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Algorithms for Multilayer
Conformal Additive
Manufacturing
Despite the rapid advance of additive manufacturing (AM) technologies in recent years,
methods to fully encase objects with multilayer, thick features are still undeveloped. This
issue can be overcome by printing layers conformally about an object’s natural bound-
ary, as opposed to current methods that utilize planar layering. With this mindset, two
methods are derived to generate layers between the boundaries of initial and desired geo-
metric objects in both two and three dimensions. The first method is based on variable
offset curves (VOCs) and is applicable to pairs of initial and desired geometric objects
that satisfy mild compatibility conditions. In this method, layers are generated by uni-
formly partitioning each of the normal line segments emanating from the initial object
boundary and intersecting the desired object. The second method is based on manipu-
lated solutions to Laplace’s equation and is applicable to all geometric objects. Using
each method, we present examples of layer generation for several objects of varying con-
vexities. Results are compared, and the respective advantages and limitations of each
method are discussed. [DOI: 10.1115/1.4033047]

1 Introduction

The exponential growth of AM or 3D printing technologies in
recent years has led to rapid adoption by both the public and pri-
vate sectors. In 2013, the Chief Naval Officer’s Rapid Innovation
Cell began the Print the Fleet (PTF) project aimed at leveraging
AM technology on Naval vessels. The underlying motivation for
the project is to ultimately enable rapid adaptation in the
“changing landscape of warfare” [1]. Recent PTF initiatives
include the evaluation of AM technology on an unarmed joint
high speed vessel and the sponsoring of a permanent installation
of AM technology onto the USS Essex [1,2]. In a parallel effort,
NASA evaluated AM technology in zero-gravity environments
with a demonstration system recently deployed on the Interna-
tional Space Station [3]. The goal of this experiment was to dem-
onstrate that a 3D printer works normally in a zero-gravity
environment. The ultimate goal for projects like these is to enable
rapid, on-site repair, replacement, and adaptation of mechanical
(and potentially electrical) hardware.

Commercial AM technology leverages a variety of processes to
bind materials, creating solid structures. Unlike traditional fabri-
cation methods, a direct correlation between AM fabrication-time
and part complexity does not necessarily exist. AM fabrication
also offers relaxed design rules and simple part-by-part custom-
ization. As a result, inexperienced developers can produce physi-
cal hardware almost immediately, while experienced designers
can create complex parts tailored for specific applications. Table 1
summarizes current commercial AM technologies by process [4].

As adoption of AM increases, the limitations of current technol-
ogy will become more distinct. Recent research in AM processes
is focused on addressing limitations in properties of printed mate-
rials [5–8]; however, existing methods have yet to be exploited to

their full potential. While current AM enables tremendous innova-
tion in part design, designers are still required to follow classical
packaging and/or assembly rules. Examples include retrofits (e.g.,
USS Whidbey Island prototype adapter brackets [1]), packaging
(e.g., electronics and sensors), and repair.

In current AM, parts are made by iteratively adding layers of
material. Layers are defined by thin cross sections of a part, and
derived from an exported computer-aided design (CAD) model
[9]. Commercial AM techniques generally use a “build-bed” that
serves as the flat substrate for part fabrication. The CAD model is
imported into an AM software package, and positioned relative to
the build-bed. Layers are then defined by equally spaced planar
slices of the CAD model, parallel to the build-bed. This is effec-
tive for a wide variety of part geometries. Depending on the AM
process, issues may arise with overhanging features, but this limi-
tation is effectively solved by adding sacrificial support layers that
are removed following the completion of the AM process [9].
Because of this, no AM technology is currently capable of manu-
facturing a closed, fully hollow feature. A graphical example of
the differences between “traditional” planar printing and confor-
mal printing is provided in Fig. 1.

The concept of conformal printing onto nonplanar surfaces has
been explored for a variety of applications including subtractive
processes like lithography used to produce optics [10,11], and
additive methods to fabricate antennas and electronics onto/into
mechanical components [12–14]. In general, the AM techniques
explored for conformal applications involve “direct write” tech-
nologies [9] used to produce thin features on surfaces. More spe-
cifically, most current techniques have only demonstrated the
deposition of a single layer of material [12,14]. On the other hand,
additional material extrusion methods such as curved layer fused
deposition introduced in Refs. [15] and [16] can generate nonpla-
nar surfaces at the cost of requiring a large amount of sacrificial
support material.

Leveraging new layering concepts in conjunction with registra-
tion and manipulation methods commonly used in robotics, con-
formal AM can be extended to incorporate multilayer, thick
features. Additionally, conformal AM can be used to produce
seamless packaging, repair damaged hardware, incorporate heter-
ogeneous materials into products to provide extra strength and/or
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durability, and provide retrofitting capabilities (for example, add-
ing a handle or flange to an existing piece of hardware).

This paper presents new approaches to conformal AM. Two
methods are presented to construct multiple enveloping layers
around an initial object that result in a desired final object. Each
method assumes two inputs (the boundary of the initial object,
and the boundary of the desired object) described in a common
reference. The first method utilizes VOCs to generate layers, and
is limited to pairs of initial and final desired geometric objects that
satisfy certain mild compatibility conditions. The second method
leverages solutions to Laplace’s equation, and is applicable to all
pairs of geometric objects with differentiable boundaries. Next,
we develop a process that alters the layers generated by these
methods to incorporate 2D and 3D hollow features (or voids). For
completeness, several 2D and 3D applications of each method
(with and without voids) are presented. Results demonstrate suc-
cessful layering for each method, and advantages and limitations
of the presented methods are discussed. This layering approach,
depending on the physical implementation, is applicable to a wide
range of AM processes. However, in the near-term, this method is
most readily applied to material extrusion methods such as fused
deposition modeling or FDM.

2 Desired Properties for Conformally Printed Layers

In contrast to a majority of current AM methods that deposit
material in a fixed plane, conformal AM methods deposit layers
along closed curves for 2D objects and along surfaces for 3D
objects. This distinction lends itself to a new definition of layers
in conformal AM processes.

As a result, we define each layer as a bijective mapping
between an initial curve/surface and each layer (including the
desired curve/surface). Intuitively, this mapping ensures that each
point on the initial boundary maps uniquely to a point on each
layer, and that each layer is a closed curve/surface. This mapping
guarantees that layers will not intersect and are thereby unique.
Physically, this mapping ensures that material will never be
deposited at the same point twice. Additionally, this method pre-
vents arbitrary areas without material deposition (unless specified)
between subsequent layers provided proper layer thickness and
continuity [17].

3 Layer Generation Using VOCs

Given a parametrized curve x0(t), a VOC is defined as

x1ðt; rÞ ¼ x0ðtÞ þ rðtÞnðtÞ (1)

where rðtÞ 2 Rþ is a parametrically varying scalar and n(t) is the
unit normal to the curve. Offset curves, and their more general
counterparts VOCs, are well-established in the literature with sev-
eral papers providing in-depth analysis of their analytical and
algebraic properties [18–21]. Note that by an abuse of terminol-
ogy, variable offset surfaces will also be included in our definition
of VOCs. In addition, for the remainder of this section we will
assume that every curve or surface is closed and at least C2 contin-
uous. Finally, further restrictions must be imposed to ensure that
there is a bijective mapping between our initial boundary (curve/
surface) and each layer.

ASSUMPTION 1. The boundary of the initial object is convex and
fully contained inside of the boundary of the desired object.

In this context, a boundary S is convex if for all points z1 and z2

in S and a � [0, 1], it follows that

az1 þ ð1� aÞz2 2 Si (2)

where Si is the union of the boundary with its interior.
ASSUMPTION 2. The boundary of the desired object is of a

“compatible” nature with respect to the boundary of the initial
object, meaning that each point on the boundary of the desired

Fig. 1 Comparison of cross-sectional views for a printed
object

Table 1 Summary of commercial AM technologies

Process Description Material(s) Manufacturer(s)

Binder jetting A liquid bonding agent is selectively deposited to join
powder materials

Polymers, sand,
glass, metals

3D Systems, ExOne

Direct energy deposition Focused thermal energy is used to fuse materials by
melting as they are deposited

Metals Optomec, POM

Material extrusion Material is selectively dispensed through a nozzle or
orifice

Polymers Stratasys, Bits from
Bytes, MakerBot,
RepRap

Material jetting Droplets of build material are selectively deposited Polymers, waxes Objet, 3D Systems

Powder bed fusion Regions of material are selectively fused in a powder
bed using sintering or melting

Metals, polymers 3D Systems, EOS, Arcam

Sheet lamination Sheets of material are bonded to form an object Paper, metals Fabrisonic, Mcor, Cubic
Technologies

Vat photopolymerization Liquid photopolymer in a vat is selectively cured by
light-activated polymer

Photopolymers 3D Systems, Envisiontec,
OS-RC, Formlabs,
Kudo3D
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object intersects exactly one outward-pointing normal ray ema-
nating from the initial object’s boundary.

This definition ensures that the VOC method will fully
reconstruct the boundary of the desired object for any given con-
vex initial object (i.e., there will be no gaps on the boundary of
the desired object that remove curvature, changes in convexity, or
other features). Additionally, one may infer from the definition
above that the compatibility of a desired object is highly depend-
ent on the position and orientation of the initial object. Figure 2
highlights this linkage by providing two examples with the same
initial and desired objects; in the first example (Fig. 2(a)) the
desired object is compatible and in the second (Fig. 2(b)) it is not
due to some outward-pointing normals intersecting the boundary
of the desired object multiple times.

Our first assumption prevents outward-pointing normal vectors of
the boundary of the initial object from intersecting one another, while
our second assumption ensures that every outward-pointing normal
will intersect the boundary of the desired object at exactly one point.
Moreover, each point of intersection is unique and the set of all points
of intersection recover the boundary of the desired object.

3.1 Two-Dimensional Formulation. For the planar case, we
desire two C2 functions representing the initial and desired curves;
however, in many practical applications, curves are approximated
by a discrete number of points. Therefore, given two ordered sets
of points, U ¼ fu1; u2;…;ung and V ¼ fv1; v2;…; vmg, we use
piecewise parametric cubic splines to generate the initial and
desired closed curves c0 and c1, with c0 ˆ c1. Each parametric
spline is described as a cubic polynomial of the form

X ¼ at3
0 þ bt20 þ ct0 þ d (3)

where X ¼ ½x; y�T 2 R2; a;b; c; and d are coefficients that
uniquely describe the spline, and t0 � [0, 1) represents the interval
on which the spline is valid. For the remainder of this section, we
will append superscripts to the spline coefficients (e.g., a0) to dis-
tinguish between the splines representing c0 and c1.

Tangent vectors for c0 are calculated by taking the derivative of
the cubic splines with respect to the parametric variable t0.

T ¼ dX

dt0
¼ 3a0t20 þ 2b0t0 þ c0 (4)

Normal vectors are derived by appending a zero to the tangent
vector and taking the cross product with the appropriate unit vec-
tor that completes a right-handed frame

N ¼
T1

T2

0

2
4

3
5� 0

0

1

2
4
3
5 ¼ T2

�T1

0

2
4

3
5 (5)

Remembering, from Assumption 1, that outward-pointing nor-
mal vectors projected from the boundary of convex objects do not
intersect one another, we construct parametric lines beginning on
the boundary of c0 and extending to c1. Each parametric line is of
the form

X ¼ ð1� t1ÞXi þ t1Xf (6)

where, again, X ¼ x; y½ �T 2 R2; t1 2 ½0; 1Þ represents the interval
on which the line is valid, Xi represents a point on c0, and Xf rep-
resents a point along the normal projected from c0. To ensure that
each parametric line is long enough to intersect c1, Xf is chosen
such that

Xf ¼ Xi þ rN (7)

where

r ¼ max
m
kvm � Xck þ

1

2
max

n
kun � Xck �min

n
kun � Xck

� �
(8)

N is the two-dimensional representation of N with the z-
component removed, and Xc is the centroid of the region enclosed
by c0.

By a suitable choice of r we have guaranteed that each paramet-
ric line will intersect c1. The point of intersection is determined by
first equating the parametric line and the spline representing c1 and
then solving for the parametric variables. If we separate the point of
intersection into its scalar components (where a subscript of 1 indi-
cates the x-component and a subscript of 2 indicates the y-compo-
nent), we have two equations in two independent variables

ðXf 1 � Xi1Þt1 þ Xi1 ¼ a1
1t30 þ b1

1t2
0 þ c1

1t0 þ d1
1 (9)

ðXf 2 � Xi2Þt1 þ Xi2 ¼ a1
2t30 þ b1

2t2
0 þ c1

2t0 þ d1
2 (10)

We solve for t1 in Eq. (9)

t1 ¼
a1

1t3
0 þ b1

1t20 þ c1
1t0 þ d1

1 � Xi1

Xf 1 � Xi1
(11)

and substitute t1 into Eq. (10) which results in the following cubic
equation:

0 ¼ ða1
2 � ma1

1Þt30 þ ðb1
2 � mb1

1Þt20 þ ðc1
2 � mc1

1Þt0

þðd1
2 � md1

1Þ þ ðmXi1 � Xi2Þ (12)

where m ¼ (Xf2�Xi2)/(Xf1�Xi1). The roots of Eq. (12) correspond
to the intersection of a spline with the parametric line. In practice,
there are m – 1 splines and for a particular normal there are only
two roots such that t0 � [0, 1). If t1 is further restricted such that
t1 � [0, 1), then there is only one valid root and the intersection
point, X, can be obtained by substituting t0 into Eq. (3) or t1 into
Eq. (6). Finally, the Euclidean distance between the point on the
initial curve and the intersecting point on the desired curve is
calculated.

This process is continued iteratively for each point in U and a
single VOC is defined which is a bijective mapping of points on
the initial curve to the desired curve. Individual layers are gener-
ated by appropriate motion along normal vectors that originate on

Fig. 2 An example of the dependence of a compatible desired
object on the position of the initial object (a) a compatible
desired object and (b) a incompatible desired object
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c0 and terminate on c1. For a given point on the initial parame-
trized curve x0ðtx0

Þ and a desired number of layers nd each point
on a subsequent layer xiðtxi

Þ is defined as

xi txið Þ ¼ x0 tx0ð Þ þ i
kX x0 tx0ð Þð Þ � x0 tx0ð Þk

nd
n tx0ð Þ (13)

where i¼ {1, 2,…,nd} and Xðx0ðtx0
ÞÞ is the point of intersection

between the normal line emanating from x0ðtx0
Þ and the desired

curve. A layer is then defined as the set of all points for a particu-
lar i and, as desired, when i¼ nd we recover the desired curve.

Interestingly, when defined in this manner, each layer is a VOC
of the initial curve and the desired curve, but not a VOC of any of
the intermediate layers. An exception occurs when the initial and
desired curves form an annular region.

3.2 Three-Dimensional Formulation. The mathematical for-
mulation for the 3D case is very similar; however, there are three
important differences. First, the set of points U and V must lie on
a regular 3D grid. Second, the initial surface must be defined as a
piecewise parametric bicubic patch and the desired surface must
have an implicit representation, and third, normal vectors must be
extended to the 3D case.

For this method, each parametric bicubic patch is described as
the tensor product between two different parametric cubic splines,
R1 and R2. If R1 and R2 are defined as

R1ðuÞ ¼ m1u3 þ n1u2 þ l1uþ o1 (14)

and

R2ðvÞ ¼ m2v3 þ n2v2 þ l2vþ o2 (15)

the bicubic patch is given as

Xðu; vÞ ¼ R1ðuÞR2ðvÞ ¼
X3

i¼0

X3

j¼0

uivjeij (16)

where now X ¼ ½x; y; z�T 2 R3, eij is the appropriate value for the
multiplied spline coefficients from R1 and R2, and u, v � [0, 1)
represent the interval on which the bicubic patch is valid.

Tangent vectors to the parametric surface are calculated by tak-
ing the partial derivatives of the bicubic patches

T1 ¼
@X

@u
¼ @x

@u
;
@y

@u
;
@z

@u

� �T

(17)

and

T2 ¼
@X

@v
¼ @x

@v
;
@y

@v
;
@z

@v

� �T

(18)

Normal vectors are derived by taking the cross product of the tan-
gent vectors in the order that preserves a right-handed frame, i.e.,
N ¼ T1 � T2.

The intersection of the normal vector from the initial surface
with the desired surface can be calculated by substituting the coor-
dinates of the parametric line into the implicit equation and then
solving the resulting polynomial for the parameter of interest.

4 Layer Generation Using Solutions to

Laplace’s Equation

In this section, we present a method to create layers for noncon-
vex objects in both two and three dimensions. For this method,
layers are defined as modified solutions to Laplace’s equation,
existing between initial and desired equipotential curves or surfa-
ces, as opposed to VOCs. Although solutions to Laplace’s

equation have many practical applications in physical systems
such as electrostatics, fluid flow, and magnetostatics and even in
control of robotic systems [22–25], to our knowledge, they have
not been applied to problems relating to AM processes.

4.1 Desirable Properties of Solutions to Laplace’s
Equation. Laplace’s equation is a second-order partial differen-
tial equation (PDE) of the form

r2u ¼ Du ¼ 0 (19)

Any function, u, that is at least twice continuously differentiable
and satisfies Laplace’s equation is called a harmonic function.
Harmonic functions have several desirable properties, but two are
of particular interest.

The first property is a corollary of the maximum principle,
which states that if a function w is harmonic in a domain D and
continuous in the closure of D, then both the maximum and mini-
mum values of the function in the closure of D are attained on the
boundary [26]. Furthermore, one can show that a harmonic func-
tion, or solution to Laplace’s equation, is completely determined
by its boundary values. A direct consequence of this fact is that
we require only two inputs (i.e., the initial and desired curves or
surfaces) to completely define and solve the problem of generating
layers. Moreover, since the maximum and minimum values of a
harmonic function must be attained on the boundary and we can
arbitrarily assign the boundary of the initial and desired objects to
have uniform, but different, potentials, we can completely con-
strain solutions between the two boundaries. In addition, note that
we can effectively bound w from above and below by choosing
appropriate values for the boundaries of the initial and desired
objects. If we further assume that w is continuous throughout the
domain, then there exists a continuum of closed equipotential
boundaries between the boundaries of the initial and desired
objects.

The second property defines the gradient at any point of an
equipotential boundary as orthogonal to the boundary. Physically,
the gradient of the scalar potential function results in a potential
field, existing solely in the domain D, which is unique at every
point. Given a point on the boundary of the initial object and the
potential field, we can then construct potential field lines that
extend to the boundary of the desired object by integrating. More
importantly, these potential lines, originating from different
points, do not intersect in the domain.

Proof. Assume that two arbitrary potential lines originating
from two different points on the boundary of the initial object
intersect in the domain at some equipotential boundary. From our
previous statement, we affirmed that the gradient at a point on an
equipotential boundary is always normal to the boundary. There-
fore, after these two potential lines intersect at an arbitrary equi-
potential boundary they will follow the same path until they
terminate on the boundary of the desired object. Since our choice
of the intersecting equipotential boundary was arbitrary, it must
hold for all equipotential boundaries including the boundary of
the initial object. Thus, the two potential lines are the same and
must have originated from the same point on the boundary of the
initial object, which is a contradiction. �

With this last property, we can now construct unique, uniformly
partitioned layers between an initial and desired object.

4.2 Formulation. On 3D Euclidean space, Laplace’s equa-
tion is given by

r2u x; y; zð Þ ¼
@2

@x2
þ @2

@y2
þ @2

@z2

 !
u x; y; zð Þ ¼ 0 (20)

where uðx; y; zÞ is a scalar harmonic function representing a
potential field. To solve this PDE for the potential, we must apply
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boundary conditions. Therefore, we treat the initial and desired
potential surfaces as boundaries and the interior between the two
surfaces as free space. Since potential flows from areas of high
potential to areas of low potential and we desire the deposited
layers to evolve outward from the initial surface, we set the poten-
tial on the initial surface to an arbitrary positive value and the
potential on the desired surface to zero. Essentially, we want to
treat these surfaces as basic Dirichlet boundary conditions.

After solving Laplace’s equation, we obtain a harmonic func-
tion describing the potential between the initial and desired surfa-
ces. By taking the gradient of the resulting harmonic function, the
potential field between the two surfaces can be determined, and
by integrating, we can generate potential field lines. Due to the
nature of Laplace’s equation, the equipotential surfaces are not
uniformly spaced and do not lend themselves well to material dep-
osition. This issue is resolved by reparametrizing the potential
lines extending between the initial and desired surface by arc
length.

If each potential field line is only known for a discrete set of
points (as is mainly true for numerical solutions), then we can
form a continuous curve by interpolating with piecewise paramet-
ric cubic splines. A specific point along the curve is then repre-
sented as

XðsÞ ¼ a2s3 þ b2s2 þ c2sþ d2 (21)

where X 2 R2 for the planar case and X 2 R3 for the 3D case, s
is arc length at that specific point, and a2; b2; c2, and d2 2 R3 are
parameters that uniquely define each potential field line.

The spacing between each layer can be calculated by dividing
the total arc length of each potential field line by the desired num-
ber of deposited layers, nd. Each layer Lj is then defined as the set
points

Lj ¼ Xk
jsk

nd

� �� 	
(22)

where j ¼ f0; 1;…; ndg; k ¼ f1; 2;…; nf g, nf is the number of
potential field lines, sk is the total arc length of the kth potential
field line, and Xkðjsk=ndÞ is the kth point of the set evaluated at
fractional portion of the arc length dependent on the current layer.
Note that by using the above definition L0 is the initial boundary
surface, Lnd

is the desired boundary surface, and each intermedi-
ate surface Lj will be uniformly partitioned throughout the
medium.

5 Incorporating Hollow Features in Build Volumes

As stated earlier, one of the possible benefits of a conformal
AM process is the ability to create hollow features. The closest
analog in a traditional AM process is holes. Depending on the ori-
entation of the hole relative to the deposition or print head, the
hole is either filled with a secondary support material or the print
head stops depositing material and is lifted at the edge of the hole
and then continues printing on the opposite edge. Although this
sort of process is certainly possible in our current framework, the
resulting layers are no longer considered conformal as there is a
break in the deposition process. Therefore, we seek a method that
can effectively deposit layers around the desired hollow feature or
void.

5.1 Limitations. First, we should note that this method is
currently limited to hollow features such that the point at the geo-
metric center is considered compatible (per the definition in
Assumption 2 of Sec. 3). And second, this method treats hollow
features as local deformations to the pre-existing layers. That is,
one of the previous methods (either VOC or Laplace’s equation)
is used to generate evenly partitioned layers for the volume with-
out hollow features and then this method is applied to generate

local deformations that force the layers around the feature. The
tradeoff for being able to conformally deposit material around
these hollow features is that the layers are no longer equally parti-
tioned in the local area of the deformations.

5.2 Formulation. Although we will only present the 2D for-
mulation of this method in this section, the method is easily
extended to 3D by applying the appropriate changes outlined in
Sec. 3.2 for the VOC method. First, given a set of ordered points
Oi ¼ foi1; oi2;…; oing that represent the vertices of i hollow fea-
tures, we determine the geometric center Oci of each feature as

Oci
¼ 1

n

Xn

j¼1

oij (23)

where n is the number of points representing each feature. Then,
we dilate the hollow feature by shifting the center to the origin
(through a rigid body transformation) and scaling each point by a
set factor, typically 1.5, and then shifting back to the original geo-
metric center. This dilated feature is used to create a local “area of
effect” (AOE), where points within the area are altered and those
outside remain unchanged. Next, both the hollow feature and its
dilated representation are approximated as closed curves using
piecewise parametric cubic splines following the process outlined
in the beginning of Sec. 3.1.

Fig. 3 Layers generated for arbitrary nonconvex geometries:
(a) colocated nonconvex objects and (b) off-center nonconvex
objects
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If a point is determined to be within the AOE, the smallest
distance from the geometric center of the hollow feature to its
boundary and to the boundary of the dilated feature, along a line
containing the point of interest, is calculated using the intersection

method outlined in Sec. 3.1. These distances are then used in a
parametric line equation to scale the original point to some loca-
tion between the boundary of the hollow feature and the dilated
boundary. The scaling factor is calculated as

Fig. 4 Surface evolution of an ellipsoid to a convex surface: (a) initial surface (a sphere), (b) first layer, (c) second layer, (d)
third layer, (e) fourth layer, and (f) final layer

Fig. 5 Surface evolution of an ellipsoid to a nonconvex surface: (a) initial surface (an ellipsoid), (b) first layer, (c) second
layer, (d) third layer, (e) fourth layer, and (f) final layer
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s ¼ dhf ð1� t2Þ þ t2ddf (24)

where dhf is the distance to the hollow feature, ddf is the distance
to the dilated feature, and t2 is the ratio of the distance from the
center of the hollow feature to the point of interest and the dis-
tance to the dilated feature. Each point pi in the AOE is then trans-
formed by

Pi ¼ s
pi

d
(25)

where d is the distance from the geometric center of the hollow
feature to the point. Intuitively, this transformation moves a point
at the geometric center to the boundary of the hollow feature and
leaves points on the dilated boundary unchanged. Points in

between these two boundaries are shifted along the line that origi-
nates at the geometric center and contains the point of interest.

As currently formulated, the behavior for a point located at
the exact geometric center is undefined. For this case, we lever-
age the fact that these sets of points are in fact individual
layers. First, we transform the two adjacent points in the layer.
Then, we create a line l1 between the two points and, finally,
we shift the point at the geometric center to the boundary of the
hollow feature along the line that bisects l1. Another possible
concern is when the hollow feature intersects or is tangent to
the boundary of the initial object. For this case, any point that
is transformed inside of the boundary of the initial object is dis-
carded and no longer part of the layer. A final concern of inter-
est is when one point exists within multiple AOEs for different
hollow features.

Fig. 6 Comparison of reparametrized layers for the Laplace’s
equation method: (a) original equipotential curves and (b) uni-
formly partitioned layers from reparametrization

Table 2 The intersection angle between layers and field lines for ten vertices per layer

Layer no. Intersection angle between layers and potential field lines (deg)

1 44.54 133.99 109.38 97.41 85.51 60.48 40.81 128.63 99.85 91.25
2 44.15 135.68 113.53 97.51 83.99 58.75 42.08 131.78 101.53 91.39
3 52.46 128.26 109.94 95.52 84.76 64.85 50.80 125.42 99.53 91.04
4 67.33 114.03 101.57 92.90 87.00 75.80 65.67 111.65 95.34 90.53
5 90.02 89.61 90.01 90.03 89.96 89.97 90.39 89.98 89.96 90.00

Fig. 7 Layers generated for an annulus: (a) layers generated
by the VOC method and (b) layers generated by the Laplace’s
equation method
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Initially, we experimented by virtually transforming the
point for each individual AOE and then shifting the point to
the average of the virtual transformations. Due to the different
strengths of the virtual transformations, which depend solely
on the distance of the point from the boundary of the AOE,
this method resulted in layers that oscillated repeatedly in the
overlapping AOE. This issue was no less pronounced when
weighted averages for each virtually transformed point from
each AOE were considered; therefore, an alternate method
relying on interpolation was implemented. For each layer, we
identified the first and last point that when transformed were
located inside of the overlapping AOE. These points and their
adjacent points (that remained outside of the AOE) were then
used as control points during the interpolation. The untrans-
formed points between the control points were then interpo-
lated over to complete the layer. As a first pass, a linear
interpolation method was considered but the resulting discrep-
ancy in the smoothness at the end points was deemed to be too
severe. Instead, we implemented a shape-preserving piecewise
cubic interpolation method [27] that better preserved the
smoothness along the layer. Furthermore, since this method is
shape-preserving and it is effectively interpolating over a linear
segment in between the control points, the original noninter-
secting layers remain nonintersecting after alteration.

6 Results

Both methods were simulated to verify their efficacy. The VOC
method was solely implemented in MATLAB, while the Laplace’s
equation method was solved in COMSOL and solutions were
manipulated in MATLAB to form uniformly partitioned layers. The
remainder of this section is organized as follows: first, we present
general examples of layer deposition on arbitrary 2D and 3D
objects, next we discuss why results show that the reparametrized
solutions of Laplace’s equation do not produce orthogonal equipo-
tential boundaries and field lines for intermediate layers, then we
compare the results of 2D layer deposition for both methods, and
finally we present examples highlighting deposition for two- and
three-dimensional objects that include hollow features.

6.1 Examples of Layer Deposition. The main advantage of
the Laplace’s equation method (i.e., deposition between noncon-
vex objects) is highlighted by depositing ten layers between
arbitrary, planar, nonconvex objects in Fig. 3. The deposition of
layers onto 3D objects is presented for both methods in Figs. 4
and 5. In Fig. 4, five layers of deposition are applied to a sphere to
form a larger ellipsoid using the VOC method. In Fig. 5, five
layers of deposition are applied to an ellipsoid to form a larger
nonconvex “dumbbell-shaped” surface using the Laplace’s equa-
tion method.

Fig. 8 The general convexity case: (a) layers generated by the
VOC method and (b) layers generated by the Laplace’s equation
method

Fig. 9 The compatible geometric object case: (a) layers gener-
ated by the VOC method and (b) layers generated by the Lapla-
ce’s equation method
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In these examples, only five layers were deposited, resulting in
large geometric disparities between the layers. Most commercial
AM processes can produce layer thicknesses of 0.150 mm or less
[28–31], while consumer grade AM processes can typically pro-
duce layer thicknesses of 0.2 mm or less [32,33]. Minimum layer
thickness varies by AM process and manufacturer; however,
thicknesses of less than 0.125 mm are difficult or impossible to
achieve. In practice, the number of layers can be chosen to match
the layering resolution of the AM process or the layers can be
adjusted by the process presented in Ref. [34]. Layers (as defined
by this method) need to be greater than or equal to the minimum
layer thickness of the AM process.

6.2 The Nonorthogonality of Reparametrized Laplace’s
Equation Solutions. As discussed previously, potential field lines
from Laplace’s equation are orthogonal to each equipotential
boundary. However, this property may have been altered when we
reparametrized the solution to generate uniformly partitioned
layers and by additional sources of error such as numerical

roundoff. A 2D study was conducted to determine if the potential
field lines were still perpendicular to each layer. For this study,
the initial and desired curves were selected as ellipses and five
layers were generated. Figure 6(a) displays the initial equipoten-
tial curves before reparametrization and Fig. 6(b) displays the uni-
formly partitioned layers after reparametrization. Both figures
have the same potential lines (which are not altered) in the
background.

Visually, it may appear as if the intersections between the
potential field lines and layers are orthogonal; however, a numeri-
cal study verified that this was not the case. The angle between
the potential field lines and layers were calculated for a subset of
the vertices via the dot product. Table 2 displays the intersection
angle, in degrees, for ten vertices in each layer.

From these results, it is clear that the newly parametrized
layers are, in fact, no longer equipotential curves. Reassuringly,
the final layer, which was defined as a boundary condition for
Laplace’s equation, retains its orthogonality with the potential
field lines.

Fig. 10 Two-dimensional layer generation using the Laplace’s equation method for single
and multiple hollow features: (a) layer generation for a single hollow feature, (b) closeup of
the layers around a single hollow feature, (c) layer generation for multiple hollow features,
(d) closeup of the layers around multiple hollow features, (e) layer generation for overlapping
hollow features, and (f) closeup of the layers around overlapping hollow features
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Although the potential field lines are no longer perpendicular to
the intermediate layers, every layer is still unique. The points
that define the layers are determined by moving along the unpara-
metrized potential field lines (which were perpendicular to the
equipotential boundaries) at different rates corresponding to the
distance to the desired curve. As stated earlier, these potential
field lines do not intersect one another between the initial and
desired curves. Therefore, since each layer evolves outward from
the previously defined layer, subsequent layers cannot intersect
and are hence unique.

6.3 Comparison of the Two Methods. The Laplace’s equa-
tion method was formulated for nonconvex objects; however, it
can also generate layers for convex and compatible objects. Both
methods were compared by generating ten layers for planar con-
vex and compatible objects. For the convex case, two geometric
objects were tested. First, layers for an annulus were plotted in
Fig. 7 and then layers for an ellipse with a circular cutout were
generated in Fig. 8. The results clearly display that both methods
produce the same results for the annulus, but not for the ellipse.

Returning to an earlier discussion, solutions to Laplace’s equation
require that equipotential boundaries intersect the potential field
perpendicularly. Since the initial curve and desired curve are still
considered equipotential curves, the field lines must intersect both
curves perpendicularly. In the case of the annulus, normal lines
from the initial curve are also normal lines of the desired curve.
Therefore, the solutions to both methods are equivalent. The
results from the second case confirm this notion, especially along
the semimajor axis of the ellipse. Each layer generated by the
VOC method is a minimum of C1 continuous, while only some of
the layers from the Laplace’s equation method are C1 continuous.
Interestingly, if the layers from both methods are superimposed
over one another, the layers exactly overlap on the semimajor and
semiminor axes. As before, these locations are where the normal
lines from both curves are the same.

For the compatible object case, an ellipse was selected as the
initial curve and an adaptation of a “plus” sign was chosen as the
desired curve. The layers for each method are presented in Fig. 9.
As expected, the layers generated for this compatible geometric
object are not identical. Since the VOC method is limited to con-
vex initial curves, there will be no instance where a compatible

Fig. 11 Three-dimensional layer generation from an ellipsoid to a nonconvex surface with a
single ellipsoidal hollow feature: (a) initial surface (right) with an ellipsoidal hollow feature
(left), (b) first layer, (c) second layer, (d) third layer, (e) fourth layer, and (f) final layer
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desired curve will share all its normal lines with the initial curve.
Therefore, there is no compatible geometric object (that is not
convex) where both methods will produce the same results.

Although these comparisons were completed for two-
dimensional objects, the same results will apply for 3D objects
due to the underlying properties of the algorithms.

6.4 Volumes With Hollow Features. One of the possible
benefits of conformal AM is the ability to create hollow features
without the need for sacrificial support material. To demonstrate
this capability, we developed a method to generate layers for
objects with multiple hollow features given that the point at the
geometric center of each hollow feature is compatible (per the
definition given in Assumption 2 of Sec. 3). For the time-being,
hollow features that do not satisfy these convexity conditions can
be still be handled, but a nonconformal process similar to what is
currently being used in traditional AM must be employed. Since
our method is the same for both the VOC method and the Lapla-
ce’s equation method, the 2D examples we provide will only be
applied to the VOC method, while the 3D example will be applied
to the Laplace’s equation method. It should be noted that the
results for each method will be different, unless the initial
layers generated for objects without hollow features are the same.
Figure 10 provides three, 2D examples of layer generation using
the VOC method from an initial ellipse to a desired star-shape
with a different number of hollow features. From Fig. 10, it is evi-
dent that our method is able to conformally generate layers around
various different types of hollow features at the cost of locally dis-
rupting the even partitioning and smoothness of the layers.

As previously mentioned, each of these 2D examples general-
izes to the 3D case and to the Laplace’s equation method. There-
fore, to minimize redundancy and to highlight the expanded
capabilities of the Laplace’s equation method, Fig. 11 displays the
generated layers for the same initial and desired surfaces used in
Fig. 5 with the addition of a single, hollow ellipsoidal feature.
During this layer generation process, the layers still evolve from
the initial geometric object (an ellipsoid) to the desired object (a
dumbbell), but beginning with the second layer the behavior is
markedly different than the earlier example. In Fig. 11(c), the
layers initially contract away from the hollow feature. But as the
untransformed layers transition past the centroid of the hollow
ellipsoid as in Fig. 11(e), the transformed layers envelop the
remainder of the hollow feature. Once past the AOE of the hollow
feature, as in Fig. 11(f), the layer generation behavior again
matches that of the previous example.

7 Conclusions and Future Work

In this paper, we presented two methods to generate a cascade
of enveloping layers between an initial and a desired geometric
object. The first method utilized VOCs and was constrained to
convex initial geometric objects and either compatible or convex
desired objects. The second method manipulated solutions to
Laplace’s equation to generate layers and was not limited to
objects of specific convexities. Notably, the layers that resulted
from reparametrizing the solution by arc length were no longer
equipotential boundaries; however, each layer remained unique
(i.e., did not intersect one another). Then we introduced a method
to deal with multiple hollow features inside of the build volume.
Examples in both two and three dimensions were presented for
each method, including nonconvex geometric objects for the Lap-
lace’s equation method and hollow features for both methods. For
the 2D case, layers generated by both methods were explicitly
compared and a brief discussion extended these results to the 3D
case.

The main limitation of the VOC method is its inability to han-
dle nonconvex initial geometric objects, and the restrictions
imposed by the compatibility conditions. Future work will aim to
resolve these limitations by adaptively modifying the initial and

desired geometric objects into intermediate convex objects that
are suitable for our method either by an iterative VOC method or
by some other means. The main limitation of the current method
based on Laplace’s equation is the use of two different software
packages. In the near-term, we will develop software that will be
solely implemented in MATLAB to reduce computation time and to
increase availability and use. Additionally, we will look into the
methods that enable our algorithms to deal with hollow features of
any convexity.
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