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Kinematics Meets
Crystallography: The
Concept of a Motion Space1

In this paper, it is shown how rigid-body kinematics can be used to assist in determining
the atomic structure of proteins and nucleic acids when using x-ray crystallography,
which is a powerful method for structure determination. The importance of determining
molecular structures for understanding biological processes and for the design of new
drugs is well known. Phasing is a necessary step in determining the three-dimensional
structure of molecules from x-ray diffraction patterns. A computational approach called
molecular replacement (MR) is a well-established method for phasing of x-ray diffraction
patterns for crystals composed of biological macromolecules. In MR, a search is
performed over positions and orientations of a known biomolecular structure within a
model of the crystallographic asymmetric unit, or, equivalently, multiple symmetry-
related molecules in the crystallographic unit cell. Unlike the discrete space groups
known to crystallographers and the continuous rigid-body motions known to kinemati-
cians, the set of motions over which MR searches are performed does not form a group.
Rather, it is a coset space of the group of continuous rigid-body motions, SE(3), with
respect to the crystallographic space group of the crystal, which is a discrete subgroup
of SE(3). Properties of these “motion spaces” (which are compact manifolds) are
investigated here. [DOI: 10.1115/1.4028922]

Introduction

Theoretical kinematics is concerned with all aspects of rigid-
body motions, as applied to the design of mechanisms and robots,
as well as in the description and analysis of motion more generally
[1–3]. The group of rigid-body motions (or “special Euclidean
group”) in n-dimensional Euclidean space is a Lie group denoted
as SE(n) [4–7]. Many works in theoretical kinematics have been
concerned with parameterizing this Lie group, defining metrics on
it, and generating trajectories in it that have desirable properties
[8,9]. Another field of study, crystallography, also studies rigid-
body motions. However, in this field the motions of interest are
those that describe the discrete symmetries of a crystal lattice
[10–12]. At the beginning of the 20th century (almost in parallel
with Ball’s development of screw theory [13]), all possible lattices
and their symmetries were characterized independently in
Refs. [14–16] as summarized in Ref. [17]. The result of those
studies concluded that that there are 230 distinct classes of crystal-
lographic space groups. Of these, the vast majority have mirror
reflections or glide planes, and only 65 are chiral (i.e., are
“special” in the sense that they preserve handedness). The chiral
space groups are particularly important in macromolecular crys-
tallography, which has been responsible for determining the shape
of 80% of the approximately 100,000 protein structures deposited
in the protein data bank (PDB) [18].

Interestingly, the overlap between kinematics and crystallogra-
phy over the past 100 years has been minimal despite the fact that
the chiral crystallographic space groups are discrete subgroups of
SE(3). The purpose of this paper is to examine hitherto unrecog-
nized relationships between these fields. In particular, it is shown
that if G ¼ SEð3Þ and C is a crystallographic subgroup of G, then
the coset space CnG is a compact manifold that describes the con-
figuration space of all non-redundant poses of a protein in a

crystal. This is the 6D search space of interest in the field of MR
[19,20].

This paper is organized as follows. First, a review of concepts
from theoretical kinematics and crystallography is presented.
Then the concept is illustrated in the 2D case in a concrete way.
This is followed by discussion of the MR problem and the role of
motion spaces in this problem. And finally, the intricacies of the
3D problem are explored.

The Mathematics of Continuous and Discrete

Rigid-Body Motions

Let C denote the discrete group of (chiral/proper) symmetries
of a macromolecular crystal2. C, though discrete, has an
infinite number of elements, and forms a subgroup of the group of
rigid-body motions, G ¼ SEðnÞ. The latter consists of all
rotation–translation pairs g ¼ ðR; tÞ where R is an n� n rotation
matrix, the set of which forms the special orthogonal group
SO(n), and t 2 Rn is a translation vector. The group operation for
this group (which is inherited by the subgroup C) is defined by

g1 � g2 ¼ ðR1; t1Þ � ðR2; t2Þ ¼ ðR1R2;R1t2 þ t1Þ

It is possible to define ðnþ 1Þ � ðnþ 1Þ homogeneous transfor-
mation matrices of the form

HðgÞ ¼ R t

0T 1

� �
(1)

where 0T is a row vector consisting of n zeros. Then the group
law can be viewed as the matrix multiplication

Hðg1ÞHðg2Þ ¼ Hðg1 � g2Þ (2)

1This paper was originally presented at the ASME 2014 International Design
Engineering Technical Conferences as Paper No. DETC2014-34243.
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2In reality such crystals exist only in three-dimensional Euclidean space, but for
the purpose of generality in this introduction, the dimension n will be allowed to be
general, with realistic examples having n¼ 2 or 3.
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From this, it is easy to calculate that for any g 2 G; g�1 � g
¼ g � g�1 ¼ e and g � e ¼ e � g ¼ g, where

g�1 ¼ ðRT;�RTtÞ and e ¼ ðIn; 0Þ

Here, In is the n� n identity matrix, and e denotes the group iden-
tity element.

The distinction between the matrix representation of the group
G in (1) versus G itself is often blurred so that G can either be
thought of pairs g ¼ ðR; tÞ together with an operator �, or as H(g)
with operation of matrix multiplication. The group law for SE(n)
given above is that of a semidirect product, so that

SEðnÞ ¼ ðRn;þÞ3 SOðnÞ (3)

This means that every element of SE(n) can be decomposed into
the product of a pure translation followed by a pure rotation as

g ¼ transðtÞ � rotðRÞ ¼ ðIn; tÞ � ðR; 0Þ

The above discussion holds in any dimension, n. The case n¼ 3
is of particular interest, and specialized notation can be estab-
lished. For example, let

X ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

0
@

1
A

and let x ¼ ½x1;x2;x3�T. Then for any vector x 2 R3,
Xx ¼ x� x; the cross product of x and x. Using the notation
h ¼ jjxjj and x ¼ hn, and X ¼ hN, it can be shown that every
element of SO(3) can be expressed as the matrix exponential

ehN ¼ I3 þ sin hN þ ð1� cos hÞN2

This is equivalent to Rodrigues’ rotation formula. A similar
(though somewhat more complicated formula) holds for the
matrix exponential for the group of rigid-body motions

g ¼ exp
hN b

0T 0

� �
¼ ehN Jðh; nÞb

0T 1

 !

where the matrix function Jðh; nÞ is known in the kinematics liter-
ature. (See, for example, Refs. [21] and [22].)

In the special case when b points in the direction n, the matrix
exponential reduces to

screwðn; h; hÞ ¼ ehN hn

0T 1

� �

This is a screw displacement in continuous space with pitch h,
with screw axis intersecting the origin. The direction of the screw
displacement is changed by conjugation by pure rotations as

ðR; 0Þ � screwðn; h; hÞ � ðRT ; 0Þ ¼ screwðRn; h; hÞ

The axis of the screw displacement also can be translated by con-
jugating by a translation rather than a rotation.

Though continuous screw motions (both infinitesimal and
finite) are known to kinematicians, discrete screw motions are
important in crystallography. In the case when h ¼ 2p=g
and h ¼ p=g, where p and g are positive integers and
p 2 f1; 2;…; gg; screwðn; 2p=g; p=gÞ becomes a screw axis of
type gp, where

½screwðn; 2p=g; p=gÞ�g ¼ ðI; pnÞ

If we conjugate by translations before raising to the power, the
result is the same because

½ðI; tÞ � screwðn; 2p=g; p=gÞ � ðI;�tÞ�g

¼ ðI; tÞ � ðI; pnÞ � ðI;�tÞ ¼ ðI; pnÞ

For screw displacements that move three-dimensional crystal latti-
ces back into themselves, the only allowable values for g are
2,3,4,6. And of particular interest are screws of the form 21 since
they are so common in crystals of biological macromolecules.

Actions, Subgroups, and Coset Spaces. The group G ¼ SEðnÞ
acts on the set X ¼ Rn as

g � x ¼ Rxþ t (4)

for all position vectors x 2 X. Any such position can be expressed
as x ¼

Pn
i¼1 xiei where feig is the natural basis for Rn consisting

of orthogonal unit vectors. Alternatively, in crystallographic
applications it can be more convenient to write x ¼

Pn
i¼1 x0iai

where faig are the directions from one lattice point to the corre-
sponding one in an adjacent primitive unit cell. Sweeping through
values 0 � x0i � 1 defines the primitive crystallographic unit cell.
On the other hand, x denotes any of a continuum of positions, the
set of all discrete translations of the form tm ¼

Pn
i¼1 miai for all

m 2 Zn forms the Bravais lattice, L, and for any two fixed
m;m0 2 Zn; tm þ tm0 ¼ tmþm0 is also in the lattice. The lattice to-
gether with addition is the group of primitive lattice translations,
T ¼ ðL;þÞ ffi ðZn;þÞ, which is infinite but discrete. In the dis-
cussion that follows, P will denote the proper point group consist-
ing of rotations of the lattice L, and C will denote the whole
group of chiral crystallographic symmetry operations. The space
group of a Bravais lattice is a semidirect product and can be
thought of as a discrete version of SE(n). However, a crystal con-
sists of both a Bravais lattice and a motif repeated inside of the
unit cells. This changes the symmetry, by possibly removing
some rotational symmetry operations and possibly introducing
some discrete screw displacements.

G ¼ SEðnÞ is a Lie group consisting of a continuum of ele-
ments. Two Lie subgroups of G are

T ¼ fðI; tÞjt 2 Xg; R ¼ fðR; 0ÞjR 2 SOðnÞg (5)

These are the continuous groups of pure translations and pure
rotations. The group of pure translations is isomorphic with Rn

with the operation of addition, i.e., T ffi ðRn;þÞ, and the group of
pure rotations is isomorphic with SO(n), i.e., R ffi SOðnÞ, where
the operation for SO(n) is matrix multiplication. These subgroups
are special because any element g 2 G can be written as a product
of pure translations and rotations as g ¼ ðI; tÞ � ðR; 0Þ. In addition
T is a normal subgroup of G, meaning that for all h 2 G and
t 2 T , h � t � h�1 2 T . This condition is written as hT h�1 	 T ,
and in fact it can be shown that hT h�1 ¼ T .

More generally, given any proper subgroup H contained in G
(which is denoted as H<G), including (but not limited to) T ;R,
C, and T, left and right cosets are defined, respectively, as

gH ¼ fg � hjh 2 Hg; Hg ¼ fh � gjh 2 Hg

It is well known that a group is divided into disjoint left (or right)
cosets, and that only for a normal subgroup, N, it is the case that
gN¼Ng for all g 2 G. More generally, the left and right coset (or
quotient) spaces that contain all left or right cosets are denoted,
respectively, as G/H and HnG. Normal subgroups are special
because G=N ¼ NnG and a natural group operation can be defined
so that G/N is also a group.
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Structure of Chiral Space Groups. We now briefly review
the mathematical structure of crystallographic space groups.
Recall that altogether there are 230 types of crystallographic
groups in total in the three-dimensional case, 65 of which are
proper/chiral. When referring to “space groups” one is really
referring to “equivalence classes of space groups” in the sense
that if C is a space group then when aCa�1 ¼ fa � c � a�1jc 2 Cg
is also a space group for some fixed affine transformation a, then
C and aCa�1 are considered to be equivalent. Here, a is a special
affine transformation (i.e., a ¼ ðA; aÞ with det A > 0) that converts
one space group to another in the same class, and in general this
imposes severe restrictions on the allowable a. The enumeration
of equivalence classes of space groups is discrete, but since the
affine group is continuous, an uncountably infinite number of
equivalent space groups can be generated. In the planar case
there are 17 types of wallpaper groups, five of which are chiral
(p1; p2; p3; p4; p6). Space groups can be divided into two broad
classes: the symmorphic groups, which can be written as a semi-
direct product of the translation and rotation subgroups, and the
nonsymmorphic groups, which cannot. (Though all crystallo-
graphic groups have a subgroup of primitive translations which is
the same as that for the Bravais lattice, the symmorphic nature of
the Bravais-lattice-space-groups is not inherited by the majority
of the crystallographic space groups.) In the planar case, all chiral
wallpaper groups are symmorphic. In the three-dimensional case
there are 73 symmorphic and 157 nonsymmorphic space groups.
Of the 65 chiral space groups, 24 are symmorphic and 41 are
nonsymmorphic. The most commonly adopted space group for
crystals of biological macromolecules is called P212121 and is
group number 19 of the 230 as listed in the international tables of
crystallography and the Bilbao server3. This is a nonsymmorphic
symmetry group.

In both the symmorphic and nonsymmorphic cases it is possible
to write

C ¼
[jFj
i¼1

TðRi; vRi
Þ ¼

[jFj
i¼1

ðRi; vRi
ÞT (6)

where F ¼ TnC is the “factor group” and gi ¼ ðRi; vRi
Þ is an ele-

ment of the set of symmetry operators for the crystal with minimal
translation part. T is the translation group for the lattice L (which
is common to each Bravais space group and the crystallographic
groups that result from filling the primitive Bravais unit cells with
crystal motifs). For symmorphic crystals, it is always possible to
take vRi

¼ 0 for all i in which case these symmetry operations is a
group, whereas at least some vRi

6¼ 0 in the nonsymmorphic case,
and the resulting set of coset representatives (symmetry operators)
does not form a group. When these are not zero, ðRi; vRi

Þ describes
a screw transformation.

In analogy with the way that a group is divided into coset
spaces, a space, X, on which a group, G, acts is also divided into
orbits. For example, R acting on X divides it into spheres. The set
of all of these orbits is denoted as GnX. Some books denote this as
X/G, but to be consistent with the definition of action in Eq. (4), in
which g acts on the left of x, it makes more sense to write GnX in
analogy with the way that HnG preserves the order of h � g in the
definition of Hg 2 HnG.

An immediate crystallographic consequence of these definitions
is that if C is the full chiral symmetry group of a crystal, CnX can
be identified with the asymmetric unit. And if T < C is the largest
discrete translation group of the crystal (and so T < T also), then
TnX can be identified with the primitive unit cell, and so too can
TnT . Since T is a normal subgroup of T , the unit cell is actually
endowed with a group structure, namely, periodic addition. For
this reason, a unit cell in n-dimensional space is equivalent to an
n-dimensional torus, TnT ffi T

n: This fact is implicitly and

extensively used in crystallography to expand the density in a unit
cell in terms of Fourier series. Furthermore, the translational
motion of the contents of a unit cell is easy to handle within the
framework of classical mathematics. However, if one wishes to
focus attention in MR searches on the asymmetric unit CnX,
which is smaller than TnX, and therefore advantageous from the
perspective of the number of grid points required to describe it,
then there is no associated group operation. Furthermore, even in
the case when the whole unit cell is considered, though periodic
translations are handled in an effortless way within the context of
classical Fourier analysis, rotations of the rigid contents within a
unit cell of a crystal are somewhat problematic within the classical
framework, which provides the motivation for the current work.

Demonstration Why CnG is a Manifold With a

Planar Example

As a concrete way to visualize these complex spatial phenom-
ena, consider a simple planar example. In the plane, elements of
G ¼ SEð2Þ are parameterized as

Hðgðx; y; hÞÞ ¼
cos h � sin h x
sin h cos h y

0 0 1

0
@

1
A

The simplest planar space group is p1 which is just the lattice
translation group

p1 ¼ fgðz1; z2; 0Þjz1; z2 2 Zg

A fundamental domain Fp1nSEð2Þ corresponding to p1nSEð2Þ is

Fp1nSEð2Þ ¼ fðx; y; hÞ 2 ½0; 1Þ � ½0; 1Þ � ½0; 2pÞg

This is an exact statement, but sometimes it is more convenient to
examine the interior and closures of this set, which have purely
open or purely closed boundaries rather than having both kinds

F�p1nSEð2Þ 
 Fp1nSEð2Þ 
 Fp1nSEð2Þ

The opposing faces of Fp1nSEð2Þ can be identified with each other
in the usual way, indicating that p1nSEð2Þ is simply a three-torus,
T

3. A way to verify this is to define

y1 ¼ cosð2pxÞ
y2 ¼ sinð2pxÞ
y3 ¼ cosð2pyÞ
y4 ¼ sinð2pyÞ
y5 ¼ cos h

y6 ¼ sin h

This embeds the coset-space manifold p1nSEð2Þ ffi T
3 in R6. If

the above equations are written together as

y ¼ yðgðx; y; hÞÞ

then applying an arbitrary c 2 p1, it is easy to see that

yðc � gðx; y; hÞÞ ¼ yðgðx; y; hÞÞ (7)

This invariance of the embedding under the action of p1 indicates
that it does indeed correspond to the coset space p1nSEð2Þ.

Another of the planar crystallographic groups is C ¼ p4 con-
sists of a lattice translations by one unit in the x or y direction and
rotations at multiples of p=2. That is,3http://www.cryst.ehu.es/
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C ¼ fgðz1; z2; kp=2Þjz1; z2 2 Z; k 2 f0; 1; 2; 3gg

is the group of translations and rotations of a square lattice.
The set CnG again can be visualized as a “fundamental

domain” FCnG 
 G in which a single point in G from each coset is
recorded. For the case at hand, we can take the closure of the fun-
damental domain as

Fp4nSEð2Þ ffi fðx; y; hÞ 2 ½0; 1� � ½0; 1� � ½0;p=2�g (8)

and the coset space itself, p4nSEð2Þ is this fundamental domain
with opposing faces appropriately glued. However, unlike the
case of p1 where the opposing faces are glued in the obvious way,
this time the gluing is more complicated. When done properly,
this produces a three-manifold with the property that when C acts
on the left, it leaves all points fixed, and similarly when G acts on
the right.

The reason why ffi is used in the above expression rather than
¼ is that there are many equivalent (but different) ways to define
fundamental domains. For example, it is also possible to say

Fp4nSEð2Þ ffi fðx; y; hÞ 2 ½0; 1=2� � ½0; 1=2� � ½0; 2p�g (9)

In both cases, left action by p4 on these closures of fundamental
domains will “tile” SE(2) “with a little grout left over” corre-
sponding to overlapping sets of measure zero where faces meet.
In short, all that is meant by S1 ffi S2 is that[

c2C
c � S1 ¼

[
c2C

c � S2 ¼ G

and

Volððc � SiÞ \ ðc0 � SiÞÞ ¼ 0

for all c; c0 2 C and i¼ 1, 2. It is not a statement of topological
equivalence or isomorphism as groups (in fact, the objects of
study here are not groups, since C is not a normal subgroup of G).

The fundamental domain itself is a tricky thing to define because
it is a half-open half-closed object. But its closure, as defined
above, is easy to define, as is its interior F�p4nSEð2Þ (which is defined
in the same way as the closure, but with open intervals (0, 1) and
ð0;p=2Þ). The true fundamental domain is related to these as

F�p4nSEð2Þ 
 Fp4nSEð2Þ 
 Fp4nSEð2Þ

and all three differ by only sets of measure zero (i.e., points on the
bounding faces).

In the case of planar motion spaces, the result after gluing faces
of the fundamental domains is generally more complicated than a
three-torus. For example, starting with (8) or (9) and identifying g
and c � g, the faces of Fp4nSEð2Þ must be twisted before they are
glued together. Examining the action of p4 on SE(2), the follow-
ing things can happen:

ðx; y; hÞ ! ðxþ z1; yþ z2; hÞ;
ðx; y; hÞ ! ð�yþ z1; xþ z2; hþ p=2Þ;
ðx; y; hÞ ! ð�xþ z1;�yþ z2; hþ pÞ;
ðx; y; hÞ ! ðyþ z1;�xþ z2; hþ 3p=2Þ

(The first of the above is the p1 action, which will be present in all
planar space groups.) A three-dimensional manifold can be
embedded or immersed in six-dimensional space in a way that is
invariant under such transformations. First to kill the effects of
integer translations, as in the torus case trigonometric functions
with 2p periodicity are used, and other functions that are invariant
under rotations by increments of p=2 are used. For example,

y1 ¼ cosð2pxÞ þ cosð2pyÞ
y2 ¼ cosð2pxÞ � cosð2pyÞ
y3 ¼ ðcosð2pxÞ þ cosð2pyÞÞ sin 4h

y4 ¼ ðcosð2pxÞ þ cosð2pyÞÞ cos 4h

y5 ¼ cos 4h

y6 ¼ sin 4h

has the desired invariance property (7) for the case when c 2 p4.
From this expression, the correspondence with the fundamental
domain (8) is clear since the factor of 4 expands the range
h 2 ½0; p=2� to ½0; 2p�. But this is not unique. After all, it is a 3D
surface in a 6D space. As an analogy, the circle can be embedded
or immersed in 3D Euclidean space in an infinite number of ways.
For example, the circle can be embedded in different ways by hav-
ing a plane slice a sphere from different angles, or it can be embed-
ded as a knot, or it can be immersed as a figure-eight pattern.

Another choice that uses the full range of h and only half of the
range of both x and y is

y1 ¼ cosð4pxÞ þ cosð4pyÞ
y2 ¼ cosð4pxÞ � cosð4pyÞ

y3 ¼ sin2ð2pxÞ þ sin2ð2pyÞ

y4 ¼ sin2ð2pxÞ � sin2ð2pyÞ
y5 ¼ sinð4pxÞ cos hþ sinð4pyÞ sin h

y6 ¼ sinð4pyÞ cos h� sinð4pxÞ sin h

and this corresponds to the fundamental domain (9) since if x and
y each span half the range then xþ y will span the full range ½0; 1�,
and here there is no factor of 4 where h appears.

Another option is also possible in which half (rather than one
quarter) of the translational range is used and half (rather than one
quarter or the full ½0; 2p�) of the orientational range is used.

y1 ¼ cosð2pðxþ yÞÞ þ cosð2pðx� yÞÞ
y2 ¼ cosð2pðxþ yÞÞ � cosð2pðx� yÞÞ
y3 ¼ sinð2pxÞ � sinð2pyÞ � sinð2hÞ
y4 ¼ sinð2pxÞ � sinð2pyÞ � cosð2hÞ
y5 ¼ sin2ð2pxÞ cos2 hþ sin2ð2pyÞ sin2 h

y6 ¼ sin2ð2pxÞ sin2 hþ sin2ð2pyÞ cos2 h

A Mathematical Formulation of

Molecular Replacement

This section addresses why coset-space manifolds of the form
CnG are important for biomolecular crystallography in the case of
G ¼ SEð3Þ and C being one of the 65 chiral space groups. The
simplest of these space groups is called P1 (capital P rather than
lower case p). It is the group of discrete translations of a lattice.
This can be thought of as the set of homogeneous transformations
of the form P1 ¼: ftransð½z1; z2; z3�TÞjzi 2 Zg. As in the planar
case, every space group contains this group of lattice translations
as a normal subgroup. This condition is written as T / C. The
space group C itself will generally contain these translations, pure
discrete rotations, and discrete screw displacements.

Suppose that the macromolecular structure of interest has an
electron density qðxÞ. That is, there exists a function q : X! R.
This function may be constructed by adding densities of individ-
ual domains within the structure.

This means that the total electron density of the nonsolvent part
of the crystal will be

qCnXðxÞ ¼
: X

c2C
qðc�1 � xÞ
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The symmetry group, C, and number of copies of the molecule in
a given unit cell can both be estimated directly from the experi-
mental data. The inverse of c is applied under the function to
move qðxÞ by c in analogy with the way a function on the real
line, f(x), is translated one unit in the positive direction along the x
axis by evaluating f ðx� 1Þ. Note that such a function qCnXðxÞ is
“C-periodic” in the sense that for any c0 2 C,

qCnXðc�1
0 � xÞ ¼ qCnXðxÞ (10)

Now suppose that before constructing symmetry-related copies
of the density qðxÞ, we first move it by an arbitrary g 2 G. The
result will be qðx; gÞ ¼: qðg�1 � xÞ ¼ qðg�1 � x; eÞ: It is easy to see
that

qCnXðx; gÞ ¼:
X
c2C

qðc�1 � x; gÞ ¼
X
c2C

qððc � gÞ�1 � xÞ

In an x-ray diffraction experiment for a single-domain protein,
qðxÞ is not obtained directly. Rather, the magnitude of the classi-
cal Fourier transform of qCnXðx; gÞ is obtained. In general, if
faiji ¼ 1;…; ng are the vectors describing lattice directions, so
that each element of the group T consists of translations of the
form tðk1; k2;…; knÞ ¼

Pn
j¼1 kjaj 2 T; then the classical Fourier

series coefficients for qCnXðx; gÞ (which for each fixed g 2 G is a
function on TnT ) is denoted as q̂CnXðk; gÞ. There is duality
between the Fourier expansions for T and TnT , and likewise
Û ffi Zn is the unitary dual of U.

Now, the g in each of these expressions can be taken to be in G,
but this is wasteful because G extends to infinity, and the same
result appears whether g or c � g is used for any c 2 C. Therefore,
the rigid-body motions of interest are those that can be taken one
from each coset Cg 2 CnG. If all such representatives of cosets
Cg 2 CnG are collected, the result will be the fundamental region
FCnG 
 G. A goal of MR is then to find g 2 FCnG such that
jq̂CnXðk; gÞj best matches with the diffraction pattern, P̂ðkÞ. In
other words, a fundamental goal of MR is to minimize a cost func-
tion of the form

CðgÞ ¼
X
k2Û

d q̂CnXðk; gÞ
��� ���; P̂ðkÞ� �

(11)

where dð�; �Þ is some measure of distance, discrepancy, or distor-
tion between densities or intensities. No matter what the choice of
dð�; �Þ, the cost functions C(g) in Eq. (11) inherit the symmetry of
qCnXðxÞ in Eq. (10) in the sense that

CðgÞ ¼ Cðc � gÞ 8 c 2 C (12)

This makes C(g) a function on CnG (or, equivalently, on FCnG), in
analogy with the way that a periodic function on the real line can
be viewed as a function on the circle.

Finding maximal values of C(g) is essentially what MR is
about. With this, diffraction patterns can be phased, and the
inverse Fourier transform can be used to recover the electron den-
sity of the macromolecule of interest. Phasing is a necessary step
in determining their three-dimensional structure. The importance
of these structures in understanding biological processes and in
designing new drugs is well known [23].

Details Regarding the Structure of Chiral Space

Groups in Three-Dimensional Space

Every Bravais lattice has a space group that can be written as
the semidirect product of the lattice translation group, T, and a
point group of a Bravais lattice, P. That is, CL ¼ T 3 P. More-
over, every chiral crystallographic space group, C, has the group
of lattice translations as a subgroup, T � C such that TnC ¼ F is

isomorphic to a point group formed by stripping away the transla-
tional parts of any screw transformations in F and keeping
only the pure rotations that remain from these and from any pure
rotations in F.

Three-dimensional space groups are divided into two categories
[10–12,24]. The first, called symmorphic (or simple), are semidir-
ect products of a group of discrete lattice translations and discrete
lattice rotations. These can be thought of as discrete analogs of
SE(3) which is a semidirect product of continuous translations
and rotations. The second category of space groups is called non-
symmorphic, and surprisingly, they cannot be written simply as a
semidirect product of pure lattice rotations and pure lattice trans-
lations. That is, they always contain residual lattice screw
motions. The easiest nonsymmorphic space group is P21. It is
generated by concatenating the following transformations:
ðx1; x2; x3Þ ! ðx1 þ z1; x2 þ z2; x3 þ z3Þ (the lattice translations
where zi 2 Z, as with any space group) and ðx1; x2; x3Þ
! ð�x1;�x2; x3 þ 1=2Þ. That is all! The second transformation is
a 21 screw displacement along the x3 direction. Squaring it results
in a lattice translation by one unit in that direction. The group gen-
erated by all such translations and screw displacements cannot be
written as a semidirect product of lattice rotations and lattice
translations, since the translation by 1/2 is not a lattice translation
and cannot be decoupled from the rotation by p that is part of the
screw motion. Examples of more complicated space groups are
given in the Appendix.

Let Cs and Cns, respectively, denote symmorphic and nonsym-
morphic chiral crystallographic space groups. Then Cs ¼ T 3 Ps

and it is possible to select elements of Cs to form a fundamental
domain with a finite number of elements, FTnCs

ffi Fs, where

FTnCs
¼ f0g3 Ps (13)

Moreover,

FTnCs
< Cs (14)

Note here the equality (as groups) and inequality (denoting a sub-
group–group relationship) rather than the weaker statements that
would be implied if these were, respectively, congruence, and set
inclusion signs. In the nonsymmorphic case it is still possible to
write

FTnCns
ffi Fns ¼ TnCns ffi Pns � P (15)

and FTnCns
	 Cns, but it is no longer possible to write Eq. (13) and

in general it is not the case that FTnCns
	 CL or f0g3 Pns � Cns or

statements that would follow from them analogous to Eq. (14).
The fact that F (which can be either Ps or Fns) is a group

follows from the fact that T is not only a subgroup but also normal
in all cases. This means that TnC ¼ C=T ¼ F is a group in its
own right.

Let X ¼ Rn and G ¼ SEðnÞ. The structure of space groups is
important in the context of characterizing allowable motions
within asymmetric units because the space CnG can be decom-
posed in different ways. For example, it is always possible to write

FCnG ffi FCnX
� �

� SOð3Þ

In other words, the fundamental region of the quasi-group can be
taken as the product of translations within the asymmetric unit
and the whole of the rotation group. Moreover, if C is symmor-
phic it is possible to write

FCsnG ¼ FTnX
� �

� FPsnSOð3Þ
� �

(16)

This is convenient because when the fundamental region for TnX
is taken to be the Wigner–Seitz cell, which has the point
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symmetry group Ps, then the fundamental region for CsnG is
invariant under conjugation with respect to elements of Ps.

In the nonsymmorphic case, it can also be that the
Wigner–Seitz unit cell has some rotational symmetries (corre-
sponding to the subset of symmetry operations with vRi

¼ 0). If
there exists a nonempty subset of these operators that is closed
under multiplication, then the resulting point group formed by
these elements, Pu, will be a subgroup of Fns.

4 Moreover, T 3 Pu

will be a symmorphic subgroup of the nonsymmorphic group Cns

and Pu will be a subgroup of the point group P of the Wigner–-
Seitz unit cell corresponding to TnX. This means that

FðT 3PuÞnX ffi FPunðTnXÞ

The reason why this is relevant to the main topic of the paper is
that since most macromolecular crystals are nonsymmorphic, it
cannot be assumed that (16) holds, and we seek alternative admis-
sible ways to decompose CnG. In prior work, sampling schemes
for these spaces have been investigated [25,26,27–29].

In all cases

VolðTnXÞ ¼ jFj � VolðCnXÞ

Therefore,

VolðTnXÞ ¼ jPuj � VolððT 3 PuÞnXÞ

and

VolðTnXÞ ¼ jFnsj � VolðCnsnXÞ

Equating these two expressions gives

VolððT 3 PuÞnXÞ ¼
jFnsj
jPuj
� VolðCnsnXÞ (17)

If jFnsj ¼ jPuj þ jSj (where jSj is the number of screw symme-
try operations) and since Pu < Fns, then from Lagrange’s theorem
jPujnjFnsj ¼ jPunFnsj must be a positive integer. Furthermore,
jPujnjFnsj ¼ 1þ jPujnjSj, and so jPujnjSj must be a nonnegative
integer. And so the number of screw transformations in the set
of coset representatives of Fns ¼ TnCns must be an integer multi-
ple of the number of coset representatives that are rotational
transformations.

Conclusions

In search algorithms that seek to place rigid models of mole-
cules in a lattice under symmetry constraints, the subset of rigid-
body motions that is relevant is the fundamental domain
FCnG 
 G corresponding to an appropriately chosen set of repre-
sentatives from each right coset in the space CnG, where
G ¼ SEð3Þ and C is a crystallographic subgroup of G, which in
general can consist of lattice translations, discrete rotations, and
discrete screw transformations. The compact space FCnG is not a
group, and is referred to here as a motion space. Characterizing
the size and shape of this space requires a combination of tools
both from kinematics and from crystallography, as explained here
and in a recent paper.
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Nomenclature

F ¼ the factor group C=T ¼ TnC
FCnG ¼ the fundamental domain in G corresponding to CnG

G ¼ shorthand for SE(3), a six-dimensional Lie group
L ¼ a lattice in Euclidean space

Rn ¼ n-dimensional Euclidean space
SE(n) ¼ the special Euclidean group of n-dimensional space

T ¼ the discrete group of translational symmetries of a lattice
T

n ¼ the n-dimensional torus
X ¼ shorthand for Rn (parameterized in Cartesian coordi-

nates fxig)
Z ¼ the integers
C ¼ a chiral crystallographic space group

Appendix: Coset Representative for TnC for the Most

Common Macromolecular Space Groups

The most commonly encountered space groups, C, in the PDB
are listed below together with coset representatives of P1nC com-
puted from the Bilbao crystallographic server [30]. The coset
reps, c, are listed as c � x where x ¼ ½x; y; z�T is an arbitrary posi-
tion in the asymmetric unit. This is done instead of using the 4� 4
matrix H(g) to save space. A few of the most common space
groups (defined by their action on arbitrary x ¼ ðx; y; zÞT 2 R3

are listed below

(case 1) P212121
: (x,y,z); (�xþ 1/2,� y, zþ 1/2); (�x,yþ 1/2,

� zþ 1/2); (xþ 1/2,� yþ 1/2,� z);
(case 2) P21

: (x,y,z); (�x,yþ 1/2,� z);
(case 3) C2: (x,y,z); (�x,y,�z); (xþ 1/2, yþ 1/2, z); (�xþ 1/2,

yþ 1/2,�z);
(case 4) P21212: (x,y,z); (�x,�y,z); (�xþ 1/2, yþ 1/2, �z);

(xþ 1/2, �yþ 1/2,�z);
(case 5) C2221

: (x,y,z); (�x,�y,zþ 1/2); (�x,y,�zþ 1/2);
(x,�y,�z); (xþ 1/2, yþ 1/2,z);

(�xþ 1/2, �yþ 1/2, zþ 1/2); (�xþ 1/2, yþ 1/2, �zþ 1/2);
(xþ 1/2, �yþ 1/2, �z);

(case 6) P43212: (x,y,z); (�x,�y,zþ 1/2); (�yþ 1/2, xþ 1/2,
zþ 3/4); (yþ 1/2, �xþ 1/2, zþ 1/4); (�xþ 1/2, yþ 1/2,
�zþ 3/4); (xþ 1/2, �yþ 1/2, �zþ 1/4); (y,x,�z);
(�y,�x,�z þ 1/2); The value of jPujnjSj in these six cases
are, respectively, 3, 1,1, 1, 3, and 3.
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