneous transformation matrices

g =

(
R t
0T 1

)
∈ SE(2),

where the group operator ◦ is matrix multiplication.
We will also make use of the Lie algebra se(2) associated

with SE(2). For a vector x = [v1, v2, α]T , an element X of
the Lie algebra se(2) can then be expressed as

X = x̂ =

 0 −α v1
α 0 v2
0 0 0

 and X∨ = x (5)

where the ∧ and ∨ operators allow us to map from R3 to
se(2) and back.

By using the matrix exponential exp(·) on elements of
se(2), we can obtain group elements of SE(2) as

g(v1, v2, α) = exp(X)

=

 cosα − sinα t1
sinα cosα t2

0 0 1

 ,

where

t1 = [v2(−1 + cosα) + v1 sinα]/α and (6)
t2 = [v1(1− cosα) + v2 sinα]/α. (7)

Since we are using the exponential in this formulation, we will
refer to the coordinates (v1, v2, α) as exponential coordinates.



We can obtain the vector of exponential coordinates x from
the group element g ∈ SE(2) from

x = (log(g))∨, (8)

where log(·) is the matrix logarithm.
Given a time-dependent rigid body motion g(t), the spatial

velocity as seen in the body-fixed frame is given as the quantity

g−1ġ =

(
RT Ṙ RT ṫ
0T 0

)
∈ se(2), (9)

where the dot represents a time derivative.
We define the adjoint operator Ad(g) to satisfy [7]

Ad(g)x = log∨(g ◦ exp(X) ◦ g−1). (10)

For SE(2), the adjoint matrix is given by

Ad(g) =

(
R Mt
0T 1

)
where M =

(
0 1
−1 0

)
.

(11)
We define another adjoint operator ad(X) to satisfy [7]

ad(X)y = ([X,Y ])∨, (12)

where [X,Y ] = XY − Y X is the Lie bracket. This adjoint
matrix for se(2) is given by

ad(X) =

(
−αM Mv
0T 0

)
(13)

where v = [v1, v2]T . The two adjoint matrices are related by

Ad(exp(X)) = exp(ad(X)). (14)

The Baker-Campbell-Hausdorff (BCH) formula [9] is a
useful expression that relates the matrix exponential with the
Lie bracket. The BCH is given by

Z(X,Y ) = log(exp(X) ◦ exp(Y ))

= X + Y +
1

2
[X,Y ] + . . . .

(15)

If the ∨ operator is applied to this formula, we obtain

z = x + y +
1

2
ad(X)y + . . . . (16)

IV. MEANS, COVARIANCES AND GAUSSIAN
DISTRIBUTIONS

For a vector x ∈ Rn, the mean µ̃ and covariance Σ̃ about
the mean for the pdf f(x) are given respectively as 1

0 =

∫
Rn

(x− µ̃)f(x)dx (17)

Σ̃ =

∫
Rn

(x− µ̃)(x− µ̃)T f(x)dx (18)

A multidimensional Gaussian probability density function with
mean µ̃ and covariance matrix Σ̃ is defined as

f(x; µ̃, Σ̃) =
1

c̃(Σ̃)
exp

[
−1

2
(x− µ̃)T Σ̃−1(x− µ̃)

]
, (19)

1We will use a ‘tilde’ (̃ ) to represent quantities associated with the Gaussian
in Cartesian coordinates.

where exp(·) is the usual scalar exponential function and c̃(Σ̃)
is a normalizing factor to ensure f(x; µ̃, Σ̃) is a pdf. In (19),

c̃(Σ̃) = (2π)n/2|det Σ̃|1/2. (20)

These definitions can be naturally extended to matrix Lie
groups as in [25]. Given a group G with operation ◦, the mean
µ ∈ G of a pdf f(g) is defined to satisfy∫

G

log∨
(
µ−1 ◦ g

)
f(g)dg = 0. (21)

The covariance about the mean is defined as

Σ =

∫
G

log∨(µ−1 ◦ g)[log∨(µ−1 ◦ g)]T f(g)dg. (22)

A multidimensional Gaussian for Lie groups can be defined
as

f(g;µ,Σ) =
1

c(Σ)
exp

[
−1

2
yT Σ−1y

]
, (23)

where y = log(µ−1◦g)∨ and c(Σ) is a normalizing factor. For
highly concentrated distributions (i.e. the distribution decays
rapidly as you move away from the mean), c(Σ) ≈ c̃(Σ̃).

V. GAUSSIAN COMPARISONS

In this section, we compare the Gaussian in Cartesian
coordinates defined in (19) to the one defined in (23) in
exponential coordinates for the differential-drive car moving
along a straight path and moving along an arc. For all the
examples in the remainder of this paper, the wheel base ` is
0.200 and the radius r of each wheel is 0.033. To obtain a
set of sample frames representing the true distribution of this
system, we numerically integrated the stochastic differential
equation given in (2) 10,000 times using a modified version
of the Euler-Maruyama method [12] with a time step of
dt = 0.001 for a total time of T = 1 second.

Using these sample data points, we can approximate the
mean and covariance for Cartesian coordinates with

µ̃ =
1

N

N∑
i=1

xi, and (24)

Σ̃ =
1

N

N∑
i=1

(xi − µ̃)(xi − µ̃)T , (25)

where xi = [xi, yi, θi]
T and N is the number of sample points.

The mean for exponential coordinates defined in (21) can
be approximated with the recursive formula,

µ = µ ◦ exp

[
1

N

N∑
i=1

log(µ−1 ◦ gi)

]
. (26)

The covariance matrix in exponential coordinates defined in
(22) can be estimated with

Σ =
1

N

N∑
i=1

yiy
T
i , (27)

where yi = [log(µ−1 ◦ gi)]∨.
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Fig. 2. Distributions for the differential drive robot moving ideally along a straight line with diffusion constant DT = 1 (left) and DT = 7 (right). Both
plots have pdf contours of Gaussians of best fit in exponential coordinates and Cartesian coordinates marginalized over the heading.
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Fig. 3. Distributions for the differential-drive robot moving ideally along a constant-curvature arc with diffusion constant DT = 1 (left) and DT = 4
(right). Both plots have pdf contours of Gaussians of best fit in exponential coordinates and Cartesian coordinates marginalized over the heading.

The sample mean and covariance for each method parame-
terizes the associated pdf. These pdfs were marginalized over
orientation and contours of equal pdf values were plotted along
with the sampled end positions of the simulations. Fig. 2 and
Fig. 3 present these contours for various values of DT for
the driving straight and driving along an arc examples, where
D is a diffusion coefficient and T is the total drive time.
Here T is equal to one. It is evident that the Gaussian in
exponential coordinates fits the sampled data more accurately
for both cases, especially as uncertainty increases. If we take
the poses of the sampled data, represent them in exponential
coordinates, and look at the (v1, v2) values as shown in
Fig. 4, it is clear that the result is approximately elliptical. To
numerically verify that the Gaussian in exponential coordinates
is a better fit for the sample data than the Gaussian in

Cartesian coordinates, we performed a log-likelihood ratio test
for various values of the diffusion coefficient D as shown in
Fig. 5. Note that for small diffusion values, the log-likelihood
ratio is close to one indicating that both Gaussian models
perform approximately the same. However, as the uncertainty
is increased the Gaussian in (23) in exponential coordinates
performs better than the Gaussian in Cartesian coordinates.

VI. PROPAGATION WITH EXPONENTIAL COORDINATES

In this section, we describe how to propagate the mean
and covariance defined in (21) and (22) with closed-form
estimation formulas. By using the SDE (2), we can derive



another stochastic differential equation as

(g−1ġ)∨dt =

 cos(α)dx+ sin(α)dy
− sin(α)dx+ cos(α)dy

dα


=

 r
2 (ω1 + ω2)

0
r
` (ω1 − ω2)

 dt+
√
D

 r
2

r
2

0 0
r
` − r

`

( dw1

dw2

)
.

(28)

This will be written in short-hand as

(g−1ġ)∨dt = h dt+Hdw. (29)

When rigid-body transformations are close to the identity,
the SE(2)-mean and SE(2)-covariance defined in (21) and
(22) can be approximated with [19]

µ(t) = exp

(∫ t

0

ĥ dτ

)
, and (30)

Σ(t) =

∫ t

0

Ad(µ−1(τ))HHTAdT (µ−1(τ))dτ (31)

where HHT is a constant diffusion matrix.
For the straight driving example (ω1 = ω2 = ω), we have

µ(t) =

 1 0 rωt
0 1 0
0 0 1

 . (32)

We can solve the integral in (31) in closed form as

Σ(t) =

 1
2Dr

2t 0 0

0 2Dω2r4t3

3`2
Dωr3t2

`2

0 Dωr3t2

`2
2Dr2t

`2

 . (33)

For the constant curvature case (ω1 6= ω2) with (4), we have

µ(t) =

 cos(α̇t) − sin(α̇t) a sin(α̇t)
sin(α̇t) cos(α̇t) a(1− cos(α̇t))

0 0 1

 . (34)

The closed-form SE(2)-covariance matrix is then

Σ(t) =

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 , where (35)

σ11 =
c

8

[
(4a2 + `2)(2α̇t+ sin(2α̇t))

+16a2(α̇t− 2 sin(α̇t))
]
,

σ12 = σ21 =
−c
2

[
4a2(−1 + cos(α̇t)) + `2

]
sin

(
α̇t

2

)2

,

σ13 = σ31 = 2ca(α̇T − sin(α̇t)),

σ22 = − c
8

(4a2 + `2)(−2α̇t+ sin(2α̇t)),

σ23 = σ32 = −2ca(−1 + cos(α̇t)),

σ33 = 2cα̇, and

c =
Dr2

`2α̇
.
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Fig. 4. Distributions as a function of exponential coordinates (v1, v2) with
pdf contours marginalized over the heading for the Gaussian in exponential
coordinates for driving straight (left) and driving along an arc (right) with
diffusion DT = 1.
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Fig. 5. Log-likelihood ratio test of the Gaussian in exponential coordinates
to the Gaussian in Cartesian coordinates as a function of the diffusion DT .

To demonstrate the accuracy of this propagation method,
we calculated the SE(2)-mean and SE(2)-covariance from
10,000 sample data frames using (26) and (27) and from the
propagation formulas. For the straight driving example with
rω = 1 and DT = 1, the mean and covariance of the data are

µdata =

 1.0000 0.0003 1.0000
−0.0003 1.0000 0.0000

0 0 1

 and (36)

Σdata =

 0.0006 0.0000 −0.0001
0.0000 0.0184 0.0276
−0.0001 0.0276 0.0551

 . (37)

The propagated mean and covariance for these parameters are



µprop =

 1 0 1
0 1 0
0 0 1

 and (38)

Σprop =

 0.0006 0 0
0 0.0184 0.0276
0 0.0276 0.0553

 . (39)

If we increase the noise to DT = 7, the mean and covariance
from sample data are

µdata =

 1.0000 0.0011 1.0009
−0.0011 1.0000 −0.0002

0 0 1

 and (40)

Σdata =

 0.0068 0.0000 0.0002
0.0000 0.1278 0.1943
0.0002 0.1943 0.3883

 . (41)

The propagated mean and covariance are

µprop =

 1 0 1
0 1 0
0 0 1

 and (42)

Σprop =

 0.0039 0 0
0 0.1290 0.1935
0 0.1935 0.3869

 . (43)

Similar accuracy can be seen for the constant curvature case.

VII. FUSION WITH EXPONENTIAL COORDINATES

Here we consider the fusion of banana distributions for N
robots moving in formation. To begin, consider only two such
robots, i and j. The actual (unknown) pose of these robots at
time t are gi and gj . At time t = 0, the known initial poses
are ai and aj , and the banana distributions for each robot
diffuse so as to result in distributions f(a−1i ◦ gi;µi,Σi) and
f(a−1j ◦ gj ;µj ,Σj). The means and covariances of these two
distributions can be estimated using the propagation formulas
from the previous section.

Let us assume that an exact relative measurement between
i and j is taken so that

mij = g−1i ◦ gj (44)

is known. Then the distribution of gi becomes with a form of
Bayesian fusion

pij(gi) = f(a−1i ◦ gi;µi,Σi) · f(a−1j ◦ gi ◦mij ;µj ,Σj). (45)

Noting that mji = m−1ij and switching the roles of i and j
gives the same expression for pji(gj). Our goal in this fusion
problem is to write this new fused distribution in the form

pij(gi) = f(a−1i ◦ gi;µij ,Σij), (46)

and more generally, p1,2,...,N (gi). To save space in this section,
we will occasionally remove the ◦ when the operation is clear.

We can rewrite pij(gi) in (45) as

pij(gi) = f(µ−1i a−1i gi; I,Σi) · f(µ−1j a−1j gimij ; I,Σj). (47)

Making the substitution h = µ−1i ◦ a
−1
i ◦ gi, we have

pij(aiµih) = f(h; I,Σi) · f(m−1ij qhmij ; I,Σj), (48)

where q = mij ◦ µ−1j ◦ a
−1
j ◦ ai ◦ µi. We rewrite (46) as

pij(aiµih) = f(µih;µij ,Σij) = f(h;µ′ij ,Σij), (49)

where µ′ij = µ−1i ◦ µij . Our goal is to find closed-form
expressions for µ′ij and Σij .

The exponents of all three Gaussian distributions (f ) in (48)
and (49) are all scalars and thus we have, to within a constant
C,[

log∨(eXijeY )
]T

Σ−1ij

[
log∨(eXijeY )

]
= C +

[
log∨(eXieY )

]T
Σ−1i

[
log∨(eXieY )

]
+
[
log∨(m−1ij e

XjeYmij)
]T

Σ−1j

[
log∨(m−1ij e

XjeYmij)
]
,

(50)

where eXij = exp(Xij) = (µ′ij)
−1, eXi = exp(Xi) = I ,

eXj = exp(Xj) = q and eY = exp(Y ) = h. Note that

log∨(m−1ij e
XjeYmij) = Ad(m−1ij ) log∨(eXjeY ). (51)

We assume that µ′ij , q and h are small such that the BCH
expansion can be approximated with only the first three terms

log∨(exp(X) exp(Y )) ≈ x + y + 1
2ad(X)y. (52)

Since ad(X)x = 0, we can rewrite (52) as

log∨(exp(X) exp(Y )) = (I + 1
2ad(X))(x + y). (53)

Since we renormalize, we rewrite (50) ignoring the constant
C as

(xij + y)T ΓT
ijΣ
−1
ij Γij(xij + y)

= (xi + y)T ΓT
i Σ−1i Γi(xi + y)

+ (xj + y)T ΓT
j Ad

−T (mij)Σ
−1
j Ad−1(mij)Γj(xj + y),

where Γk = I + 1
2ad(Xk). Let

Sij = ΓT
ijΣ
−1
ij Γij , Si = ΓT

i Σ−1i Γi, and

Sj = ΓT
j Ad

−T (mij)Σ
−1
j Ad−1(mij)Γj .

We can then combine like terms and solve for the following
closed-form formulas

Sij = Si + Sj , (54)
xij = S−1ij (Sixi + Sjxj), and (55)

Σij = ΓijS
−1
ij ΓT

ij (56)

which have a similar form to the product of Gaussians on Rn.
We can then extract the desired mean µij as

µij = µi ◦ exp(−x̂ij). (57)

These equations can be used recursively for multiple robot
systems with multiple measurements.



These formulas can be contrasted with those used tradition-
ally for Bayesian fusion of multivariate Gaussians on R3,

f(xi; ãi + µ̃ij , Σ̃ij) =

f(xi; ãi + µ̃i, Σ̃i) · f(xi; ãj + µ̃j − m̃ij , Σ̃j)
(58)

where m̃ij = xj − xi,

Σ̃−1ij = Σ̃−1i + Σ̃−1j , and

µ̃ij = Σ̃ij

[
Σ̃−1i (ãi + µ̃i) + Σ̃−1j (ãj + µ̃j − m̃ij)

]
− ãi.

The propagation and fusion formulas were tested on a three
robot system driving in a triangular formation with diffusion
constant DT = 3 as shown in Fig. 6. Sample data from
integrating the SDE in (2) many times are represented by blue
dots similar to Fig. 1(a). We integrated the SDE in (2) once
from each starting position to represent a set of three true
poses represented by green circles. From these true poses, we
generated the exact measurements between each robot. The pdf
contours from the fused Gaussians in exponential coordinates
marginalized over the heading are also shown in the figure.
Note that the fused pdf contours are not trying to match the
banana distributions, but instead give a better estimate of the
location of the robots based on the exact measurements.

These results obtained using propagation and fusion on
Gaussians on exponential coordinates were compared with the
fusion of Gaussians on Cartesian coordinates. For comparison,
we let x∗i be the true pose (xi, yi, θi)

T in Cartesian coordinates
for the ith robot. Then, xei and xci are the poses in Cartesian
coordinates associated with the means from the fused Gaus-
sians in exponential and Cartesian coordinates, respectively.
For Fig. 6, these poses are given as:

x∗
1 =

 2.043
0.090
−0.034

 ,xe
1 =

 2.010
0.039
−0.054

 ,xc
1 =

 1.976
0.146
0.132


x∗
2 =

 1.001
0.840
−0.128

 ,xe
2 =

 0.993
0.836
−0.182

 ,xc
2 =

 0.934
0.896
0.037


x∗
3 =

 1.033
−1.077
−0.283

 ,xe
3 =

 0.977
−1.106
−0.303

 ,xc
3 =

 0.966
−1.021
−0.117

 .

It is clear that the means for the Gaussian model in expo-
nential coordinates is closer to the true values. Moreover, if
we examine the covariances associated with both models, it is
apparent that the covariances of the exponential model have
smaller magnitude than those for the Cartesian Gaussian. For
example, the covariances of the fused distributions for the first
robot are

Σ1 =

 0.0006 −0.0000 −0.0001
−0.0000 0.0060 0.0011
−0.0001 0.0011 0.0008

 and

Σ̃1 =

 0.0013 −0.0002 −0.0003
−0.0002 0.0166 0.0267
−0.0003 0.0267 0.0571

 .

Thus, the fused exponential coordinate Gaussians’ results are
more highly focused than the Cartesian ones.
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Fig. 6. Fusion of Gaussian in exponential coordinates for three robots driving
in formation with true positions marked with a filled in circle.

VIII. CONCLUSION

A comparison between the commonly used multivariate
Gaussian model on (x, y, θ) and one based on the coordinates
of the Lie algebra (or exponential coordinates) has been
provided. These models were examined in the context of
the stochastic kinematic model of a differential-drive robot.
Through numerical examples, we demonstrated that the model
based on exponential coordinates is able to capture the
underlying distribution more accurately and more precisely.
This held true for trajectories that were both straight and
circular. In addition, a closed-form approximation was given
for propagating the mean and covariance for paths consisting
of straight segments and arcs of constant curvature. This allows
the mean and covariance to be estimated quickly.

Finally, we presented a closed-form approximation for
multiplying two Gaussian pdfs in exponential coordinates.
Multiplying two pdfs allows us to effectively fuse informa-
tion obtained from two different sources. In the case of the
example provided, these sources were forward propagation
of the stochastic kinematic model and relative measurements
between robots. The pdfs obtained using this method provided
significantly increased accuracy when compared with those
from just forward propagation.

The methods and models described above can be used to
improve current state of the art SLAM algorithms. We hope
to use these methods to develop a new filter for SE(2) similar
to the Kalman filter. Also, we would like to develop new
approaches for fusing data from different models together. For
example, if a Gaussian on exponential coordinates is used to
model forward propagation, we want to fuse it with noisy
measurements from a Gaussian on Cartesian coordinates.
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