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Abstract
Ultrasound imaging can be an advantageous imag-

ing modality for image guided surgery. When using
ultrasound imaging (or any imaging modality), cal-
ibration is important when more advanced forms of
guidance, such as augmented reality systems, are used.
There are many different methods of calibration, but the
goal of each is to recover the rigid body transformation
relating the pose of the probe to the ultrasound image
frame. This paper presents a unified algorithm that can
solve the ultrasound calibration problem for various cal-
ibration methodologies. The algorithm uses gradient
descent optimization on the Euclidean Group. It can
be used in real time, also serving as a way to update
the calibration parameters on-line. We also show how
filtering, based on the theory of invariants, can further
improve the online results. Focusing on two specific
calibration methodologies, the AX = XB problem and
the BX−1 p problem, we demonstrate the efficacy of the
algorithm in both simulation and experimentation.

1. INTRODUCTION

In the modern robotic surgical setting, image-
guided surgery (IGS) systems can be an important
component, providing additional informational
support and guidance [1–3]. An IGS system usu-
ally consists of several integrated elements such as
an imaging modality system, a pose tracker, and
the surgical robot. Of these systems, the medical
imaging element provides a visualization of un-
derlying tissue structures or anatomy that cannot
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be seen with the naked eye. There are many pop-
ular imaging modalities, such as x-ray, computed
tomography (CT), or magnetic resonance imaging
(MRI), but this paper specifically focuses on ul-
trasound (US) imaging which has several notable
advantages. US systems tend to be more mobile,
use non-ionizing radiation, are lower in cost, and
provide real-time data acquisition. With these im-
portant characteristics, US is frequently integrated
with tracking systems and robotic systems for IGS.

When using US imaging (or any imaging
modality), calibration is important when more ad-
vanced forms of guidance, such as augmented re-
ality systems, are used. There are many different
methods of calibration, but the goal of each is to
recover the rigid body transformation relating the
pose of the probe to the US image frame [4–7]. To
accomplish this, a tracked rigid body must be at-
tached to the US transducer. An external tracker
is then used to obtain the tracked rigid body’s
pose within the external tracker’s space. Addi-
tionally, some model (usually called a phantom)
with known shape must be imaged to generate
transformations in reference to the image frame.
The choice of the type of phantom used is largely
related to the calibration methodology, of which
there are many.

The goal of this paper is to present an algo-
rithm that can solve the US calibration problem for
various calibration methodologies. The algorithm
uses a gradient descent optimization, of an appro-
priate cost function, on the Euclidean Group (SE(3)
- the manifold of rigid body motions with the op-
eration of composition). We also show how this
algorithm can be used in real time, to serve as a
way to update the calibration parameters on-line.
In this way, any deviations of this system since the
last calibration, as well as any in situ disturbances,
can be accounted for. Finally we show how fil-
tering can further improve the online results. The
paper focuses on two specific calibration method-
ologies, the ”AX = XB” problem and the ”BX−1 p”



Figure 1. Defining Reference Frames for the
AX = XB Problem in Ultrasound

problem, to demonstrate the efficacy of the algo-
rithm, however it could be applied to a variety of
methodologies as long as an appropriate cost func-
tion is formulated.

The remainder of this section is devoted to re-
viewing the literature, and establishing notation.
Section 2 outlines the gradient descent algorithm
and Section 3 discusses a special filtering method
for the AX = XB case that uses the SE(3) geomet-
ric invariants. Section 4 uses simulated results to
demonstrate the baseline efficacy of the algorithm.
Section 5 demonstrates using the algorithm with
two possible cost functions.

1.1. Literature Review

The problem of solving for sensor calibration pa-
rameters has a rich history. Although there are var-
ious methods of US calibration, this paper focuses
on two specific formulations.

1.2. AX = XB US Calibration

In many instances the sensor calibration prob-
lem can be written as:

AX = XB (1)

where, A,X , and B are each homogeneous (rigid
body) transformations with A and B given from
sensor measurements, and X unknown (see Fig.
1). This problem has a history that goes back more
than a quarter of a century, and applications in-
volving this problem remain active today [6–10].

The rigid-body transformation X is required in
order to properly accumulate 2D ultrasound im-
ages to form 3D image volumes. It is also needed
for augmented reality applications where ultra-
sound images are fused with camera video im-
ages. More advanced US technologies such as

Figure 2. Defining Reference Frames for the
BX−1 p Problem in Ultrasound

tracked US elastography [3] also require X .
As pointed out in [6, 9, 10], there are two un-

specified degrees of freedom in X constrained by
(1), and a unique X cannot be found unless addi-
tional measurements are taken. This situation is
rectified by considering two sets of exact measure-
ments of the form in (1), i.e.,

Ai j1 X = X Bi j1 and Ai j2 X = X Bi j2

and using methods in [6, 9, 10], provided some
mild conditions are observed for the selection of
the pairs (Ai j1 ,Bi j1) and (Ai j2 ,Bi j2).

1.3. BX−1 p US Calibration

The BX−1 p problem is another formulation of a
sensor calibration problem [5, 11, 12]. A phantom
with a single embedded fiducial is imaged by a
tracked US transducer in different poses. B and
X are again homogeneous transformations with B
given directly from sensor measurements, and X
unknown. p is the physical point within the sen-
sor’s coordinate system (see Fig. 2). The relation-
ship BiX pi = B jX p j holds for all pairs of (Bi,B j)
since they are all measurements of the same phys-
ical point.

This formulation has been used for ultrasound
crosswire calibration [11, 12] and tracked needle
pivot calibration [5, 13]. The literature shows that
this formulation also faces the same limitation in
that a single pair satisfying

BiX pi = B jX p j (2)

is insufficient in solving for a unique solution X .
At least three independent poses (Bi,B j,Bk) are re-
quired to generate three equations:

BiX pi = B jX p j



B jX p j = BkX pk

BkX pk = BiX pi

However for any of the formulations, if there is
sensor error, then it may not be possible to find
compatible pairs that reproduce the exact value of
of the calibration parameters (e.g. X in AX = XB
or BiX pi = B jX p j). For this reason, minimization
approaches are often taken where for n > 2 a cost
function

C(X) =
n

∑
i=1

wi d2(Y1,Y2) (3)

is computed for some distance metric d(·, ·) on
SE(3). A wide variety of such metrics are dis-
cussed in [14] that have the useful property of
left-invariance, d(H0H1,H0H2) = d(H1,H2) for any
H0,H1,H2 ∈ SE(3). The set {wi} consists of weights
which can be taken to be a partition of unity.
Quantities Y1 and Y2 are the appropriate quanti-
ties from the calibration equations (e.g. Y1 = Ai jX ,
Y2 = XBi j, for AX = XB).

Perhaps the simplest of the left-invariant met-
rics is based on the weighted Frobenius norm

d2(H1,H2) = ‖∆H‖2
W = trace[(∆H)W (∆H)T ]

where ∆H =H1−H2 and W is a matrix that weights
rotations and translations appropriately, as de-
scribed in [14]. The sets of pairs (Ai,Bi) for i =
1,2...,n is chosen such that the set {Ai} is spread
out over a variety of positions and orientations,
and likewise for {Bi}, so that the resulting X is ro-
bust to measurement errors.

Finding X that minimizes (3) is reasonable for
obtaining a single consensus value that approxi-
mately solves (1), and a large literature on this ex-
ists [6,8–10]. Our method uses such a cost function
formulation and gives an algorithm that can be up-
dated online, allowing new data to be used in real
time to yield a better update of X . Additionally,
each separate pair of sensor measurements can be
treated somewhat independently, allowing the al-
gorithm to use data of lower noise.

1.4. Notation

Let H ∈ SE(3). Then

H =

 R t

0T 1

 and H−1 =

 RT −RT t

0T 1


are respectively a 4× 4 homogeneous transforma-
tion matrix and its inverse. Such matrices de-
scribe a rigid-body motion, or pose, consisting of

a 3×3 rotation matrix and 3×1 translation vector
t. Here 0T is a 1× 3 row of zeros. Multiplication
of homogeneous transformations corresponds to
concatenation of rigid-body motions, and HH−1 =
H−1H = I4, where In denotes the n×n identity ma-
trix. The set of all homogeneous transformations
together with the operation of matrix multiplica-
tion defines the special Euclidean group, SE(3).

The set of all 3× 3 rotation matrices together
with the operation of matrix multiplication con-
stitutes the special orthogonal group, SO(3). Any
R ∈ SO(3) can be written as [15]

R = eθN = I3 + sinθ N +(1− cosθ)N2

where eθN denotes the matrix exponential, θ ∈
[0,π] is the angle of rotation and

N =

 0 −n3 n2
n3 0 −n1
−n2 n1 0


where n ∈ R3 is the unit vector describing the axis
of rotation, which connects the origin and any
point on the unit sphere.

2. The Gradient Descent Algorithm

Given a function f : Rn → R that is well de-
fined and differentiable in a neighborhood of a
point p, the direction towards a local minimum
that achieves the maximal rate of descent is found
by the negative gradient of the function at the
point p. The minimum can be approached by tak-
ing a step, of a defined size α (α > 0), along the
negative gradient:

ps+1 = ps−α∇ f (ps). (4)

When f (·) is convex, ∇ f is Lipschitz and α is cho-
sen in an appropriate manner, it can be guaran-
teed that stepping in this manner will converge to
a global minimum.

There is a natural extension of the concept of
directional derivatives in Rn to functions on a Lie
group. To our knowledge, the first time this was
used in the robotics field was in [16], and it has
subsequently been used in a variety of applica-
tions [17, 18]. Let X ∈ G , the Lie algebra corre-
sponding to the group G = SE(3), and let f : G→R
be an analytic function, where g ∈G. Two forms of
directional derivatives, the “right” and “left” Lie
derivatives, can be defined as [15]

(X̃ r f )(g) .
=

d
dt

f (g◦ exp(tX))

∣∣∣∣
t=0

(5)



and

(X̃ l f )(g) .
=

d
dt

f (exp(−tX)◦g)
∣∣∣∣
t=0

. (6)

Without loss of generality, the definition of the
right Lie derivative (5) can be used to define a gra-
dient on SE(3) using the standard basis of the Lie
algebra, {Ei} (for i = 1,2...,6) [15], as our X̃ r opera-
tor.

∇ f (g) =


d
dt f (g◦ exp(tE1))

∣∣
t=0

d
dt f (g◦ exp(tE2))

∣∣
t=0

...
d
dt f (g◦ exp(tE6))

∣∣
t=0

 . (7)

Using the concept of rigid body velocity, as
defined by V r

g = g−1ġ, we can write a differential
equation for our time evolving calibration param-
eter.

gs+1 ≈ gs exp(∆tV r
g ) (8)

where time is measured in discrete steps of the
form s+ 1 = s∆t and ∆t is a small timestep. If we
define

V r
g = g−1ġ =−α∇̂ f (g), (9)

where ̂ assigns a 4× 4 screw matrix to any 6-
vector as in [20], equation (8) now becomes our
update step, the analog of (4).

Defining the algorithm in this manner, we
now have a tool that can solve a variety of prob-
lems that involve calibration on the Euclidean
Group. This is done by letting f (g) be an appro-
priate cost function for the particular calibration
problem and iterating (8). As an example, for the
AX = XB problem, we can define a cost function as

CAX=XB = ||Ai jX−XBi j||W (10)

and, similarly, for the BiX pi = B jX p j problem we
can define the cost function as

CBX p = ||BiX−1 pi−B jX−1 p j||W . (11)

3. Filtering for AX = XB

Given the AX = XB calibration problem, we
can perform additional filtering on the incoming
data to choose A’s and B’s that are most suitable
to solve the calibration (and reject pairs with large
noise). In addition, situations where there arise
high levels of noise, the user can be alerted and
they can take steps to correct any faults.

Start by writing the problem as A = XBX−1.
Since this is a similarity transformation, the im-
mediate implication is that each matrix invariant
of A must be equal to the corresponding invariant
of B. Moreover, it can be shown that all four of
the matrix invariants for a homogeneous transfor-
mation either depend on θ , or are constant (e.g.,
trH = 2cosθ + 2 and detH = 1). However, as dis-
cussed in [19], the added group-theoretic structure
of SE(3) provides an additional invariant that is
not immediately apparent from basic linear alge-
bra. Further, as discussed in [20] there are two
additional geometric invariants related to sets of
(A,B) pairs.

As discussed in [20], explicitly calculating and
equating the matrix product gives two invariant
relations,

θAi j = θBi j dAi j = dBi j (12)

where θAi j (dAi j ) and θBi j (dBi j ) are computed from
Ai j and Bi j respectively. For the additional two in-
variants, let

lAi j(t) = pAi j + tnAi j and lBi j(t) = pBi j + tnBi j

be the directed screw axis lines of Ai j and Bi j in
three-dimensional Euclidean space. If the lines are
not parallel or anti-parallel, i.e., if nAi j 6=±nBi j , then
the distance between the two lines is given by [20]

∆(lAi j1 , lAi j2 ) =
|[nAi j1 ,nAi j2 ,pAi j2 −pAi j1 ]|

‖nAi j1 ×nAi j2‖
(13)

where for any a,b,c ∈ R3, the triple product is
[a,b,c] .

= a · (b× c). In the current context we can
think of i1 = 1 and i2 = 2 but in later discussion i1
and i2 can represent more general values. If in ad-
dition, ∆(lAi j1 , lAi j2 ) 6= 0, i.e., if the lines are skew,
then the angle φ(lAi j1 , lAi j2 ) ∈ [0,2π) is uniquely
specified by

cosφ(lAi j1 , lAi j2 ) = nAi j1 ·nAi j2 (14)

sinφ(lAi j1 , lAi j2 )=∆(lAi j1 , lAi j2 )
−1[nAi j1 ,nAi j2 ,pAi j2−pAi j1 ].

If θAi j1 ,θAi j2 ∈ (0,π) and φ(lAi j1 , lAi j2 ) /∈ {0,π}, then
a unique solution of (1) exists if and only if the fol-
lowing four conditions hold:

1. θAi j1 = θBi j1 and θAi j2 = θBi j2 ;

2. dAi j1 = dBi j1 and dAi j2 = dBi j2 ;

3. φ(lAi j1 , lAi j2 ) = φ(lBi j1 , lBi j2 );

4. ∆(lAi j1 , lAi j2 ) = ∆(lBi j1 , lBi j2 ).



Figure 3. Validation using Simulated Results

If these do not hold, then a solution will not be
possible [20].

If there is noise present in the data, then these
four invariants generally will not exactly equal.
However, one can filter the data based on these in-
variants and discard pairs (Ai j,Bi j) for which the
difference in the invariants are too large. Exam-
ples of filtering functions using each of the four
invariants

1. di f fθ i j = |θAi j −θBi j |> threshθ i j : discard (Ai j,Bi j);

2. di f fdi j = |dAi j −dBi j |> threshdi j : discard (Ai j,Bi j);

3. if di f fφ i j = |φ(lAi j , lAik )−φ(lBi j , lBik )|> threshφ i j for a
majority of k : discard (Ai j,Bi j);

4. if di f f∆i j = |∆(lAi j , lAik )−∆(lBi j , lBik )| > thresh∆i j for a
majority of k : discard (Ai j,Bi j).

Another possibility would be to combine the
filtering with the gradient descent method in a
more direct manner. For example, we can write
the update step for each (Ai j, Bi j) pair as

gs+1 = gs exp(−βi j∆t∇̂ f (g)) (15)

where βi jik = f (di f fθ i j ,di f fdi j ,di f fφ i j ,di f f∆i j) ∈
(0,1] such that βi j approaches unity as the invari-
ants become equal. For example, if the cost used
is (10), we might only use di f fθ i j and di f fdi j and
let βi j = exp(di f fθ i j · di f fdi j). In this way we bias
the gradient descent algorithm against stepping in
directions given by pairs of data with high noise.

4. Verifying the Gradient Descent Algo-
rithm with Simulation

To validate the efficacy of the gradient decent
algorithm we simulated an AX = XB calibration.
Given a set of trajectories, B and A data streams
were generated according to an a priori chosen

Figure 4. Ultrasound Experimental Setup

X . Since we must use relative motions, we gener-
ate Bi j = B−1

i Bi+1 where Bi’s are drawn from two
sample ”s-shaped” trajectories on a sphere. Af-
ter forming relative motions, Bi j’s, we calculate
Ai j = XBiX−1, where X is the a priori chosen value.

Figure 3 shows the convergence to a solution
as the algorithm iterates over points in the data
stream, given multiple random initial guesses for
X . It can be noted that since the algorithm con-
verges much faster for a ”good” initial guess of
X , it could be used to update the knowledge of X
on-line. In other words, in addition to solving for
X given initial calibration data, the algorithm can
be used to 1) ”sharpen” X , given additional clean
data, or 2) can be for the case where X has changed,
due to any of the factors previously discussed. If
the previously solved X is used in the online up-
date, the convergence is rapid. The figure is repre-
sentative, as it shows only the converging rotation
error for CAX=XB. For the translation error, and for
CBX−1 p, the performance is very similar.

5. Experimental Results of the Gradient
Descent Algorithm

To show that our gradient descent algorithm
was feasible for both of our cost functions on ex-
perimental data, we performed both an AX = XB
calibration and a BX−1 p calibration. In the first
case, we used the phantom shown in Fig. 4 and
an electromagnetic tracker to collect pairs of A and
B. In the second case, we used a phantom with
a single embedded metal fiducial and an electro-
magnetic tracker to collect pairs of B and p. We
examined the accuracy of the computed X by per-
forming a reconstruction of the phantom model.



This can be done by computing BiX−1 pi where pi
are the segmented model points in the first case,
and the segmented bead in the second case. We
quantify the reconstruction by fitting the model to
the new computed point set and finding a nor-
malized metric. (The data that was used in the
experimental results can be obtained at https:
//sourceforge.net/p/jhu-axxb/)

In the AX = XB case, for each point, we found
its closest point on the model and computed the
sum squared difference between them. In the
BX−1 p case, we compute the sum squared differ-
ence between each point and the mean of the point
set. The mean and standard deviation of the sum
squared differences was 1.62mm ± 1.28mm and
1.52mm ± 1.13mm in the unfiltered and filtered
AX = XB case respectively and 1.06mm ± 0.48mm
in the BX−1 p case

6. CONCLUSIONS

In this work, we developed and validated
a gradient descent algorithm that can solve the
US calibration problem for various calibration
methodologies such as the AX = XB and the BX−1 p
formulation. In particular, this algorithm enables
an on-line update of calibration parameters based
on new incoming data. Future work will explore
other calibration methodologies, their respective
cost functions, and their efficacy within our gra-
dient descent framework.

References

[1] Boctor, E.M., Stolka, P., Kang, H. J., Clarke, C.,
Rucker, C., Croom, J., Burdette, E. C., Webster, R.
J., III, “Precisely shaped acoustic ablation of tumors
utilizing steerable needle and 3D ultrasound image
guidance,” SPIE Medical Imaging, pp. 76252N, 2010.

[2] Foroughi, P., Csoma, C., Rivaz, H., Fichtinger,
G., Zellars, R., Hager, G., Boctor, E.M., “Multi-
modality fusion of CT, 3D ultrasound, and tracked
strain images for breast irradiation planning,”
SPIE, 72651B, 2009.

[3] Foroughi P., Rivaz H., Fleming I. N., Hager G. D.,
and Boctor E. M. ,“Tracked Ultrasound Elastogra-
phy (TrUE), MICCAI, 9-16, 2010.

[4] Boctor, E.M., Viswanathan, A., Choti, M.A., Taylor,
R.H., Fichtinger, G., Hager, G.D., “A Novel Closed
Form Solution for Ultrasound Calibration, IEEE Int
Symp. On Biomedical Imaging, 527-530, 2004.

[5] Poon, T., Rohling, R., “Comparison of calibration
methods for spatial tracking of a 3-D ultrasound
probe.” Ultrasound in Medicine and Biology, 31(8),
1095-1108, 2005.

[6] Park, F.C., Martin, B.J., “Robot Sensor Calibration:
Solving AX = XB on the Euclidean Group,” IEEE
Trans. Robotics and Automation, 10(5), 717-721, 1994.

[7] Daniilidis, K., “Hand-Eye Calibration Using Dual
Quaternions,” The International Journal of Robotics
Research, 18(3), 286-298, 1999.

[8] Arun, K.S., Huang, T.S., Blostein, S.D., “Least-
Squares Fitting of Two 3-D Point Sets,” IEEE Pat-
tern Analysis and Machine Intel., 9(5), 698-700, 1987.

[9] Chou, J.C.K., Kamel, M., “Finding the Position and
Orientation of a Sensor on a Robot Manipulator Us-
ing Quaternions,” IJRR, 10(3), 240-254, 1991.

[10] Shiu, Y.C., Ahmad, S., “Calibration of Wrist-
Mounted Robotic Sensors by Solving Homoge-
neous Transform Equations of the Form AX = XB,”
IEEE Trans. Robotics and Automation, 5(1), 16-29,
1989.

[11] Prager, R.W., Rohling, R.N., Gee, A.H., Berman, L.,
“Automatic Calibration for 3-D Free-Hand Ultra-
sound,” Dep. Eng., Cambridge Univ., 1997.

[12] Melvær, E.L., Mørken, K., Samset, E., “A motion
constrained cross-wire phantom for tracked 2D ul-
trasound calibration,” CARS , 7(4), 611-620, 2012.

[13] Cleary, K., Zhang, H., Glossop, N., Levy, E.,
Wood, B., Banovac, F., “Electromagnetic Tracking
for Image-Guided Abdominal Procedures: Overall
System and Technical Issues,” IEEE EMBS, 6748-
6753, 2005.

[14] Chirikjian, G.S., Zhou, S., “Metrics on Motion and
Deformation of Solid Models,” ASME Mechanical
Design, 120(2), 252-261, 1998.

[15] Chirikjian, G.S., Kyatkin, A.B., Engineering Appli-
cations of Noncommutative Harmonic Analysis, CRC
Press, Boca Raton, FL 2001.

[16] Taylor, C.J., Kriegman, D.J., “ Minimization on the
Lie group SO(3) and related manifolds,” Yale Tech-
nical Brief, 1994.

[17] Lee, S., Fichtinger, G., Chirikjian, G.S., “ Novel Al-
gorithms for Robust Registration of Fiducials in CT
and MRI,” Medical Physics, 29(8), 1881-1891, 2002.

[18] Stein, D., Scheinerman, E.R., Chirikjian, G.S.,
“Mathematical models of binary spherical-motion
encoders,” IEEE/ASME Trans. on Mechatronics, 8(2),
234-244, 2003.

[19] Chen, H.H., ”A Screw Motion Approach to
Uniqueness Analysis of Head-Eye Geometry”
IEEE Conference on Computer Vision and Pattern
Recognition, 1991, 145-151, 1991.

[20] Ackerman, M.K., Cheng, A., Shiffman, B., Boctor,
E.M., Chirikjian, G.S., “ Sensor Calibration with
Unknown Correspondence: Solving AX=XB Using
Euclidean-Group Invariants,” IROS, 1308-13, 2013.

[21] Boctor EM, ”Enabling Technologies For Ultra-
sound Imaging In Computer-Assisted Interven-
tion,” Comp. Sci. Dep., Johns Hopkins,Thesis, 2006.

[22] Andreff, N., Horaud, R., Espiau, B., ’Robot Hand-
Eye Calibration Using Structure-from-Motion”
IJRR, 20(3), 228-248, 2001.

https://sourceforge.net/p/jhu-axxb/
https://sourceforge.net/p/jhu-axxb/

	INTRODUCTION
	Literature Review
	AX=XB US Calibration
	BX-1p US Calibration
	Notation

	The Gradient Descent Algorithm
	Filtering for AX=XB
	Verifying the Gradient Descent Algorithm with Simulation
	Experimental Results of the Gradient Descent Algorithm
	CONCLUSIONS

