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Abstract

For the case of an exact set of compatible A’s and B’s
with known correspondence, the AX=XB problem was
solved decades ago. However, in many applications,
data streams containing the A’s and B’s will often have
different sampling rates or will be asynchronous. For
these reasons and the fact that each stream may contain
gaps in information, methods that require minimal a
priori knowledge of the correspondence between A’s and
B’s would be superior to the existing algorithms that re-
quire exact correspondence. We present an information-
theoretic algorithm for recovering X from a set of A’s
and a set of B’s that does not require a priori knowledge
of correspondences. The algorithm views the problem
in terms of distributions on the group SE(3), and min-
imizing the Kullback-Leibler divergence of these distri-
butions with respect to the unknown X . This minimiza-
tion is performed by an efficient numerical procedure
that reliably recovers an unknown X .

1. INTRODUCTION

The sensor calibration problem, stated math-
ematically as AX = XB, appears in many differ-
ent guises in the fields of robotics and computer
vision. Applications range from wrist-mounted
sensors on manipulators, to cameras mounted on
aerial vehicles, to ultrasound (US) probe calibra-
tion in medical robotics. The variables A, X , and
B are each rigid-body motions (i.e., homogeneous
transformations) with each pair of measurements
(A,B) coming from sensors such as cameras, US
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probes, optical or electromagnetic pose tracking
systems, etc., and X is the unknown rigid-body
motion that is found as a result of solving AX =XB.

Any proper motion in Euclidean space can be
described as a homogeneous transformation ma-
trix of the form

H(R, t) =
(

R t
0T 1

)
. (1)

Here t is a translation vector and R is a rotation
matrix. In the three-dimensional case t ∈ R3 and R
is an element of the group of 3× 3 special orthog-
onal matrices, SO(3). Matrices of the form in (1)
are faithful matrix representations of the “Special
Euclidean Group” SE(3), which has matrix multi-
plication as its group operation.

Given multiple equations of the form

AiX = XBi =⇒ Ai = XBiX−1 (2)

for (Ai,Bi) ∈ SE(3)× SE(3) and i ∈ {1, ...,n}, a so-
lution X ∈ SE(3) is sought in a wide variety of ap-
plications [1]- [7]. In fact, under some mild con-
ditions, [8], the problem can be solved uniquely
for n = 2. Constructive algorithms for solving this
problem (in the case when correspondences are
known a priori) date back to the 1980s [3]- [6].

In this paper we present a method to solve for
an X wherein there does not need to be any a priori
knowledge of the correspondence between the sets
{Ai} and {B j}. That is not to say that such a corre-
spondence does not exist between the continuous
time trajectories A(t) and B(t). We assume that the
correspondence exists, but is unknown, and is lost
when these trajectories are ”out of sync”.

In typical applications involving the AX = XB
calibration problem, the sensors used to generate
data will often have different internal delays and
activation times that can cause the data streams to
arrive at a central computor in an asynchronous
fashion. It is also possible for the sensors to have
different sampling rates that result in need for in-
terpolation or may suffer errors that lead to gaps



in the data [9]. For all of these instances, loss of
correspondence is manifested in a data stream as
either 1) a number of Ai’s that do not have corre-
sponding B j’s (the data is missing completely due
to error or need for interpolation); or, 2) the B j for
corresponding Ai is located at a different point in
the stream (the time relationship of the data is not
available).

The approach that we take is to view the two
sets of reference frames {Ai} and {B j} as his-
tograms with corresponding probability densities
fA(H) and fB(H) where H ∈ SE(3). We view X
also as a probability density on SE(3) – a Dirac
delta distribution shifted to have its peak at X ,
δX (H) = δ (X−1H). We then seek X as the solution
to a minimization problem wherein the cost is

C(X) = DKL( fA ‖δX ∗ fB ∗δX−1) (3)

where ∗ denotes convolution on SE(3), as de-
scribed in [10, 11] and DKL(·‖ ·) is the Kullback-
Leibler divergence for SE(3) [11–13].

The remainder of this paper is devoted to es-
tablishing the necessary mathematical machinery
to define fA(H) and fB(H), explicitly computing
DKL(·‖ ·) in closed form for special kinds of Gaus-
sian functions on SE(3), and performing the mini-
mization required to find X .

Section 2 formulates the problem in terms of
Gaussian distributions on SE(3) using concepts
of means and covariances of sets of reference
frames. Section 3 solves the problem using our
information-theoretic method. Section 4 demon-
strates the performance of this new method with
simulated and experimental data.

2. Probabilistic Preliminaries

The Lie group SE(3) has the geometric struc-
ture of a Riemannian manifold, and hence there is
a natural concept of integration. Here we use these
properties, and the even more special characteris-
tics of SE(3) as a Lie group.

2.1. Convolution and Dirac Deltas

The convolution of two probability density
functions on SE(3) is defined as

( f1 ∗ f2)(H ′) =
∫

SE(3)
f1(H) f2(H−1H ′)dH (4)

where in this equation H,H ′ ∈ SE(3) with H serv-
ing as a dummy variable of integration for each

value of H ′. Here dH is the natural (bi-invariant)
Riemannian volume element for SE(3) [10, 11].
Such convolutions have been shown previously
to arise in the characterization of manipulator
workspaces [14, 15], pose probabilities in SLAM
[16, 17], and even in the statistical mechanics of
DNA [18]. The concept of SE(3)-convolution is
also central to our new correspondence-free for-
mulation of the sensor-calibration problem.

A Dirac delta distribution can be defined for
SE(3) to have the properties∫

SE(3)
δ (H)dH = 1 and ( f ∗δ )(H) = f (H).

A shifted Dirac delta distribution can be de-
fined as δX (H) = δ (X−1H) which places the spike
at X ∈ SE(3).

The equation in (2) can be written as

δAi(H) = (δX ∗δBi ∗δX−1)(H). (5)

This more complicated expression has the bene-
fit that addition of functions, f1(H)+ f2(H), makes
sense, whereas addition of homogeneous transfor-
mations does not. And since convolution is a lin-
ear operation on functions, we can write all n in-
stances of (5) into a single equation of the form

fA(H) = (δX ∗ fB ∗δX−1)(H) (6)

where

fA(H) =
1
n

n

∑
i=1

δ (A−1
i H) and fB(H) =

1
n

n

∑
i=1

δ (B−1
i H).

(In fact, in this formulation the value of n can be
different for the A’s and the B’s, and we don’t
need knowledge of how the entries in these sets
correspond, which is one of the strengths of the
method.) When written in this way, it does not
matter if we know the correspondence between
each Ai and B j or not. The above functions are nor-
malized to be probability densities.

Of course, the functions fA(H) and fB(H) are
not in L2(SE(3)), but we can get around this tech-
nical difficulty if each discrete set is replaced with
a Gaussian distribution with the same mean and
covariance, as defined below.

2.2. Definitions of Mean and Covariance

In what follows, it will be convenient to de-
fine the subset SE<(3)⊂ SE(3) which is a depleted
version of SE(3) in which all screw motions hav-
ing a rotation angle of π have been removed. Since



this removal of a (five-dimensional) set of measure
zero from the six-dimensional space SE(3) has no
effect on the value of integrals of continuous func-
tions, integrals over SE<(3) and SE(3) will be used
interchangeably.

Let the mean and covariance of a probability
density f (H) be defined by the conditions [14, 15]∫

SE(3)
log(M−1H) f (H)dH =O and

Σ =
∫

SE(3)
log∨(M−1H)[log∨(M−1H)]T f (H)dH (7)

where the ∨ operator that converts 4× 4 infinites-
imal screw matrices into 6-vectors, now standard
in the field of robotics, is defined as in [11] (and
references therein).

Explicit formulas defining the matrix expo-
nential exp : se(3) −→ SE(3) and logarithm log :
SE<(3) −→ se(3), and log∨ : SE<(3)→R6 are given
in [10, 11, 15], and are reviewed below. (The trans-
pose on the second log∨(H) in the above definition
ensures that Σ is a 6× 6 symmetric matrix.) The
operation log(H) takes any element in H ∈ SE<(3)
(with rotational part that has an angle of rotation,
θ , in the range 0≤ θ < π) into the the correspond-
ing unique element in the Lie algebra se(3) such
that exp(log(H)) = H. That is, the logarithm map is
not surjective, unless we consider the target space
to be se<(3) ⊂ se(3), which can be thought of as
the Cartesian product of the open solid ball of ra-
dius π with R3. Since SO(3) can be viewed as
a solid closed three-dimensional ball of radius π

with antipodal points identified, the exclusion of
the bounding sphere of radius π in SE(3) defines
a 5D set of measure zero that has no effect on the
computation of Σ in the above equation.

With the above caveats, we can write

log(H) =

(
Ω v
0T 0

)
where Ω =−ΩT ∈ so(3). The map ∨ : se(3) → R6 is
then composed with the log to give z = log∨(H) =
[ωT ,vT ]T ∈ R6 where ω ∈ R3 is the vector corre-
sponding to Ω such that Ωx = ω× x for any x ∈R3,
where × is the vector cross product.

If f (H) is a sum of Dirac deltas like fA(H)
given above, then this has the effect of sampling
the integrals, resulting in

n

∑
i=1

log(M−1
A Ai) =O and

ΣA =
1
n

n

∑
i=1

log∨(M−1
A Ai)[log∨(M−1

A Ai)]
T . (8)

An iterative procedure for computing MA has been
developed [15].

The adjoint matrix

Ad(H) =

(
R O
t̂R R

)
(9)

will be used heavily in the computations that fol-
low since it has the property that

log∨(H1H2H−1
1 ) = Ad(H1) log∨(H2).

In (9) we use the following notion. For any a ∈
R3, â is the skew-symmetric matrix such that âb =
a×b. By a slight abuse of notation, we reuse ∨ as
the reverse map which gives (â)∨ = a. The use of
∨ to denote maps from the Lie algebra so(3) into
R3 and from se(3) into R6 should not be a source
of confusion, as the version used is defined by the
argument to which it is applied.

2.3. Constraints Imposed By Sensor Calibra-
tion

Evaluating the mean and covariance defined
in (7) with the functions in (6) and using the bi-
invariance of the integration measure gives

MA = X MB X−1 and (10)

ΣA = Ad(X)ΣB AdT (X). (11)

This result is nonparametric in the sense that no as-
sumptions were made about the underlying prob-
ability densities. Note that unlike in the covari-
ance propagation problem addressed in [15], these
formulas are exact and do not require any approx-
imations. And taking the trace of both sides of (10)
gives that the angle of rotation around the screw
axes of MA and MB must be the same, θA = θB. This
is one of the two invariants for SE(3) [8, 9]. The
other one will not be used here.

One can imagine a number of approaches to
solving the simultaneous equations (10) and (11).
In particular, the search for an appropriate X can
begin with (10), which can be rewritten as

log∨(MA) = Ad(X) log∨(MB). (12)

In the case of general MA and MB (i.e., not degener-
ate cases in which the rotation angle 1 is outside of

1This angle is computed from the Frobenius norm θA =
‖ 1

2 logRA‖= ‖ 1
2 logRB‖= θB.



the range (0,π), the solution space of all possible
X ’s that satisfy this equation is known to be two
dimensional [3, 5]. This can be seen by defining

log∨(MA) =

(
θA nA

vA

)
.

Then (12) can be broken up into rotational and
translational parts as

nA = RX nB and (13)

vA = θB t̂X RX nB +RX vB. (14)

The first of these equations has a one-
dimensional solution space of the form [5]
RX = R(nA,nB)R(nB,φ) where φ ∈ [0,2π) is free and
R(nA,nB) is any rotation matrix that rotates the
vector nB into nA. In particular, we can choose

R(nA,nB) = I + n̂B×nA +
(1−nB ·nA)

‖nB×nA‖2

(
n̂B×nA

)2
.

(15)
The rotation R(nB,φ) is given by Euler’s formula

R(nB,φ) = I + sinφ n̂B + (1− cosφ) ( n̂B)
2
.

Substituting RX = R(nA,nB)R(nB,φ) into (14)
and rearranging terms, we get

R(nA,nB)R(nB,φ)vB−vA

θB
= n̂AtX . (16)

The skew-symmetric matrix n̂A has rank 2, so a
free translational degree of freedom exists in tX
along the nA direction. tX can thus be described
as

tX = t(s) = snA +amA +bmA×nA (17)

where s ∈ R is a second free parameter, mA and
mA×nA are defined to be orthogonal to nA by con-
struction. If nA = [n1,n2,n3]

T and n1,n2 are not si-
multaneously zero, then we define2

mA
.
=

1√
n2

1 +n2
2

 −n2
n1
0

 .

The coefficients a and b are then computed by
substituting (17) into (16) and using the fact that
{nA,mA,nA×mA} is an orthonormal basis for R3.
Explicitly,

a=−
(

R(nA,nB)R(nB,φ)vB−vA

θB

)
·(mA×nA) and

2The special case when they are simultaneously zero is a set
of measure zero, and hence is a rare event. Nevertheless, it is
easy to handle, since in this case RA is necessarily a rotation
around e3.

b =

(
R(nA,nB)R(nB,φ)vB−vA

θB

)
·mA.

This means that the feasible solutions can be com-
pletely parameterized as

X(φ ,s) = H(R(nA,nB)R(nB,φ), t(s)) (18)

where (φ ,s) ∈ [0,2π)×R and H(R, t) is the same as
in (1).

3. INFORMATION-THEORETIC SO-
LUTION

Given that (10) constrains the possible solu-
tions, X(φ ,s), to a two-dimensional ‘cylinder’ de-
fined by (18), the problem of solving for X reduces
to that of solving (11) on this cylinder by determin-
ing the values (φ ,s). There is therefore no need to
search elsewhere in the 6D group SE(3). Here we
formulate and compare two approaches to finding
(φ ,s), thereby solving for X .

3.1. Approach 1: ‖ · ‖2
F Norm Minimization

In Approach 1 (which does not use any in-
formation theory), we simply back substitute X =
X(φ ,s) into (11) and minimize the cost function

C1(φ ,s) = ‖Ad([X(φ ,s)]−1)ΣA− ΣB AdT (X(φ ,s))‖2
F

(19)
where ‖ · ‖2

F is the Frobenius norm. The reason
for writing it this way (by pre-multiplying (11) by
[Ad(X)]−1 = Ad(X−1)) before computing the norm,
is that the parameter s then appears linearly inside
the norm, and C1(φ ,s) is quadratic in s and can be
written as3

C1(φ ,s) =C10(φ)+C11(φ)s+
1
2

C12(φ)s2.

The minimization over s can then be solved in
closed form as

s =−C11(φ)

C12(φ)
.

Back-substituting this into C1(φ ,s), an efficient 1D
search over φ ∈ [0,2π) can be performed.

3Neither the Frobenius norm, nor any other norm con-
structed from an inner product, can be Ad-invariant for SE(3).
Unlike for SO(3) (and for that matter, all compact and all com-
mutative Lie groups and their direct products) ‖Ad(H)v‖ 6= ‖v‖
for generic H ∈ SE(3).



3.2. Approach 2: Minimal KL Divergence

Given two populations of measured {Ai} and
{B j} for which means and covariances have been
computed using (8), it is reasonable to fit paramet-
ric distributions to these data. As the amount of
data becomes large, it is reasonable to assume that
they behave as if they were drawn from Gaussian
distributions. If this is not the case, it is possible to
losslessly ’corral’ the data so that it has Gaussian
statistics, using a procedure described below.

A Gaussian on SE(3) can be defined when the
norm ‖Σ‖ is small as [14, 15]

ρ(H;M,Σ) =
1

(2π)3|Σ| 12
e−

1
2 F(M−1H)

where |Σ| denotes the determinant of Σ and

F(H) = [log∨(H)]T Σ
−1[log∨(H)].

When H is parameterized with exponential coordi-
nates, H = expZ, this means that F(expZ) = zT Σ−1z
where z = Z∨ and ρ(expZ;I4,Σ) becomes exactly a
zero-mean Gaussian distribution on the Lie alge-
bra se(3), with covariance Σ, that is ‘lifted up’ to
the Lie group SE(3).

For the problem discussed in this paper, there
is no loss of generality in assuming that ‖ΣA‖ and
‖ΣB‖ are small because the constraint equation
(11) is linear in ΣA and ΣB, and so if they are not
small, they can both be normalized resulting in
Σ′A = ΣA/(‖ΣA‖) and likewise Σ′B = ΣB/(‖ΣA‖). Note
that here we have normalized by the same quan-
tity on both sides. We cannot use ‖ΣA‖ on one side
of the equation and ‖ΣB‖ on the other because the
Frobenius norm is not Ad-invariant for SE(3).

Moreover, standard tests from multivariate
statistical analysis such as q-q plots, as used re-
cently in [22], can be used to assess whether or not
the data are Gaussian. If they are not, they can
be made Gaussian without loss of information or
by introducing changes to the original mean and
covariance in a simple way. Since Ai = XBiX−1, it
follows that Ap

i = XBp
i X−1 for any power p ∈ R.

This means that each measured data point can
be replaced with a continuum of equivalent data
points parameterized by p. This neither adds nor
destroys information content in the original data.
Simply stated, Gaussians can be used in place of
data even if the data are not Gaussian.

The search for X can then be reduced to find-
ing the global minimum of the cost function

C2(X) = DKL( fA ‖δX ∗ fB ∗δX−1) (20)

where fA(H) = ρ(H;MA,ΣA) and

(δX ∗ fB∗δX−1)(H)= ρ(H; XMBX−1 , Ad(X)ΣB AdT (X)).

In general, the integral in this cost function cannot
be solved in closed form because the log function is
nonlinear, and in terms of exponential coordinates
dH = |J(z)|dz where |J(0)| = 1, but this Jacobian is
a nonlinear function of z as described in [10,11,15].

However, if a priori we limit the search for X
to the cylinder defined in (18), then automatically
XMBX−1 = MA. Then, we can define a new variable
K = M−1

A H and using the property of invariance of
integration under shifts, can write

C2(X(φ ,s)) = DKL( f ′A ‖ f ′B)

where
f ′A(K) = ρ(K;I4,ΣA) and

f ′B(K) = ρ(K;I4 , Ad(X(φ ,s))ΣBAdT (X(φ ,s))).

That is, when restricting to the cylinder, loga-
rithms and exponentials cancel. Moreover, scaling
covariances so that they are small ensures that the
integral over SE(3) reduces to a Gaussian integral
over se(3)∼=R6 since |J(0)|= 1. The KL divergence
of two distributions on Rn with means mi and co-
variances Σi is

DKL( f1 ‖ f2) =

1
2

[
tr(Σ−1

2 Σ1)+(m2−m1)
T

Σ
−1
2 (m2−m1)−n− ln

(
|Σ1|
|Σ2|

)]
.

In our problem, m2 −m1 = 0, and since SE(3) is
unimodular, |Ad(X)| = 1 and so when evaluating
Σ1 = ΣA and Σ2 = Ad(X(φ ,s))ΣBAdT (X(φ ,s)), the fi-
nal term in the above expression for DKL( f1 ‖ f2) is
independent of X . Moreover, for our purposes ad-
ditive and positive multiplicative constants can be
ignored, so we can simply consider the first term
in the KL-divergence, scaled by a factor of two:

C′2(X(φ ,s)) = tr(Σ−1
A Ad(X(φ ,s))ΣBAdT (X(φ ,s))),

minimized over (φ ,s) ∈ [0,2π)×R. Minimization
over s can be done in closed form as in Section 3.1
since C′2(X(φ ,s)) is also quadratic in s, and the re-
sult substituted back in for a 1D search over φ .

4. Results

We examined the efficacy of the algorithms
both in simulation and in experiments. Simulated



data is used to show that the algorithms can per-
form accurately without knowledge of correspon-
dence, validating their formulations. For experi-
mental validation we chose US calibration as an
example framework for data collection. For this
case we judge the algorithms’ performance based
on the phantom model reconstruction given by the
solved for X .

4.1. Validation in Simulation

To validate the proposed algorithms, we cre-
ated sensor streams using simulated US probe tra-
jectories with some a priori chosen X . We write
the problem as Ai jX = XBi j where Bi j = B−1

i Bi+1 are
relative motions. Bi’s are drawn from two sample
”s-shaped” trajectories on a sphere. After forming
relative motions, Bi j’s, we calculate Ai j = XBi jX−1,
where X is the a priori chosen value.

The KL Batch and ‖ · ‖2
F Norm Batch algo-

rithms were run with known correspondence in
the data and then without knowledge of the cor-
respondence to calculate X . To artificially remove
knowledge of correspondence, we iteratively se-
lect each data point in one of the streams and then
permutate this entry with one of its neighbors. The
neighbor that is chosen is based on a value drawn
from a normal distribution. In this manner, the
highest likelihood is that the data point will not be
permuted with any neighbor and will have a de-
creasing chance of being permuted with a neigh-
bor, the farther away that neighbor is in the stream.

The calculated X was then compared to the
a priori selected ”true” X . The algorithms were
unaffected by knowledge of correspondence and
in each case performed with a high level of accu-
racy (see tab. 1). The results are the average of
ten trials. The developed algorithms were com-

Table 1. Batch Method Results (Simulation)

Correspondence is Known
Rotation
Error(rad)

Translation
Error(mm)

KL 1.4 ·10−4 1.4 ·10−3

‖ · ‖2
F 7.3 ·10−4 7.4 ·10−3

KP 0.0 2.46

Correspondence is Unknown
KL 3.8 ·10−4 3.8 ·10−3

‖ · ‖2
F 7.3 ·10−4 7.4 ·10−3

KP 6.2 ·10−2 2.65

Table 2. Batch Method Results (Experimental)

Mean (mm) Variance (mm)
KL 1.18 1.06

‖ · ‖2
F Method 1.22 1.10

pared against a commonly used AX = XB algo-
rithm which makes use of the Kronecker product
and a least squares formulation [19, 20].

4.2. Experimental Results

To test real data, we chose a US calibration task
as the realization of our AX = XB problem. This
problem requires a calibration phantom where any
US image acquired from the phantom is unique.
An example of such a phantom would be a pla-
nar Z-fiducial phantom [21]. We used a modi-
fied version of such a phantom. Data collection
is the process of imaging the phantom with an
US transducer in a series of poses. Each US im-
age will intersect the Z-fiducials and the segmen-
tation of these intersection points are used to gen-
erate our stream of A’s. The stream of B’s are the
tracked poses of the US transducer, collected using
an electromagnetic tracker. After removing corre-
spondence, we used the two algorithms to calcu-
late the calibration parameter for the US probe, X .
To examine the accuracy of the computed X , we
performed a reconstruction of the phantom model.
Fig. 1 shows the results of plotting BiX−1pi where
pi is the set of segmented points from each im-
age. To quantify the difference, we fitted the phan-
tom model to the figure and computed a normal-
ized metric. For each point, we found its clos-
est point on the model and computed the sum

Figure 1. Reconstruction using the solved X



squared difference between them. Tab. 2 shows
the mean and the standard deviation of this sum
of squared differences and indicates that the er-
ror is reasonable. (The data that was used in the
experimental results can be obtained at https:
//sourceforge.net/p/jhu-axxb/).

5. CONCLUSIONS AND FUTURE
WORK

The AX=XB problem appears in many sen-
sor calibration problems and has many solution
methods. However, prior methods are not suitable
for solving for X with data streams that contain
gaps, are mis-aligned or, in general, when there is
incomplete knowledge of the correspondence be-
tween A’s and B’s. We presented an information-
theoretic algorithm (KL Batch) that constructs the
data as distributions on the group SE(3), and
solves for X by minimizing the Kullback-Leibler
divergence of these distributions with respect to
the unknown X . In both simulation and experi-
mentation, it was shown that this method reliably
recovers an unknown X without the need for cor-
respondence. In addition to performing slightly
better in experimentation, the KL Batch was also
determined to be superior to another new method
presented here, the ‖ · ‖2

F norm batch, due to the
simplified nature of the required calculation.

In future work we will further examine the
proposed methods experimentally, for ultrasound
calibration, as well as other contexts. Additionally
we will work to improve our probability theoretic
formulation by specifically accounting for sensor
measurement noise, representing X by a mean and
covariance, and not just a Dirac delta distribution.
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