Inverse Kinematics of Active Rotation Ball
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Abstract This paper presents a novel method to solve the inverse kinematics of
redundant manipulators with active Spherical ball joint. The workspace density
function is built combining the Fourier transform, convolution theorem and par-
ticular form of the workspace density of a single link, which can accurately generate
the size of workspace. The approach of inverse kinematics selects a solution from
among a very large discrete set using workspace density as an evaluation criterion.
We then show the simulation results in the last section to proof the accuracy and
precision of our method.
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1 Introduction

In recent years, with the development of humanoid server robotics it has become
possible to finish the mission of humans. Humanoid server robotics is demanded to
move and do the action like humans. The development of active rotational joints
such as the arm and neck joints which support human movement is required. There
are two ways to realize the function of active rotational joints. (1) Design the special
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Mechanism which is drove by the general motors [1, 2]. (2) Design the spherical
motor which central is the selection of compatible rotor and stator geometries [3—5].

Therefore, the inverse kinematics of active rotational joints is an important and
hard topic of humanoid server robotics. Traditionally, three methods have been
used to solve the inverse kinematics problem. The first is the geometric model,
which is well-suited to compute the inverse kinematics of relatively simple
manipulators with a small number of links [6]. The second is the algebraic model,
which does not guarantee a closed-form solution, but can be efficiently solved by
polynomial root finding [7]. The third is the iterative model, the result of which
depends on the starting point used. The pseudo-inverse of Jacobi matrix is a typical
iterative algorithm [8]. In recent years, with the development of artificial intelli-
gence technology, neural network algorithm [9], genetic algorithm [10], fuzzy logic
method [11] are widely used in solving of the inverse kinematics.

This paper presents one novel method to solve the inverse kinematics of active
rotation joint based on the workspace density function of it. The workspace density
functions are built by the geometric parameters of manipulators.

2 The Workspaces Density Function

General speaking, the workspace of robot is the size of the space that the
end-effector of manipulators can reach. Suppose that a manipulator has N joints,
and each joint has S states. The number of pose that compose the workspace of
manipulator is SV. Let the points be named the set of workspace point W that can
effectively describe the workspace. The workspace W is divide into small boxes
(voxels) of equal size Ax, Ay, Az. The workspace density p denotes each box
(voxel) of the workspace the number of points within the box that are reachable,
normalized so as to be a probability density. This density is a probabilistic measure
of the positional and orientational (pose) accuracy of the end-effector in a con-
sidered area of the workspace. The higher the density in one area, the more
accurately the end-effector can reach.

For every active rotation joint manipulators, there are 3-DOF that angles o, f and
y change a rotation around an any-directional axis. In Fig. 1 let a spatial rigid-body
transformation be described by the homogeneous transformation

N 3

where x = [x,y, z]T is the translation vector described in Cartesian coordinates and
o, B,y are ZXZ Euler angles. Sometimes it will be convenient to use the shorthand
g = (x,R) and other times it will be useful to write g(x,y,z; o, f,7).

The homogeneous transformation for a single link connected to ground by a
revolute joint is defined by the Denavit-Hartenberg parameters (also called DH
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Fig. 1 Kinematic model of
spatial ball joint for two links

ro

parameters) (a,v,d, r).l Where a is the length of between common normals. v the
rotation angle about Z;_; from X;_; to X;. d is the offset along Z;_; to the common
normal. 7 is the angle about common normal from Z;_; to Z;.

In the Fig. 1, this places constraints on the allowable values of x, y, z; o, 5, y. The
rotation matrix of ZXZ Euler angles is denoted by the formula as

cocfcy —sasy  —cysa — cacfsy casf
R(o, B,7) = | casy +cfcysa casy — cfisasy  sasf (2)
—cysp spsy cp

where co. = cosa, ¢ff = cos f§, ¢y = cos ), so = sina, sff = sin f§, sy = siny.
This can be reflected in the workspace density for one link as:

filg(a, B,y;x,v,2)) = gr(laﬁ) o(f —1)0(y — 0)0(x — acos v)d(y — asinv)o(z — d)
3)

where F(o) describes the allowable range of motion of the joint around its axis.
F (o) is constant over that range of motion, and is normalized such that fi (g) is a pdf
on SE(3). When the link is free to move from [0, 27), then F (o) = 1/2x and

"Note that here v is used in place of the usual notation of 6, and t is used in place of a since both
of these symbols have alternative meanings in the present formulation.
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1
2nsin f§

o(f—1)6(y —0)d(x — acosv)d(y — asinv)d(z — d).
4)

Recall that in terms of ZXZ Euler angles and Cartesian coordinates, the volume
element for SE(3) is

fl(g(%ﬁﬂ’;xay»Z)) =

dg = sin pdadfdydxdydz. (5)

Since TURs for SE(3) are usually expressed in ZXZ Euler angles and spherical
coordinates, the DH parameters are related to these coordinates by the constraints

1o cOs ¢ sin Oy acosv
x(r0, Pg, 00) = | rosingysinfy | = | asinv |. (6)
ro cos Oy d

In terms of spherical coordinates,
o=V (7)
0o = arctan2(a, d) (8)
ro=vV Clz+d2. (9)

Then, instead of the Cartesian-coordinate version in (4) we can write

_ 1 0(B=1)0(y = 0)6(r — r0)5(6 — 60)5(d — o)
2w sin f§ % sin 0 '

fie) (10)

The factor 72 sin 0 results from the fact that dxdydz = r? sin Odrd ¢do0.
For each value of s € Z (the integers), the SE(3) Fourier transform of a general
probability density function f(g) is

Pp) = / FQU (g p)dg
SE(3)

where U*(g~!,p) the unitary representations of SE(3). Explicitly in terms of
components and coordinates

8= (aaA) = (RZXZ(aa ﬁa ’y),X(}’, Gvd)))a

dg = dA da = (sin pdodydf)(r* sin Odrd0dd) (11)
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The element of Fourier transform for workspace density matrix is

fﬁ,m’;hm(p) = / / f(avA)UZm;l/,m’(a7A;p)dAda (12)
3 .50(3)

Here the fact that each U*(g,p) is an irreducible unitary representation is used,
and hence

U'(g',p) = (U°(g,p))

or in components
—1 NS es—
f’,m’;lﬁm((a7A) ;P) = Uim;l’,m’(a7A;p)v

where the U;, ., ,,(a,A;p) is the element of U*(g~"', p) matrix. Explicitly,

UlS,m;l’Am’(aﬂA;p) = (_1)171 (_1)m7m Uls,—m;l’,fm’(a7A;p)
- m—m' ! ’os rl <13>
= (=1 (0" Y [l —mlp sl ) (@) T, (A)
=t
where

[la _m|p7 S‘llmj](a)
SO @i+ )2k + 1),

= (4n)’ TP Cling s Cotima—m Yi (0. )
k=1 (2 +1) ' i
Of_(A) = (=1) "7 7P]_, (cos p)e™

Here ji(pr) is kth spherical Bessel function. ¥, (0, ¢) is spherical harmonics

function. P]l/ (cos ) is generalized Legendre polynomials and C(k,j+ m;

I, —m|l',j) are Clebsch-Gordan coefficients. P}, ™ (cos0) is associated Legendre
function. When we substitute (10) into (12) and use (13), the result is

2n
. 1
(fl )l’,m’;l,m(p) = E/ UZ,;;;I’,W (X(r07 90a ¢0)7 RZXZ(vv T, O)ap)dv (14)
0

This integration reduces (14) to
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l/
2\ - m—m' —m'—j pl’
(fl)l’,nl’;lA,m(p) = (_1) (_1) Z (_1) JP]Z',fm’ (COS ‘L')2TC
=
I'+1

1 x [RUF1)(2k+1),

Ny 2%+ Dk — G+ m)]! i
CC% U cost) (13

since ¢y = v,

Yier (00’ V) _ \/(2](4‘;[]1 )—E—k(]_fn;]’:l)] !le':rm (COS Ho)ei(j+l11)v

2n

/e ijv t(/+m v 27_55’"0
0

Substituting back into the general SE(3) Fourier inversion formula

a’ 27‘52 Z ZZ Z Z /pzdpﬁfnz;l’,m’(p)U;’.,m’;l,m(a’A;p)a <16>

§=—00 ['=|s| I=|s| m'=—1I' m=—1

and with the dg, in the expression for (fl);m'l’.m’ (p) gives

1 a’ 27'52 Z ZZ Z /p dpf}fm;l’,O(p)U;’,O;l,m(aaA;p) (17)

s=—00 ['=|s| I=|s| m'==1' 0
One of the most important properties of the Fourier transform of functions on R
is that the Fourier transform of the convolution of two functions is the product of

the Fourier transform of the functions. This property persists also for the convo-
lution of functions on the group, namely

F(fy +fo) = // AU pUG, p)d(e))i (W)d(h)

( / AU, p)d(s)) / AWUE pdmy) (18
G G

F(H)Z (fi) =LP)f (p)



Inverse Kinematics of Active Rotation Ball Joint Manipulators ... 639

What we are really interested in is the n-fold convolution

fu(g) = (fixfi*---f1)(g),

and even more general than that, the case when the links are all different. But for
now we consider the case when they are all the same.
Note that since ¢ v - 00w = Jo,w, WE can write

(fl );m;l’,m’ (p) = (fl );,m;l’,m’ (p)éo,m.

Then, for each fixed value of s and p,

4

~

(fz)im;l”,m” (p)

I
Mg

(f)lml’ ’( )(fl);’,m’;l”,m”(p)

~

4 ‘ m'

N

I
M8

Z (f )l m;l .m (p) 50.m’ (fl );’.m’;l”,m” (p) 60’,”// (19)

~
Il

Is|

= 50.m” Z (fl);,m;l’,O(P) (fl);,o;l”.m”(p)'

I'=|s|

This is significant for two reasons: (1) one of the sums disappeared is going from
(19); (2) because now we can go back to (16), and evaluate at m’ = 0 to simplify as

4
(f”)im;l”7 /' = Z (f lml’ / )(fl);’,m’;l”,m”(p)
Z n— 1 lm rm' )50,"1' (fl );,m’;l”.m”(p)éoym”
= 50»’"” Z (ﬁlfl)llv.m;l’,0<p)(fl);,0;1”,m”(p)'

I'=|s|

Substituting back into the general SE(3) Fourier inversion formula for n links.

pzdp(ﬁl)zm;l”,o(p) U;’,O:I,m(a’A;p) (20)
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3 Simplify the Workspace Density Function of Spherical
Hinge Manipulators

According to previous work, the workspace density of spherical hinge is

0. 80— 1)o(a = $)3(5— 0)

r2sin 0

f(R(oc,ﬂ,y),x(r,(b,H)) = (21)

where C is a constant determined by motion range of the spherical hinge.
Note A € SO(3) is distance and orientation preserved, thus the relative distance,
r — L, and the relative angles, « — ¢ and 8 — 0, are also preserved under A. Then
f(R,x) remains unchanged under SO(3), i.e.
VA € SO(3), f(R,x) = f(AR, AX) (22)
For a robot arm of N links, the probability density of pose g(R,x) is
R = [ [ R ANR @RATC - )iy (23)

So(3) R}

Make coordinate change by y = x —y/,

(R, x) = / / SN AR (ATR AT (x — y))dAdy

S0(3) R?
= [ [ R @x -y TR b, ATY (0 0)dAdy
S0(3) R?
(24)
Substitute (21) and (22) to (24), we can get
fy (R(2, B,7), x(r, $,0))
/ /foN*I(AvX — YN (ATR(2, B,9), ATY (7, ¢, 0))dAdy'
S0(3) R}
/_L ¥ — ! _ /
- / / (ﬁv_l(A,Xfy/) 5(}’ )5(2 i d’)é(ﬁ 0)-r/2sin0dAdr/d0’dgb’
r'2sin 0
SO(3) R?
=C- /f HA,x —¥'(L, 2, B))dA
SO(3) R?



Inverse Kinematics of Active Rotation Ball Joint Manipulators ... 641

As for x — y/,
0 0
—Y (L B) =R p7)| O | +x=g(R(xp,7),x)| 0 (26)
—L —L

Let y" =x —y'(L,a, ) and substitute it to (25),

A (R(@, B,7),X(r, / / NAY)AL ooy (2T)

where [, 3 5003 fRz fV=1(A,y")dA is the probability of the first N — 1 links reaches the

desired p01nt

This simplification could make calculation of the probability density function
easier. For example, for a manipulator consisted of N spherical joints, the proba-
bility density function of a desired pose without simplification is

fV(R,x) =33 Z ZZ/pzdpﬁ.o,z/,o(P)Ul’,o,l.o(R,X»P) (28)

§=—00 [=|s| I'=[s|

whereas, the probability density function of desired point is

fY(x(r / f(A,x)d 2dp HJo(PL Jolpr).  (29)

4 Inverse Kinematics

A method is proposed to solve the inverse kinematics based on Fourier-based
workspace density which is similar to [12] which presented an inverse kinematics
algorithm for planar serial revolute manipulators. The criterion of this method is to
select parameters of ball joint so as to obtain the maximum workspace density to fix
the configuration of the manipulator. The point which generating maximum of
workspace density function express the best flexibility of the manipulator at that
point.

Consider one actuated rotation joint manipulator with N links. g; is denoted the
homogenous transformation matrix of the kth link which from its own base to the
distal end, where k € {1, 2,..., N}. The homogenous transformation matrix that
from the base point to the end of kth link is denoted g®.

(k)

8 =810820--08g (30)
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The homogenous transformation matrix that from the kth link to the distal end of
the manipulator is

(g") ' og™ = gii10grp0---0gy (31)

In the Fig. 2, g... is denoted the target point. All the possible states of
one module is computed and put into a set of G = {g;;}. For the kth link,
where k& < N, to find g; which makes maximizes the workspace density
Sn-ik((gfogso-- 0 gk)71 © gaim). Then we fix the transformation g; for the kth
link. Then we proceed up the manipulator one link. Among all possible states, we
search for the state of giy; that can achieve the highest density
fv-i—1((gjogso---0go ng)*l 0 gaim)- If gr+1 is such a state, we configure the
(k4 1)th link to gz, ,. When k = N, we fix the gy which makes minimizes the

Fig. 2 Flow chart of inverse
kinematics algorithm

Input gj;

Max(fui((gi*ga*  gni* 1o2i) *Caim)))

Yes gn.i*=gii

i=i+1

Min(d((gi*g:****gn-1*:gi) " “Zaim))
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distance between the distal end of manipulator and the aim pose
dy «((gf 0850 08" © gaim)-

5 Numerical Simulations for Inverse Kinematics

To illustrate the usefulness of the inverse kinematics algorithm based on workspace
density functions, we solve the inverse kinematics of active Rotation joint
manipulators with different numbers of links. The simulation result of inverse
kinematics method is shown in Figs. 3 and 4.

In the Fig. 3, the length of each link L = 1, the number of links N = 8. In the
Fig. 2, the target pose (Xuim Yaims Zaim) = (3.5,4,5). The target pose (Xaim, Vaim
Zaim) = (—4,—3,—5) in the Fig. 2. The inverse kinematics simulation results of
6-link are shown in Fig. 4, where the length of each link L = 1, the number of links
N = 6. The target pose (Xuim, Yaims Zaim) = (—40, —3.5,15) and (Xaim, Yaim, Zaim) =
(3,1,5) are computed in the Fig. 4a, b.

(a) v (b)

Fig. 3 The inverse kinematics simulation results of 8-link manipulator

(a) (b)

\///Y

Fig. 4 The inverse kinematics simulation results of 6-link manipulator
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6 Conclusion

Combining the concept of the Fourier transform for the group of rigid-body motion
of SE(3), the convolution theorem and the workspace density functions of active
rotation ball joint, we propose the inverse kinematics algorithm can efficiently
computed. The significance of this approach is that whereas methods based on
Jacobian pseudo-inverses assume continuous motion and the differentiability of
forward kinematics, the approach taken here selects a solution from among a very
large discrete set using workspace density functions as an evaluation criterion.
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