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Abstract-Cryo-Electron Microscopy (EM) and Small Angle 
X-ray Scattering (SAXS) are two different data acquisition 
modalities often used to glean information about the structure 
of large biomolecular complexes in their native states. A SAXS 
experiment is generally considered fast and easy but unveiling 
the structure at very low resolution, whereas a cryo-EM ex­
periment needs more extensive preparation and post-acquisition 
computation to yield a 3D density map at higher resolution. In 
certain applications, one may need to verify if the data acquired 
in the SAXS and cryo-EM experiments correspond to the same 
structure (e.g., prior to reconstructing the 3D density map in 
EM). In this paper, a simple and fast method is proposed to 
verify the compatibility of the SAXS and EM experiments. The 
method is based on averaging the 2D correlation of EM images 
and the Abel transform of the SAXS data. The results are verified 
on simulations of conformational states of large biomolecular 
complexes. 

I. INTRODUCTION 

Cryo-Electron Microscopy (EM) [1] and Small Angle X-ray 
Scattering (SAXS) [2]-[4] are two popular -but very different­
data acquisition modalities used to glean information about 
the structure of large biomolecular complexes in their native 
states. Both methods differ from crystallography in that no 
crystallization is needed (at the expense of lower resolution). 
The advantage is that crystallization in many cases is either 
a very lengthy process or may destroy biologically important 
features. A SAXS experiment is generally considered as fast 
and easy, but unveiling the structure at very low resolution, 
whereas a cryo-EM experiment needs more preparation and 
post-acquisition computation to yield a 3D density map at a 
higher resolution. The low resolution in SAXS can be roughly 
attributed the fact that, the SAXS data is the spherical average 

of the scattering pattern of the complex under study. In cryo­
EM, similar to standard tomography, one obtains numerous 2D 
projections of a 3D complex, but in contrast to tomography 
the projections are at random (unknown) directions; moreover, 
the projections are extremely noisy. As a result, the 3D 
volume reconstruction in cryo-EM involves complicated post­
processing and still the resolution is not very high. 

In order to investigate the relationship between the function 
and the shape of a biomolecular complex, one may want 
to combine these two experimental data modalities (or fuse 
them). In such applications, one may first need to verify if 
the data acquired in the SAXS and cryo-EM experiments 
correspond to the same structure (e.g., prior to reconstructing 
the 3D density map). In this paper, we introduce a simple yet 

effective method that enables fast verification of the compat­
ibility of data collected in SAXS and Cryo-EM experiments. 
Roughly speaking, we relate the planar correlations of EM 
images to the SAXS data. To the best of our knowledge, our 
work is the first attempt in establishing such a relation and 
the derivations in Section III-A are new. The main benefit 
of our approach is that it enables the validation without the 
need for aligning and classification of the EM images or 3D 
reconstruction of the volume, which are complicated steps [1]. 
The translation-invariance property of the correlation function 
is the key enabling factor to achieve this. The combination and 
validation of SAXS and EM data has been appeared in the 
literature (e.g., [5], [6]). However, such methods are mostly 
based on image processing techniques or visual verification. 
Correlation functions in the context of EM data have been used 
before [7], but it became clear that for reconstruction of 3D 
density map the correlation function might not be adequate [8]. 
Here, we prove that the correlation functions of EM images 
after averaging can be related to the SAXS data via the Abel 
transform. 

This paper is organized as follows: In Section II we re­
view the mathematical modeling the EM and SAXS data. In 
Section III the relation between the SAXS and EM data is 
established and an algorithm for the validation is expressed. 
In Section IV we perform some simulations to support our 
approach, and Section V concludes the paper. The focus of this 
paper is deriving the basic mathematical methodology and a 
plausibility study with simulated data. Applications with actual 
SAXS and EM data will appear later. 

II. THE EM AND SAXS DATA AND THEIR RELATION 

A. The Cryo-EM Data 

The reader is referred to [1] for detailed physical and math­
ematical analysis of cryo-EM modeling and reconstruction. 
Here, we proceed with a very basic mathematical model. 
We model the 3D atomic density of a large biomolecular 
complex of interest as a uniform density map x(r), where 
X : IR3 -+ IR>o and r = (x,y,z)T E IR3 [1]. Although 
any uniform density function IR3 -+ IR::::o will work here, we 
specifically use x(r) as the characteristic function, which is 
defined as [9], [lO] 

x(r) � { � 
if rEB 
if r rf- B 
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where B denotes a biomolecular complex viewed as a solid 
body. With the characteristic function, a number of geometric 
quantities can be computed. For example, the volume of the 
complex body is computed as 

V(B) = r x(r) dr = r 1dr lIR3 1 B 

where dr = dxdydz is the usual integration measure for IR3. 
In a cryo-EM experiment a frozen sample containing the 

complex is imaged. Inside the sample instances of the complex 
appear at random positions and orientations. This can be 
modeled by random rigid body motion 9 = (R, t) E SE(3), 
where R E SO(3) is the rotation component and t E IR3 is the 
translation component; SE(3) and SO(3) denote, respectively, 
the Lie groups of rigid body motions and rotations in IR3. A 
copy of the complex under random rotation and translation 
9 = (R, t) E SE(3) can be modeled as 

Xg(r) = X(g-l . r), (1) 

where· denotes the usual action of SE(3) on IR3 defined as 
9 . r = Rr + t. In the process of imaging, essentially every 
copy of the complex is imaged, and this is modeled by the 
projection along the z axis in a global frame: 

(Xg(r)) P 
= X�(x, y) = 1 X(g-l . r)dz (2) 

Thus an EM image is the projection of a randomly translated 
and oriented copy of the complex. In reality, the EM images 
are highly noisy to the extent that signal-to-noise ratio (SNR) 
of 1/100 (i.e., the noise energy 100 times the signal energy) 
is quite COlmnon. Moreover, other effects such as the contrast 
transfer function of the microscope further deteriorate the 
images. Here, we ignore such effects. The standard reconstruc­
tion of the 3D volume x(r) from the 2D noisy projections 
{X�(x,Y)}g is a complicated and lengthy process [1]. We 
show in Section III that certain information that relates to the 
SAXS experiment can be obtained from the EM images with 
relatively simple operations and low computational load. 

B. The SAXS Data 

Before progressing further, we have to mention that the 
SAXS and EM data are generated based on different physical 
principles and atomic properties. However, one expects that the 
information relevant to the geometry of a large complex would 
not be much affected by this difference. Thus we postulate that 
both SAXS and EM experiments yield information about the 
complex modeled by a uniform density X. 

Having this assumption in mind, we formulate the mathe­
matics of SAXS data. The data collected in a SAXS experi­
ment can be related to the (spatial) correlation function of x(r) 
(also known as the Patterson function [4]), which is defined 
as 

Cx(r) = x(r) * X( -r) = r x(r')x(r' - r)dr', (3) lIR3 
where * denotes the convolution operation. Thus the cor­
relation function Cx (r) is the convolution of X( r) with its 

reflection across the ongIn. The correlation function for a 
function defined on IR and IR2 is defined similarly. In the 
frequency domain we have Cx(w) = Ix(wW, where i(w) 
denotes the Fourier transform of f(r) and w E IR3 is the 
spatial frequency vector. Let us write r = ru, where u E §2 
(§2 being the unit sphere in IR3) and r = Ilrll E R So we 
write Cx(r) = Cx(ru). Then the SAXS experiments gives a 
profile which (in spatial domain) can be expressed as (see [3] 

for details): 

(4) 

The meaning of this equation is that the SAXS data '/x (r) is 
the spherical average of the correlation function Cx(r). Note 
that the pair distance distribution function px(r), which is one 
of two key quantities in SAXS experiments, can be written as 
(see [4] for details) 

The source of equation (4) is that the copies of the complex 
x(r) are randomly (uniformly) directed in the liquid sample. 
This is, in fact, related to our approach in relating the EM data 
and the SAXS data. Note that we make a distinction between 
orientation, which is coded by a rotation matrix R E SO(3), 
and direction which is coded by a direction vector u E §2. 

III. RELATION BETWEEN SAXS AND EM DATA 

A. Relating the SAXS and EM Data via the Abel Transform 

Let us denote the translated version of x(r) (i.e., x(r -
ro» as Xro ' where ro is the translation vector. We start by 
noting that Cx(r) = CXro (r), i.e., the correlation function is 
invariant under translations. This holds both in the case of ID 

or 2D correlations. Thus the planar (2D) correlation of an EM 
image X�(x, y) (see (2) for its definition) only depends on 
R E SO(3), the rotation part of 9 E SE(3). Therefore, we 
write 

Cx�(x,y) = Cx�(x,y) = X�(x,y) * X�(-x, -y) 

1 
(5) 

= x�(x',y')x�(x' - x,y' - y)dx'dy' 
x',y' 

where X� is defined by setting 9 = (R,O) in (2). We also 
note that projection operation COlmnutes with convolution 
and correlation operations. This follows from the Fourier 
slice theorem [11]. Therefore, using the translation-invariance 
property and the commutativity property we can write: 

(CXg(r))P = Cxl�(x,y) = X�(x,y) * X�(-x, -y), (6) 

where P denotes the projection operation as defined in (2). 

Next, we assume that the R component of 9 is uniformly 

distributed on SO(3), i.e., the EM images are coming from 
uniformly oriented copies of the complex. This assumption 
is important in our derivations. However, we stress that it is 
known that, in practice, the uniformity assumption may be vio­
lated, as there are the so-called preferred orientations that most 
copies of the complex assume in the frozen sample [1, ch. 3]. 

The existence of preferred orientations is a quite complicated 
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phenomenon; thus here we retain the uniformity assumption 
and leave studying the effect of preferred orientations and 
the extent to which the uniformity assumption can be relaxed 
to a later work. Now, under the uniformity assumption, by 
averaging all the planar correlations across all orientations R 
we get the circularly symmetric function: 

ER{ Cx)'z (x, y)} = 1'xP (J x2 + y2) = 1'xP (r), (7) 

where, here, with some abuse of notation, r = J x2 + y2 and 
ER denotes expectation (average) with respect to the random 
variable R. By the commutativity property we have 

1'xp(r) = ER{Cx)'z(x,y)} = (ER{CxR(r)})P, (8) 

that is, 1'xP (r) is the average of the correlation of XR across 
all (random) orientations R of the complex. In the above, we 
also used the fact the mathemtical expectation and projection 
operations commute. 

The next step is to relate the above averaged planar cor­
relation to the SAXS data 1'x(r) in (4). Notice that 1'x(r) is 
the average of CXR across the coset §2 = SO(3)/ SO(2). But 
under the uniformity assumption 1'x (r) is not different from 
the average of CXR(r) over SO(3), namely, ER{CxR(r)}. 
Thus it follows that, under the uniformity assumption, the EM 
averaged correlation 1'xP (r) in (8) is equal to the projection 
of the SAXS data 1'x(r), when viewed as a 3D spherically 

symmetric function. This projection can be expressed in terms 
of the Abel transform [12, Ch. 9]. The Abel transform of a 
one dimensional function f : [0,00) -7 IR is defined as 

Abel(f)(r) � 2 1
= f(r')r' dr'. (9) 

r vr,2 - r2 
This relation is easy to prove using Pythagoras's theorem and 
a simple change of variable. From our discussion it follows 
that: 

1
= 1'x(r')r' , 1'xp(r) = Abe1bx)(r) = 2 dr , 

r vr,2 - r2 
(10) 

which means that the average of the correlations of EM images 
equals the Abel transform of the SAXS data. In practice, we 
expect this equality to hold up to a scale, due to the fact the 
sources for EM imaging and SAXS experiment have different 
amplitudes. Moreover, we are tacitly assuming that the SAXS 
and EM data are based on the same physical properties of the 
complex. In reality, however, the EM images are formed based 
on the scattering of electron beams by, primarily, the nuclei 
of the atoms, whereas the SAXS data is formed based on the 
diffraction of X-ray beams by electrons in the atoms. 

B. Evaluating the Abel Transform: Accuracy Issues 

Our approach requires evaluating the Abel transform of 
the SAXS data 1'x(r). In the Abel transform, the integrand 
is singular at r = r' i=- O. This can cause some error 
in evaluating the transform, especially when the SAXS data 
1'x (r) is known with only finite radial resolution or noise is 
high. Note that from (10) for r = 0, the singularity is removed, 
and Abelbx)(O) = 2 fo= 1'x(r')dr'. 

In general, there are two approaches in evaluating singular 
integrals: eliminating the singularity with a change of variable 
and ignoring the singularity [13]. The first method, essentially 
requires knowing the integrand with infinite accuracy, which 
is impractical in our application. However, the method of 
ignoring-the-singularity is practical, and as its name suggests 
requires no special provision. The caveat, however, is that 
the presence of a singularity adversely affects the rate of 
convergence in terms of the integration step-size [14]. We 
elaborate on this issue (following [14]). 

Let f : (0, 1] -7 IR be continuous on (0, 1]. Assume that f 
can be written as f(r) = rCXg(r) with ex > -1, g(r) being 
a function whose derivative on [0, Ii exists, is continuous and 
integrable in absolute value, i.e., fo If Idr < 00. Notice that 
under these conditions the integral fo f (r )dr exists. Such a 
singularity is called an algebraic singularity [14]. In the case 
of the Abel transform we have ex = - �, as for most densities 
Cx(r) and, hence, 1'x(r) are smooth. Now, let us take the 
simple rectangle integration rule In(f) = � L�=1 f(;), the 
step-size being h = �. Note that, in this approximation, we 
are ignoring the singularity at r = 0 (e.g., instead of writing 
� L�-1 f(;), which obviously cannot be calculated). The 
approximation error is En = I f01 f(r)dr - In(f) l. It can be 
shown that En 

n
� 0 with the rate (�) Hcx [14]. This means 

that for the Abel transform the rate of convergence will be )n. 
It is interesting also to mention that, even more complicated 
integration methods such as the midpoint, trapezoid, or quadra­
ture rules have the same rate of convergence [14], although the 
actual error for a given step-size might be different. To put this 
rate of convergence in perspective, note that if f is continuous 
on [0,1] (no singularity, ex = 0), then the rate would be �. 
Also recall that in the case of a function with smooth second 
order derivative on [0,1] , the convergence rate of the trapezoid 
and the midpoint rules improve to ,&. Finally, we stress that 
the approximation error always exists (due to the discretization 
in computing the integral), however, in this case, due to the 
singularity it is worse compared with the case of a nonsingular 
integrand. 

Next, we perform a numerical experiment in the case of the 
SAXS data of a spherical object. Consider a spherical object 
of radius R and with uniform density, i.e., 

{I if xs(r) = xs(r) = 

0 
Ilr ll(= r) � R, 

otherwise. 

For such a body the correlation function is given by 

CXs(r) = Cxs(r) 

= 

{ l27f(4R+r)(2R- r)2 if Ilr ll(= r) � 2R, 
otherwise. 

(11) 

(12) 

This formula is derived using the formula for the intersection 
volume of two spheres. Due the spherical symmetry of Cxs' 
we have 1'xs (r) = Cxs (r). We use the rectangle integration 
method with various step-sizes to evaluate the Abel transform 
of Cxs (r) with R = 100. Figure 1 shows the results for step­
sizes h = 1,1/2,1/4,1/8,1/16,1/32,1/64. Also the exact 
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curve (calculated using Matlab's adaptive step-size integration 
method) is shown. Clearly the slo w rate of improvement in 
the accuracy matches the theory explained above. 

Abel transform of CXs (R=100), rectangle integration method 
10' 

40 60 80 100 
r 

120 

--h=1/2 
h=1I4 

----h=1/8 
- - h=1I16 
-....... h=1132 
----h=1/64 
--exact 

180 200 

Fig. 1: The effect of integration step-size in evaluating the 
Abel transform of Cxs (r) (12). 

In our applications, we cannot have very small step-sizes 
because usually the SAXS data is available on a finite grid 
and additionally the values at the grid nodes can be noisy. 
Notice that an interpretation of the above error analysis is that 
if we have I'x (r) at a resolution of � we get its Abel transform 
with an error of order In. However, this also means that any 
error in I'x(r) may be amplified in Abelbx)(r). Thus the net 
effect the singularity is that we have to accept some moderate 
error in evaluating the Abel transform of I'(r) and hence in the 
matching between the EM profile I'xP (r) and the SAXS profile 
Abelbx)(r) (equation (10». This may hinder our ability to 
distinguish between complexes that have very similar SAXS 
data I'x(r). 

C. Removing the Noise in EM Planar Correlations 

The noise in an EM image can be extremely strong and we 
need to devise methods to mitigate its effect. Let us denote the 
noisy version of the image X�(x, y) by X�(x, y). We assume 
an additive noise model (which is a reasonable assumption in 
the EM imaging mechanism). Thus we can write 

x�(x, y) = X�(x, y) + v(x, y), (13) 

where v(x, y) is the noise. If we assume that the noise is 
spatially white with zero mean and variance O'� , and further 
that it is uncorrelated with the image X� , then we can see that 

if x = y = 0, 
otherwise. (14) 

We have derived this equation under the ergodicity assumption 
meaning that statistical and spatial averages are equal, which 
in practice holds to a good extent. Note that (14) means that 
if we know or can estimate the noise variance O'� , then we 
can remove the effect of noise from the correlations Cx�' In 
practice, we may be able to estimate O'� from parts of the 
image, where most likely the actual projection image of the 
complex is not present (e.g., the corners of the image). 

IV. EXPERIMENTS 

An important problem in structural biology is to determine 
the conformational states of a large biomolecular complex 
(e.g., open vs. closed). Both SAXS and EM experiments can be 
performed for this purpose, and in some cases one may want to 
verify if the samples in the SAXS and EM experiments contain 
the complex at the same conformational state. We perform 
two simulated experiments on a synthetic model and one on 
a simulated complex with ligand-binding domains. 

A. Conformational States: The Two-Body Model 

We simulate different conformational states of a large 
biomolecular complex by modeling the complex with two solid 
ellipsoids of the same size and varying the (unknown) angle 
e between the principal axes of the two ellipsoids. We denote 
the complex at conformation associated with angle e by Xe. 
The goal is to decide whether the EM and SAXS experiments 
were conducted on the complex at the same conformation 
in the respective samples, and also to examine the angular 
resolution that can be achieved. Before proceeding further, we 
stress that although our mathematical models were in spatially 
continuous setting, in the experiments we move to a discrete 
spatial setting. 

The data is generated as follows. The axes lengths of each 
ellipsoid are a = 21.3, b = c = 6. 7 A. A volume V of size 
N x N x N (N = 129) voxels is generated that contains 
the complex Xe with conformational angle e. The complex 
Xe itself is modeled by a solid (uniform) body as explained 
earlier in Section II. To simulate the EM experiment, the 
complex is rotated (inside V) around the center of V by 
a randomly (uniformly) generated rotation matrix R. Then 
a projection along the z-axis is computed, which results in 
an N x N image. The top two images in Figure 2 show 
random projections of conformational angles of e = 30° and 
e = 45°. Next samples of zero mean white Gaussian noise of 
variance O'� is added to the images as shown in the second 
row of Figure 2. In the figure, the signal-to-noise ratio (SNR) 
is /0' For each image the SNR is defined as the average 
energy of the projection of the complex to the energy of 
the noise in that image; and O'� is determined accordingly 
(the energy of noise is N O'� ) . In this experiment F = 100 
random rotation matrices are uniformly generated on SO(3) 
and corresponding to each rotation matrix K = 10 noisy 
samples are generated. Thus a total of 1000 noisy images are 
generated. Next, the spatial correlation of each planar image 
is found. Notice that this results in a correlation image of 
size 2N - 1. To simulate the noise-removal step described in 
Section III-C, a patch of size W x W pixels, where W = 35, 
at a corner of each image is selected and the variance of 
noise estimated in that patch. Then the variance of the noise 
is subtracted from the correlation at (0,0) (see (14»; and 
all such denoised correlations are averaged. The result is 
an almost circularly symmetric image. However, we further 
sYlmnetrize it by circular averaging to get an approximation 
of I'�o (r). The circular averaging is performed at rather high 
angular resolution. Since the images are discrete spatially, for 
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circular averaging one needs to perform spatial interpolation. 
We also used interpolation to increase the resolution in the 
radial variable r to H = 0. 5A. This improves visualization 
and smoothness of the results. To simulate the SAXS data 
generation we simply find the 3D correlation of the volume 
V and perform a spherical averaging (combined with spatial 
interpolation) to get an approximation of 'Yxo(r) (see (4)). 

We obtain 'Yxo(r) with resolution of H = 0. 5A. Finally, to 
estimate the SAXS profile Abelhxo)(r), we use the rectangle 
integration rule. The bottom left plot in Figure 2 shows the 
graphs of the estimated EM profiles 'Y�o (r) and SAXS profiles 
Abe1hxo)(r) for conformational angles of e = 30° and 
e = 45°. It can be seen that the corresponding SAXS and 
EM profiles are similar for moderate to large values of r. 
However, for small values of r the SAXS profiles for both 
30° and 45° are becoming closer to each other and deviate 
from the EM profiles. The fact that the SAXS profiles for 
small r are very similar is expected, and reflects the fact 
that SAXS data can give low-resolution information about 
a structure. In fact, theoretically 'YX300 (0) = 'YX450 (0) and 
'YX300 (r) ;::::; 'YX450 (r) for small r since in both conformations 
the total volume is the same and the individual bodies are the 
same. Thus effectively Abelhx300 )(r) ;::::; Abelhx450 )(r) for 
small r. The observed discrepancy between the EM and SAXS 
profiles can be attributed to both noise and the integration error 
in evaluating the Abel transform. In the bottom right plot of 
Figure 2 we have plotted the normalized version of the EM and 
SAXS profiles, where each profile integrates to 1. Specifically, 
we define the normalized profiles as 

p,
. n( ) = 

'Y�o(r) 
Ab In( ) = 

Abelhx)(r) 
'Yx r roo p , e 'Yx roo . o 

Jo 'Yxo(r)dr Jo Abe1hx)(r)dr 
(15) 

In practice this normalization is very useful, primarily because 
the EM and SAXS profiles are, at best, proportional to each 
other and may differ in their scaling significantly since they 
come from very different experimental sources. 

Next we perform a similar experiment to estimate the 
smallest resolvable angle. For that we define a notion of 
distance between the SAXS and EM profiles. Based on the 
forgoing discussion, the difference at small r may be very 
large but with very little relation to the conformational angles. 
Thus we choose a value ro and we compare the profiles for 
r ;::: ro. We choose a simple L2-based distance as: 

d("VP,n Abeln ("V )) IXOI' IX02 

100 I'Y��� (r) - Abelnhxo2 )(r)12dr. 
TO 

(16) 

Of course, in practice a discretized version of this will be 
used. In this experiment, we chose the SNR much lower at 

160' At this extremely low SNR, no vestige of the (projection 
of the) complex is visible. We generate conformations with 
angles e E {30°, 3 5° , . . .  , 70°}. Table I shows the entries of 
a distance matrix, where each entry is the distance defined in 
(16) between SAXS and EM profiles at respective indicated 
angles. All the distances are scaled by a fixed number for 

ease of presentation. We have chosen ro ;::::; 20A in (16). As 
it can be seen, in some cases (underlined) the EM and SAXS 
profiles of angles that differ by 5° can be closer than those 
of the actual (correct) angles. However, for differences larger 
than or equal to 10° such a confusion is not observed. Our 
experiments show that in a larger number of trials confusion 
for angles larger than equal to 10° is very rare. Thus, the 
angular resolution is roughly ±5° with very high certainty. 

EM projection for two-ellipsoid model, 0=30
0 EM projection for two-ellipsoid model, (}=4So 

100 100 

120 120 

20 40 60 80 100 120 20 40 60 80 100 120 
Noisy version of the above Image, SNR = 1/10 Noisy version of the above Image, SNR = 1/10 

100 100 

120 120 

10 

20 40 60 80 100 120 
EM and SAXS profiles for two-ellipsoid 

x10' model, 0=30
'
, 45', SNR=1/10 

-EM profile,9=30
" 

...•• SAXS profile, 0=30
' 

- -EM profile,8=4S
o 

---SAXS profile,D--4S
" 

0.06 

0.04 

0.02 

20 40 60 80 100 120 
Normalized EM and SAXS profiles for 

two·ellipsoid model, 0=30
'
, 45', SNR=1/10 

-EM profile,O=30
" 

..••. SAXS profile,9=30
· 

- - EM profile,O=4S
o 

---SAXS rOfile,9=4S
o 

Fig. 2: The top row shows random EM projections of the two 
body complex Xe at two conformational angles e = 30° and 
e = 45° (see Section IV-A for more details). The middle row 
shows the same images contaminated by noise (SNR= 1/10). 
The bottom graphs show the estimated corresponding SAXS 
and EM profiles (the left graph shows un-normalized profiles 
and the right one shows the normalized profiles-see (15)). 

B. Glutamate Receptor Ligand-Binding Domain Conforma­

tions 

Here, we perform a rather similar experiment while we gen­
erate the data from Protein Data Bank (PDB) [15]. Specifically, 
we consider the ligand-binding domain (LBD) of glutamate 
receptor, which is known to play a crucial role in human brain 
activities such as memory formation and learning process [16]. 

We consider three conformational states of LBD: 'apo' or 
unliganded state (PDB entry: IFTO), antagonist-bound state 
(PDB entry: IFTL), and partial agonist-bound state (PDB 
entry: IFTK). It is experimentally shown that the conformation 
of 'apo' state is more similar to the antagonist-bound state than 
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� SAXS 300 350 400 450 500 550 60° 65° 700 

30 0.29 0.52 0.97 0.76 1.28 1.39 1.66 1.91 1.88 
35 0.21 0.28 0.66 0.49 0.99 1.11 1.38 1.66 1.63 
40 OA8 0.29 0.34 0.29 0.68 0.83 1.08 lAO 1.37 
45 0.82 0.56 0.19 0.37 0.37 0.55 0.77 1.12 1.09 
50 1.11 0.83 0.43 0.61 0.21 0.34 OA9 0.85 0.83 
55u 1.37 1.08 0.71 0.86 0.35 0.30 0.26 0.61 0.60 
60u 1.58 1.28 0.94 1.07 0.57 0.42 0.20 OAI OAI 
65u 1.75 1.46 1.15 1.26 0.77 0.58 0.34 0.27 0.28 
70u 1.88 1.59 1.31 1.41 0.94 0.74 0.50 0.25 0.26 

TABLE I: A distance matrix for the two-body model exper­
iment in Section IV-A. Each entry shows the distance (16) 

between the SAXS and EM profiles at the corresponding body­
angles. All the distance values are normalized by a common 
factor for ease of presentation. The underlined en tires show the 
cases where the distances between the SAXS and EM profiles 
of two different angles give a distance smaller than the correct 
angle. 

to the agonist-bound one [17]. As we will see shortly, the same 
conclusion can be drawn from our simulation results. In our 
simulation, all atom coordinates were considered. 

We simulate the effect of each atom by a 3A x 3A x 3A 
cube of constant intensity centered at each atomic coordinate 
present in the corresponding PDB file of each complex. The 
rest of simulation is as in the previous example with volume 
size N = 129, SNR=1/100, number of random rotations 
F = 100, number of images per orientation K = 10, and patch 
size W = 3 5  for denoising. In the first experiment we compare 
the SAXS and EM profiles of complexes IFTL and IFTK. The 
top panels in Figure 3 show the atomic configuration of these 
two complexes. The left bottom graph shows the unnormalized 
SAXS and EM profiles for both. The large jump at r = 0 
is due to error in estimating the noise variance. As it can be 
seen the profiles of distinct conformations are easily separable 
despite the fact that the EM and SAXS of each complex 
differ slightly (due to noise and the singularity effect). Here, 
however, this difference for smaller values of r is significant, 
presumably because the total volume of IFTL and IFTK 
is substantially different. In the next experiment depicted in 
Figure 4 we compare the profiles of IFTO and IFTL. As 
it can be seen the two conformations are quite similar and 
their corresponding profiles also become indistinguishable, 
which conforms with the earlier mentioned fact that these 
two conformational states are close. Note that in the current 
simulations, we used uniformly distributed random rotations. 
In reality, however, it might be the case that there are preferred 
orientations of the molecules in the sample grid [I, ch. 3]. 
In order to test that, we tried non-uniform rotations, such 
as the case where there are finite fixed number of rotational 
directions. Our preliminary and limited investigation shows 
that results such as those in Fig. 3 and 4 were not influenced 
significantly by non-uniform rotations. In our future work, 
we will try to understand how these results will be affected 
due to the presence of preferred orientations and the violation 
of the non-uniformity assumption (see III-A and [1, ch. 3]), 
together with applying our method to larger and more complex 
macromolecules. 
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Fig. 3: Comparing SAXS and EM profiles (Abelbx)(r) and 
1'xP (r), respectively) and their normalized versions for IFTL 
and IFTK, see Section IV-B for details. 
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Fig_ 4: Comparing SAXS and EM profiles (Abe1bx)(r) and 
1'xP (r), respectively) and their normalized versions for IFTL 
and IFTO, see Section IV-B for details_ 

V. CONCLUSIONS 

We have presented a simple and fast approach to check the 
compatibility of SAXS and cryo-EM data_ By noting that the 
SAXS data is indeed derived from the correlation function 
(i.e., the Patterson function, which is the self-convolution of 
the density function), we proposed a method based on the 
correlation functions both in SAXS and EM. In this paper, 
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we derived the basic mathematical methodology. In particular, 
we used the fact that averaging the correlation functions of 
EM images (prior to 3D reconstruction) is equivalent to the 
Abel transform of the SAXS data. Then we investigated the 
plausibility with simulated data and the actual PDB data. We 
also discussed limitations due to the singularity in the Abel 
transform in SAXS and the noise effect in EM images. An 
important question is the effect of preferred orientations in 
our results and simulations, which is the subject of our future 
research. The current study is a first step toward the fusion 
of two different experimental modalities, which in turn will 
enhance the understanding of the relationship between the 
function and the shape of large bimolecular complexes. 
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