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SUMMARY
We present two methods to find all the possible conformations of short six degree-of-freedom
segments of biopolymers which satisfy end constraints in position and orientation. One of our
methods is motivated by inverse kinematic solution techniques which have been developed for
“general” 6R serial robotic manipulators. However, conventional robot kinematics methods are not
directly applicable to the geometry of polymers, which can be treated as a degenerate case where
all the “link lengths” are zero. Here, we propose a method which extends the elimination method
of Kohli and Osvatic. This method can be applied directly to the geometry of biopolymers. We also
propose a heuristic method based on a Lie-group-theoretic description. In this method, we utilize
inverse iterations of the Jacobian matrix to obtain all conformations which satisfy end constraints.
This can be easily implemented for both the general 6R manipulator and polymers. Although the
extended elimination method is computationally faster than the Jacobian method, in cases where
some of the joint angles are 180◦ (i.e., where the elimination method fails), we combine these two
methods effectively to obtain the full set of inverse kinematic solutions. We demonstrate our approach
with several numerical examples.

KEYWORDS: Biopolymer structure; 6R manipulator; Inverse kinematics; Eigenvalue problem; Lie-
group-theoretic method; Jacobian matrix.

1. Introduction
During the past decades, the conformational analysis of polymers has been of great interest in the area
of polymer science and biophysics. Several methods for this purpose have been utilized for simulating
the motions of a polymer and sampling the space of preferred conformations. One of those methods
includes Monte Carlo simulation. Regarding this famous statistical method, researchers have been
interested in “local moves” for Monte Carlo sampling, which generates multiple conformations of
a short polymer segment without causing any great change in global geometry.1–3 This is especially
useful when one is interested in the Monte Carlo sampling of polymer structures with fixed ends.4

For example, suppose that we have a long chain-like biopolymer molecule. When we change one
torsional angle in the middle of a polymer chain by a small amount, then the position and orientation
of the last molecule of a chain can vary a lot. In this case, we need so-called “concerted rotation” or
“local moves”. In order to use this method, one needs to solve the inverse kinematics of a polymer
with given end constraints. This can be solved efficiently when methods of robotic kinematics are
applied. The simplified backbone geometry of a polymer is shown in Fig. 1. Looking at this figure,
we can see that it is very similar to the geometry of the general robotic manipulator except when all
of the adjacent axes of rotation intersect each other. In this paper, we review methods for solving
the inverse kinematics problem for general 6R manipulators and propose modifications to deal with
inverse kinematic problems for polymer geometries where the robotics techniques break down. We
also present a method based on a Lie-group-theoretic description that can be applied and implemented
easily compared with other methods to both the geometries of polymers and robot manipulators. Using
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Fig. 1 The schematic conformation of a polymer used in this paper.

a combination of the proposed two methods enables us to obtain all true inverse kinematic solutions
of 6-D.O.F. biopolymer structures even when there are kinematically degenerate cases such as when
some of the joint angles are equal to 180◦.

1.1. Literature review
Past theoretical works on “local movements” in polymer chains include the work of Gō and
Scheraga.5–7 Based on their pioneering work, Dodd at al. analyzed this motion with the concept of
the “concerted rotation” method.8 They were dealing with seven adjacent dihedral angles in polymer
structures, one of which was the driving angle to generate the “concerted rotation”. In this approach,
one numerically solves non-linear algebraic equations in order to obtain the inverse kinematic
solutions. Several researchers have applied this concerted rotation method to protein structures.2, 3, 9–13

Another approach was introduced by Wedemeyer and Scheraga,14 where the polynomial equations
with respect to dihedral angles were derived through spherical geometric relations. On the other hand,
some researchers in the chemical physics community have adopted Lee and Liang’s method15, 16 to
formulate the eigenvalue/eigenvector techniques of Manocha and Canny17 for polypeptide kinematics
including the special case which contains proline.18

Many researchers have studied the inverse kinematics of “general” 6R serial manipulators that
work in all cases except for special combinations of link parameters and joint angles.15, 16, 19–24

From these works, the maximum number of inverse kinematic solutions is shown to be 16. Among
these, the formulation of Raghavan and Roth has been the basis of several other methods developed
thereafter. In Raghavan and Roth’s work, they constructed 14 equations from the basic homogeneous
transformation equations and used the characteristic equation of a 12 × 12 matrix to get the inverse
kinematic solutions.23, 24 To avoid lengthy calculations of the determinant of a 12 × 12 matrix and
solving a 16th-order polynomial equation, Manocha and Canny formulated an eigenvalue problem
to find the inverse kinematic solutions.17 Based on Raghavan and Roth’s work, they used matrix
polynomials to get an augmented matrix whose size is 24 × 24. Then, the inverse kinematics problem
can be reduced to an eigenvalue problem, which means it can be solved accurately and efficiently.
Based on their formulation, Manocha et al. developed an extended version of Manocha–Canny
formulation which can be applied to polymer structure.25 In their work, the minimum size of a matrix
for the eigenvalue problem is 32 × 32. Meanwhile, Kohli and Osvatic developed another method
which computes inverse kinematics solutions as an eigenvalue problem by constructing a 16 × 16
matrix, which is linear in one suppressed variable.26 Ghazvini also devised a method similar to that of
Kohli and Osvatic.27 His formulation also contained only one suppressed variable in the final form of
matrix equation. However, in his formulation, matrices bigger than 16 × 16 were generated. Nielsen
and Roth summarized the state-of-the-art techniques for solving the inverse kinematics of 6 degree-of-
freedom serial manipulators and direct kinematics of parallel manipulators.28 Their paper discusses
power products and dialytic elimination which are based on the work of Raghavan and Roth.23, 24

Husty et al. proposed a method based on classical multi-dimensional differential geometry to solve
a univariate polynomial equation for a general 6R robot manipulator.29 A recent work develops a
method to find intersection curves of four bivariate polynomial equations that can be derived based
on Raghavan and Roth’s formulation.30

1.2. Motivation and organization
Among the works discussed above, Kohli and Osvatic’s work seems to be the least well known, but
this work is interesting because it requires solving the smallest eigenvalue problem. It is similar to
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that of Manocha and Canny in that they both used eigenvalue problems to get solutions. However,
Kohli and Osvatic construct a 16×16 matrix in their work, which is smaller than that in Manocha and
Canny’s work and generates exactly the same number of eigenpairs as the maximum possible number
of inverse kinematic solutions. Furthermore, the matrix equations appearing in their paper has only
one suppressed variable. For these reasons, we adopt the method in Kohli and Osvatic’s work. In the
subsequent sections, we review that method and introduce our extension. We also explain why the
direct application of techniques from manipulator inverse kinematics using eigenvalue/eigenvector
formulation, such as work of Kohli and Osvatic26 and that of Manocha and Canny,17 does not work for
the geometry of polymers. After that, we give a brief introduction to the Lie-group-theoretic notation,
and explain so-called Jacobian method. Numerical examples follow thereafter.

2. Inverse Kinematics as an Eigenvalue/Eigenvector Problem

2.1. The method of Kohli and Osvatic
As mentioned in Section 1, we adopt Kohli and Osvatic’s method to find the general inverse kinematic
solutions. We give a brief explanation of their method below. For a more detailed explanation, see
the work of Kohli and Osvatic.26 Since Raghavan and Roth23, 24 built the fundamental formulation
for both the work of Manocha and Canny17 and that of Kohli and Osvatic,26 we start the review with
their formulation.

The basic matrix form of the equation which Raghavan and Roth used is

H1H2H3H4H5H6 = Hee, (1)

where Hi , (i = 1, . . . , 6) is a homogeneous transformation matrix according to the Denavit–
Hartenberg (DH) representation, and can be expressed as31

Hi =

⎛
⎜⎝

cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) Li

0 0 0 1

⎞
⎟⎠ ,

where θi is a joint angle at joint i, αi is a twist angle, ai is a link length, and Li is a offset at
joint i. All these four symbols are called DH parameters. Looking at Fig. 1, since we choose the
local z axis coincident with the backbone of a polymer, one can see that polymer structures have the
characteristics as ai = 0. Hee is the position and orientation of the end effector. To avoid the analytical
complexity of Eq. (1), they follow Tsai and Morgan20 and rewrite the basic matrix equation in the
new form:

H3H4H5 = H−1
2 H−1

1 HeeH−1
6 . (2)

By extracting the third and fourth columns in both sides (from first to third elements of each column
excluding the last element which is 1), denoted as l and p respectively, six basic equations can be
constructed. To be more specific, let the third and the fourth columns in the left-hand side be lL

and pL, respectively. Those in the right-hand side are denoted as lR and pR , respectively. Then, the
equations are obtained by setting lL = lR and pL = pR . Since each equation has three components,
the total number of equations becomes six. This description of the equations will be used throughout
the paper. Furthermore, eight more independent scalar equations are obtained in the same way by
considering the following terms:

p · p, p · l, p × l, ( p · p) l − (2 p · l) p

and combining these eight equations with basic six equations lead to 14 equations as in Raghavan
and Roth’s work.23, 24 Note that due to trigonometric rules these relations all have the same “power
products” as p and l , i.e., all of these terms are linear combinations of elements in the set {s1s2, s1c2,
c1s2, c1c2, s1, c1, s2, c2, s4s5, s4c5, c4s5, c4c5, s4, c4, s5, c5, 1}, where si = sin(θi) and ci = cos(θi),
(i = 1, 2, 4, 5).
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At this point, Kohli and Osvatic used the two trigonometric relations t3 sin(θ3) + cos(θ3) = 1 and
sin(θ3) − t3 cos(θ3) = t3, where t3 = tan(θ3/2), to get eight new equations. Finally, Kohli and Osvatic
arranged the 14 equations as follows. First, one has six equations which are independent of θ3 as

pz, lz, ( p × l)z, ( p · p)lz − (2 p · l)pz, p · l, p · p, (3)

and eight equations which are linearly dependent of t3 as

lx + t3ly, ly − t3lx, px + t3py, py − t3px,

( p × l)x + t3( p × l)y, ( p × l)y − t3( p × l)x,

( p · p)lx − (2 p · l)px + t3[( p · p)ly − (2 p · l)py],

( p · p)ly − (2 p · l)py − t3[( p · p)lx − (2 p · l)px],

(4)

totalling 14 equations. Here, lx , ly and lz, respectively denote the first, the second, and the third
components of l . The same notations are applied to p.

With the first six equations in Eq. (3), which are independent of θ3, one constructs the following
matrix equation:

L1 y1 = R1 y2, (5)

where L1 and R1 are 6 × 11 and 6 × 6 matrices, respectively. Here, vectors in the left-hand and
right-hand side are defined as

y1 = [
c4c5 c4s5 s4c5 s4s5 c4 s4 c5 s5 c2 s2 1

]T

and

y2 = [
c1c2 c1s2 s1c2 s1s2 c1 s1

]T
.

The remaining eight equations in Eq. (4), which are linearly dependent of t3, can be arranged into the
following matrix form:

L2 y1 = R2 y2, (6)

where L2 and R2 are 8 × 11 and 8 × 6 matrices as functions of t3, respectively. y1 and y2 are the
same as in Eq. (5). Kohli and Osvatic combine Eqs. (5) and (6) to generate one matrix equation as

L3 y3 = 0, (7)

where

L3 = L2 − R2R−1
1 L1

is an 8 × 11 matrix, and y3 is defined as

y3 = [ c4c5 c4s5 s4c5 s4s5 c4 s4 c5 s5 c2 s2 1 ]T .

As the next step, they make the substitution using the trigonometric relations:

s4 = 2t4

1 + t2
4

c4 = 1 − t2
4

1 + t2
4

s5 = 2t5

1 + t2
5

c5 = 1 − t2
5

1 + t2
5

,

where t4 = tan(θ4/2) and t5 = tan(θ5/2). Hence, the eight equations can be rearranged, after
multiplied by the denominator (1 + t2

4 )(1 + t2
5 ), as

L4 y4 = 0, (8)
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where L4 is an 8 × 11 matrix, and y4 is defined as

y4 = [
t2
4 t2

5 t2
4 t5 t4t

2
5 t2

4 t5 t4t5 t2
4 t4 t2

5 J K 1
]T

,

where J = cos(θ2)(1 + t2
4 )(1 + t2

5 ), and K = sin(θ2)(1 + t2
4 )(1 + t2

5 ). They also multiply the eight
equations by t4 to get another eight equations, which, together with the previous eight equations in
Eq. (8), gives a set of 16 equations, and the set of 16 equations can be arranged into the following
matrix form:

L5v = 0, (9)

where the column vector v is defined as

v = [
t3
4 t2

5 t3
4 t5 t3

4 t2
4 t2

5 t2
4 t5 t2

4 t4t
2
5 t4t5 t4J t4K t4 t2

5 t5 J K 1
]T

.

Here, J and K are the same as in the definition of y4. L5 is a 16×16 matrix, which is expressed as
At3 + B, where t3 = tan(θ3/2) and A and B are 16×16 matrices which can be treated as constant
matrices. Consequently, the inverse kinematic solutions of a general 6R robot manipulator can be
obtained by solving the generalized eigenvalue problem

Bv = −t3Av, (10)

where v is the 16×1 vector which appears in the left-hand side of Eq. (9), and t3 is the corresponding
eigenvalue.

After finding eigenvalues and corresponding eigenvectors of (10), one can find all the joint variables
sequentially. For one value of t3, one can determine θ3, and one can also determine θ2, θ4 and θ5 by
finding J , K , t4 and t5, which can be calculated by normalizing the corresponding eigenvector, where
“normalize” means that the last element of the eigenvector should be 1. After that, substitution of θ2,
θ3, θ4 and θ5 into Eqs. (5) or (6) gives θ1, and finally by Eqs. (1) or (2), we can determine θ6.

3. Inverse Kinematics for Biopolymer Structures
The key to this solution method is to solve the eigenvalue problem in Eq. (10). If A is non-singular,
then the problem reduces to the conventional eigenvalue problem as

−A−1Bv = t3v. (11)

In the case when A is singular, we still have the possibility to get the correct eigenvalues and
eigenvectors by using a generalized eigenvalue algorithm which deals with systems of the form:

Bv = t3(−A)v. (12)

However, if the system (B + t3A)v = 0 is a singular pencil (meaning that det(B + t3A) = 0 for all
values of t3), then solution techniques for the generalized eigenvalue problem such as the generalized
Schur decomposition or QZ algorithm32 do not give the correct answer.33 The failure of inverse
kinematics methods for the case of singular pencils has also been mentioned in the paper of Manocha
and Canny.17

Unfortunately, a polymer structure such as a polypeptide chain or polypropylene possesses the
above property due to the fact that all the link lengths of the structure are zero. In this case, another
method is necessary because the algorithms of Raghavan and Roth and Manocha and Canny fail to
yield solutions. Note that there are other possible methods to solve the problem in this situation.21, 29

However, we explore the eigenvalue/eigenvector formulation which we think has potential to be the
fastest method. One can utilize the extended Manocha–Canny method,25 in which the minimum size
of the matrix for the eigenvalue problem is 32 × 32. In the subsequent section, we present the extended
elimination method, which forms a smaller, and therefore more efficient, eigenvalue problem.
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3.1. Implementation of the extended elimination method
If we apply Kohli and Osvatic’s method to biopolymer structures, the rank of each resulting matrix,
A and B in Eq. (10), becomes 14. If we calculate det(B + t3A) numerically, it becomes very close
to zero regardless of the value of t3, which means that this system is really a singular pencil. We
circumvent this problem by the following procedures:

(1) Choose the same 14 rows from A and B to construct new 14 × 16 matrices Â and B̂. This also
means that we choose 14 equations from among the original 16 equations. The reason why we
can choose any 14 rows is that, if we check the rank of the augmented matrix [A, B] (formed by
juxtaposition of A and B), we can see that its rank is 16, which means that A and B are degenerate
in different ways.

(2) Multiply the 14 new equations by t5. This procedure gives eight more new power products. It
also generates 14 new equations, which, together with the previous 14 equations, gives a set of
28 equations, four of which are redundant.

(3) Choose 24 independent equations to construct 24×24 matrices A′ and B′ for which the rank of
each matrix is 24. Unlike in step 1, in this step care must be taken so that the rank of A′ is 24.

Then, the system can be rewritten as

L′
5v

′ = 0, (13)

where v′ is defined as

v′ = [
t3
4 t3

5 , t3
4 t2

5 , t3
4 t5, t3

4 , t2
4 t3

5 , t2
4 t2

5 , t2
4 t5, t2

4 , t4t
3
5 , t4t

2
5 , t4t5, t4t5J,

× t4t5K, t4J, t4K, t4, t3
5 , t2

5 , t5J, t5K, t5, J, K, 1
]T

and L′
5 is a 24×24 matrix which can be expressed as a linear combination of t3 and constant 24×24

matrices, A′ and B′ as L′
5 = t3A′ + B′. Then, we can apply the eigenvalue problem algorithm, either

as in Eqs. (11) or (12) to this system. In particular, if A′ happens to be singular, then we can still
apply the generalized eigenvalue solution techniques, as in Eq. (12), to it as long as the system is not
a singular pencil, and in practice we have found that the new system is not a singular pencil. As for
the rest of the joint variables, we can use a similar method to that of Kohli and Osvatic.26 That is, by
the eigenvalues and the corresponding eigenvectors which are normalized in the same way as in the
previous section, we can determine θ3, θ4, θ5 and θ2. Then, substitution of these values into Eq. (5)
gives θ1. Finally, we can get the value of θ6 through Eq. (2).

4. The Jacobian Method
In this section, we use a method based on a Lie-group-theoretic description to find all of the inverse
kinematic solutions of the general 6R manipulator including the case of biopolymer geometry.

4.1. Notation and terminology
We review basic terminology in this subsection. Since we are dealing with rigid-body motion, we
focus on the Euclidean motion group. See the references34–36 for detailed explanations. Our notations
follow Murray, et al..35 We also mention the notational difference (e.g., between Murray, et al.35 and
Chirikjian and Kyatkin36) to avoid possible confusion.

The Euclidean motion group (or “special Euclidean” group), SE(3), is the set of all possible
rotations and translations in three-dimensional space together with a composition rule. Let g = (R, b)
be an element of SE(3), then one can represent this element with a 4 × 4 matrix as

H =
(

R b
0T 1

)
, (14)

where R ∈ SO(3), and b ∈ IR3. By R ∈ SO(3), we mean that RRT = 1 and det(R) = +1.
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For a 3 × 3 skew-symmetric matrix � of the form

� =
⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ ,

we define the dual vector ω as

ω = (�)∨ = (
ω1 ω2 ω3

)T
.

Similarly, we can define the dual vector for a small (or infinitesimal) rigid-body motion, which is
related to infinitesimal screw motion, as

(
� v

0T 0

)∨
=

(
v

ω

)
, (15)

where (�)∨ = ω and ω̂ = �. The current notation directly follows Murray, et al..35 On the other
hand, in Chirikjian and Kyatkin,36 the definition of the infinitesimal rigid-body motion is defined as(
ωT vT

)T
, which will affect the definition of the adjoint as shown later.

Given a rigid-body motion

H(q) =
(

R(q) b(q)
0T 1

)
,

where q = (. . . , qi, . . .)T , (i = 1, . . . , 6) denotes the parameters that describe the rigid body motion,
we can define the “body” Jacobian matrix as

Jb =
[(

H−1 ∂H
∂q1

)∨
, . . . ,

(
H−1 ∂H

∂qi

)∨
, . . . ,

(
H−1 ∂H

∂q6

)∨]
. (16)

The adjoint of g = (R, b) ∈ SE(3) is defined as

AdH =
(

R b̂R
0 R

)
.

Note that if we define Eq. (15) as
(
ωT vT

)T
as in Chirikjian and Kyatkin,36 then b̂R and 0 terms are

switched, unlike as in the above expression.
Finally, if X is a screw matrix representing an infinitesimal rigid-body motion such as that in Eq.

(15), the following relation holds

AdH(X)∨ = (
HXH−1

)∨
. (17)

4.2. An inverse kinematic solution using the Jacobian
In this section, we discuss a method using the Jacobian matrix to find a single inverse kinematic
solution of the general 6R manipulator. There have been several other methods for the inverse
kinematics of robot manipulators other than those stated in Section 1.1. One example is a method
using polynomial continuation.22, 37, 38 In that formulation, the system is represented with a set of
polynomial equations by introducing continuation parameters. One solves the system of equations
with an initial value of the continuation parameters. Then, one generates solution paths in terms
of these parameters to obtain all the solutions. This method has been successfully applied to the
inverse kinematics of robot manipulators, even in the case when some of the joint angles are 180◦.22

Another example is the probabilistic approach.36 This method has especially been applied to the
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inverse kinematics and workspace generation of hyper-redundant manipulators.39–44 It utilizes non-
commutative harmonic analysis and generalized convolution on Lie groups to generate the workspace
density (a probability density function on SE(3)). This has been applied to polymer chains.45, 46

One of the most popular methods for numerical inverse kinematics relies on Jacobian iterations
to update joint angles. Many variations on Jacobian-based iterative methods for solving serial chain
inverse kinematics problems have been proposed in the literature. In the past, this method has been
applied to the control of manipulators. One of the famous works is “resolved motion rate control”.47

In this work, Whitney used the Jacobian inverse and pseudo-inverse to obtain the increments of a
vector of joint angles. Others include the work of Uicker et al.48 and that of Isobe et al.,49 etc.
Those works used numerical methods such as Newton–Raphson or Newton’s method to solve non-
linear equations. Another type of method, for example, the work of Wang and Chen50 includes the
optimization technique called cyclic coordinate descent (CCD). This CCD method has been applied
to robotic manipulators.51 Moreover, some researchers in the area of computational biology have
used this method to predict protein loop conformations.52–54 Chirikjian also used a Jacobian-based
approach to solve the inverse kinematics of a hyper-redundant manipulator treated as a continuous
curve in space.40 The novel parts of our method compared with others are: (1) the way we define
the artificial path Hp(t); (2) the correction term which is used for finding one inverse kinematic
solution and (3) the way we generate an initial set of candidate conformations to obtain all (rather
than a single) inverse kinematic solution. This type of inverse kinematics solution technique using
an artificial path has been successfully applied to determine the minimum energy conformation of
double-helical DNA.55 One advantage of this method is that it can be easily implemented in both
the cases of biopolymers and robot manipulators in that one does not need to perform symbolic
computations.

Let Hf be the desired pose of the end effector of a general 6R manipulator. We can get an initial
guess of a pose of the end effector by using arbitrary values for the six joint variables θi’s, where
i = 1, . . . , 6 and we denote this as H0.

We define an artificial function called Hp(t). This ideal path function is defined as

Hp(t) = H(t ′) exp(t · log(H−1(t ′)Hf )),

where H(t ′) is the pose of end effector at t ′, and t ′ = t , but when it comes to differentiation with
respect to t , t ′ is treated as a constant. The notations log(·) and exp(·) describe the logarithm and
exponential of matrices, which are well-defined quantities in the current context.

Note that Hp(0) = H0 and Hp(1) = Hf . This function generates an artificial trajectory which is
formed from the current frame of the end effector to the desired one, and pushes the end effector
toward the desired pose. This suggested path function has an advantage in that it contains information
on the current frame of an end effector as a feedback, which guarantees the convergence to the desired
position and orientation.

In general, we can get one inverse kinematic solution by using this Jacobian-based method. In this
context, the pose of an end effector is the product of six homogeneous transformation matrices as

H = H1(θ1)H2(θ2)H3(θ3)H4(θ4)H5(θ5)H6(θ6).

Given this, the Jacobian matrix can be computed as

Jb =
[
. . . ,

(
H−1 ∂H

∂θi

)∨
, . . .

]
,

where in this case one can find that each term can be computed by using Eq. (17) as

(
H−1 ∂H

∂θi

)∨
= Ad(Hi+1···H6)−1

(
H−1

i

∂Hi

∂θi

)∨
, for i = 1, . . . , 5
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and (
H−1 ∂H

∂θ6

)∨
=

(
H−1

6

∂H
∂θ6

)∨
.

Since we have the expression of the Jacobian, we can integrate the velocity relation for Hp ∈ SE(3)

(
H−1

p (t)Ḣp(t)
)∨ = Jb(θ )θ̇

numerically to get an inverse kinematic solution. To implement this numerically, we use the following
algorithm.

First, we calculate the increment at the kth step as

θ̇ k = J−1
b

(
H−1

p (tk)Ḣp(tk)
)∨

. (18)

However, this is not enough to get an accurate solution. Hence, we need to define the correction term
which forces the actual pose of an end effector to the desired ideal path defined by gp(t) as

θ c
k = J−1

b

[
log

(
H−1(tk)Hp(tk)

)]∨
. (19)

With Eqs. (18) and (19), we can get a joint variable vector of the next step as

θ k+1 = θ k + �t θ̇ k + θ c
k. (20)

By using this algorithm, we can find one of the possible inverse kinematic solutions of the general
6R manipulator (and, in particular, a six-degree-of-freedom polymer segment). In the event that the
path Hp(t) makes the manipulator pass through a singularity, a pseudo-inverse by singular value
decomposition is used in place of the inverse in Eqs. (18) and (19).

4.3. How to find all the inverse kinematic solutions
In this section, we explain a method to obtain all of the inverse kinematic solutions for a particular
end pose by applying the Jacobian method.

Assume that, after applying the method explained in the previous section, we can get one inverse
kinematic solution. We use this one solution as a starting point to find all of the other solutions. We
then add 0 (rad) and π (rad) to each of the joint angles, θi . This is based on the intuition that in a
planar two-link manipulator, the solutions of one joint angle differ by π (rad) with each other.35 Then,
we have 26 = 64 different initial guess vectors for a 6R manipulator. When we apply the Jacobian
method to this set of 64 different guess vectors, the results, of course, do not give 64 different solutions
since at most only 16 are possible. In theory, all of the 64 converge to a subset of all possible inverse
kinematic solutions. In practice, this can be achieved when we use the smaller �t . However, due to
the computational cost, this �t cannot be infinitesimally small. Another issue is that the Jacobian is
not a smooth function of t . Because of these two issues, if �t is not small enough in some paths, then
those paths may not converge to the correct solutions.

For two elements of SE(3), g1 = (R1, b1) and g2 = (R2, b2), we can define a metric between
these two elements as56, 57

d(g1, g2) =
√

‖b1 − b2‖2 + L2‖R1 − R2‖2, (21)

where ‖R‖ =
√

trace(RRT ). Here, L is a length scale to make distances of rotational part and
translational part compatible, and can be related to the rotational inertia and the mass of a rigid body
consisting of all atoms attached to each central molecule, which is depicted as a sphere in Fig. 1, in
biopolymer structure.57, 58 Note that this metric has the property that it is invariant to the change of
each element by shift. If two frames have a metric distance which is smaller than a certain criterion
value, say 1 × 10−3, then we can treat those two as being identical. In this way, we can discard the
resulting vectors which do not converge, and representative joint vectors that have converged are
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Table I. List of parameters used in example 1.

Joint Link length ai [Å] Offset Li [Å] Twist angle αi [◦]

1 0 1.53 66
2 0 1.53 −68
3 0 1.53 66
4 0 1.53 −68
5 0 1.53 66
6 0 1.53 −68

Table II. List of real eigenvalues in example 1.

Number Real eigenvalue

1 −5.9630
2 −5.7488
3 4.9660
4 4.3394
5 −0.8833
6 0.3470
7 1.0233
8 0.9004
9 0.9124
10 −0.3955
11 −0.5719
12 −0.5427

gathered to form an initial set of solutions. However, this initial set of solutions may not contain all
possible solutions. In some cases, one or two solutions are missing. In order to make the solution set
complete, we apply the above method with each joint vector in the solution set obtained previously
as an initial solution used to generate 64 new guess vectors. Finally, the missing solutions, if any, can
be found and all the resulting joint vectors converge to one in the set of solutions. In practice, this set
corresponds to all the inverse kinematic solutions.

5. Numerical Examples
In this section, we demonstrate the methods explained in the previous sections with numerical
examples. In Fig. 1 is shown the schematic conformation of a polymer including the kinematic
parameters.

5.1. Example 1
Table I shows the structural constants used in the first example. This is very similar to the geometry
of polypropylene which appears in the work of Dodd, Boone and Theodorou.8 All the parameters
follow the DH formalism.31 As we discussed in the earlier section, all the link lengths are equal to
zero. First, we try the following pose of the end effector:

Hf =

⎛
⎜⎝

−0.8642 −0.0270 −0.5024 −0.2884
0.4644 −0.4272 −0.7758 −1.8013

−0.1937 −0.9037 0.3817 6.3649
0 0 0 1

⎞
⎟⎠ .

The real-valued eigenvalues calculated by the extended method are presented in Table II. In this case,
there are 12 possible inverse kinematic solutions, which implies that this case corresponds to one
that has the maximum possible number of solutions according to the work of Dodd, L. et al.8 The 12
solutions are given in Table III and corresponding conformations are shown in Fig. 2.

Now let us apply the Jacobian method to this example. As described in Section 4.3, first we try
with an arbitrary initial guess for the vector of joint angles, say [0.1 0.2 0.3 0.4 0.5 0.6]T . With
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Table III. The joint angles corresponding to the solutions [◦].

i θ1 θ2 θ3 θ4 θ5 θ6

1 −96.2800 −26.2700 −160.9600 38.4800 82.5500 −35.4000
2 81.9899 4.9596 −160.2643 −60.3541 −68.3477 −34.0301
3 −82.7885 −3.1069 157.2294 63.1350 88.3393 −29.6753
4 94.1134 29.5025 154.0461 −37.6020 −57.6850 −26.1063
5 6.4869 −62.1639 −82.9073 −137.4351 −1.1064 28.1057
6 −4.0928 66.6818 38.2765 −138.3936 −44.1007 −131.7876
7 −86.6833 −7.3910 91.3207 −56.8352 −87.9667 −103.5152
8 80.9276 62.1464 84.0005 −62.0489 −1.7489 27.4160
9 11.3907 78.4807 84.7535 135.6536 2.1915 −107.7752
10 34.5097 −35.7504 −43.1578 118.9050 52.5449 49.0738
11 −65.4235 −77.5112 −59.5267 87.4006 −13.2471 −122.3746
12 59.9160 −14.5902 −56.9800 91.1014 65.9502 42.8249

Fig. 2. The conformations of all the solutions in example 1.

the same geometric parameters and pose of the end effector as in the above example, we can get one
inverse kinematic solution as

θ =

⎛
⎜⎜⎜⎜⎜⎝

−82.7885
−3.1069
157.2294
63.1350
88.3393

−29.6753

⎞
⎟⎟⎟⎟⎟⎠ .
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Table IV. Comparison of running time.

Average (± std) [sec] Extended elimination method Jacobian method

Example 1 3.4771 × 10−3(±4.4242 × 10−4) 0.1181(±6.6641 × 10−3)
Example 2 3.2032 × 10−3(±2.4787 × 10−4) 0.1219(±6.9362 × 10−3)

(5.4271 × 10−3(±5.6102 × 10−4))∗

Example 3 3.4367 × 10−3(±5.5903 × 10−4) 0.1218(±6.7818 × 10−3)

∗Combined method

With this vector as an initial guess vector, we try the Jacobian method for the 64 different cases. In
this example, fortunately we can generate 12 inverse kinematic solutions with only one initial guess
vector. The results are exactly the same as in Table III and Fig. 2. However, in general, we should
apply this method for each of the resulting set of vectors as an initial guess vector. It is worth noting
that, when we add 0, π/2, π , and 3π/2 instead of 0 and π , we obtain the same solution sets for all
the examples in this section. This illustrates that the Jacobian method is practically good enough to
obtain all inverse kinematic solutions.

As one can imagine, the Jacobian method should be slower than the extended elimination method,
in part due to the iterative computation. In order to compare the computational efficiency between
two methods, we measured time spent for each method, as respectively explained in Sections 3.1
and 4.3. Each method was implemented via Matlab script files to run in Matlab (version R2015) on
a laptop computer (CPU 2.3 GHz Intel Core i7, OS X 10.10.4). To optimize the performance, the
computationally heaviest parts (the part that finds all solutions in the extended elimination method,
and the iteration part with 64 different initial sets in the Jacobian method) are replaced by C using
“mex” function in Matlab. Twenty trials were performed for each method. Computation times were
then measured by using “tic/toc” Matlab commands. Table IV shows the average computation times
for the extended method and the Jacobian method for example 1, 2 and 3, respectively, in the format
of average (± standard deviation). For all cases, the average computation times for the extended
elimination method and the Jacobian method are about 3 × 10−3 and 0.1 s, respectively. Note that
in the table, the case marked with an asterisk in Example 2 corresponds to the combined method
that applies the extended elimination and the Jacobian methods together, which is useful in special
situations that will be explained in more detail in the next example. The results clearly show that that
the Jacobian method is computationally much more expensive than the extended elimination method.
This is one drawback of the Jacobian method. However, as we will see in the following example, we
can make use of the Jacobian method for a special purpose.

Note that, although we optimized our Matlab codes using “mex” function, it is difficult to directly
compare the computational speed with other methods11, 52, 53 partly due to the availability of the
existing codes and some of them being written entirely in Fortran, C and python. Also, the technical
skill of writing different codes in different languages becomes another factor that adds up to this
difficulty. Finally, unlike the methods mentioned above, our method is to obtain all the possible
conformations of 6-degree-of-freedom biopolymer structure. That being said, we believe that our
approach, especially the eigenvalue approach, is at least as fast as other well-known methods especially
in terms of obtaining all the possible conformations, because there is no iterative procedure involved
and the dimension of the matrix for eigenvalue problem is the smallest among known ones.

5.2. Example 2
As the next numerical example, we consider the case which appears in Table V. This is similar to the
simplified model of a protein molecule,9, 10 except that the C − N bond is not fixed as 180◦. Although
each bond length of a backbone in a molecule can vary within some range, we treat here the bond
length between each atom in a backbone as a covalent bond which has same bond length with 1.5 Å.59

Let the pose of an end effector be

Hf =

⎛
⎜⎝

0.5681 −0.7792 −0.2647 4.3548
−0.0992 0.2544 −0.9620 −0.5697
0.8169 0.5728 0.0672 1.0536

0 0 0 1.0000

⎞
⎟⎠ .
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Table V. List of parameters used in example 2.

Joint Link length ai [Å] Offset Li [Å] Twist angle αi [◦]

1 0 1.5 60
2 0 1.5 −60
3 0 1.5 70.53
4 0 1.5 −60
5 0 1.5 60
6 0 1.5 −70.53

Table VI. List of real eigenvalues in example 2.

Number Real eigenvalues

1 5.9970
2 −2.9724
3 0.9590
4 0.8375

Table VII. The joint angles by the extended elimination method in example 2 [◦].

i θ1 θ2 θ3 θ4 θ5 θ6

1 166.3421 130.8356 161.0662 99.6300 0.6208 67.2585
2 14.2311 −93.6975 −142.8117 79.5403 131.5450 −161.2173
3 −148.7040 65.5293 87.6000 2.2625 29.2118 79.2319
4 43.2346 −37.7975 79.8894 −156.3153 64.0651 −133.0993

First, we apply the extended method to this example. Solving the eigenvalue problem of Eq. (13)
gives four distinct real eigenvalues, which are shown in Table VI. In Table VII are shown the joint
angles as well. In addition, Fig. 3 shows the conformations of each solution. Looking at Fig. 3, we
can see that one of four solutions is not a true solution, which corresponds to the third real eigenvalue,
0.9590. If we further look at the last element of the corresponding eigenvector, which is to be used
for normalization, it is −2 × 10−14. In addition to the last element, we see that 17 elements are
nearly zeros. Hence, normalizing this eigenvector leads to the incorrect answer. Actually, since the
last element can be treated as zero, we should not normalize this eigenvector.

Note that there has been some work on using polynomial root finding for inverse kinematic
solutions in the case when some joint angles are 180◦ (e.g., Manseur and Doty21). However, the
work considered general robot manipulator geometries which did not include the special case of
biopolymer structures. Other methods presented in the literature also have degeneracies. The method
of Manocha, et al.25 suffers from the same numerical issues as ours when some of the joint angles are
180◦. The method of Coutsias, et al.11 describes a polypeptide chain as a series of virtual Cα − Cα

bonds, and instead of using the original torsion angles it concentrates the degrees of freedom as
spherical rotations at each vertex where virtual bonds are connected. The actual bonds and bond
angles can then be reconstructed after the inverse kinematics solution for the virtual structure is
found. Essentially this method substitutes the original polypeptide chain with a nonphysical proxy.
Then, it solves the inverse kinematics problem for this proxy, and fits the pieces of the original
structure to it in a second procedure. The non-linear change of coordinates employed in this approach
distorts the original kinematics problem, and as such, does not have all of the same degenerate cases.
However, this does not mean that it is free of degeneracies. As an analogy, the Jacobian matrix for any
6-D.O.F. manipulator will have singularities somewhere in the configuration space, and switching
from one kinematic structure to another will not eliminate singularities, but rather will only move
them to new locations. Likewise, using a non-physical proxy structure in place of the original will not
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Fig. 3. The conformations of all the solutions by the extended method in example 2.

eliminate degenerate cases, but rather will only move them. The central issue then should not be how
to remove all degenerate cases (which is impossible when using any change of variables involving a
half-angle tangent substitution), but rather how to handle them gracefully. We have devised a simple
approach to handle degenerate cases by slightly perturbing bond angles and/or end-effector poses.
These small perturbations avoid the original degeneracies and produce structures that “almost” solve
the original problem. That is, they produce joint-angle solutions that differ by small fractions of a
degree from the solution that is sought. Following this, we use a single step of our Jacobian method
to correct this approximation, thereby providing the exact solution to the original problem. Though
the implementation is completely different than that in Coutsias, et al., both of these methods invoke
two-step procedures.

The details of this simple approach for handling the degenerate case, denoted as the “combined
method”, are the following. Keeping the structural parameters (offsets and twist angles) constant,
we modify the target reference frame Hf which is a homogeneous transformation representation of
gf = (Rf , bf ) by a small amount. To be more specific, let δθ be a small angle. We first define a new
target frame Hn

f , of which the corresponding SE(3) element is gn
f = (Rn

f , bn
f ), by multiplying by a

small rotation with δθ as Rn
f = Rf exp (δθ n̂), where n is a unit vector defining the axis of rotation,

and bn
f = bf . The vector n can be chosen as any unit vector, and specifically one of the standard

basis vectors (e.g., n = e3, i.e., a unit vector along z-axis) can be used. Then, we apply the extended
elimination method to obtain the inverse kinematic solutions for this perturbed problem. With this
as an initial guess, we apply the method in Section 4.2 to obtain a true solution for Hf . Since we
use a very small angle (e.g., δθ = 0.1◦ or even smaller), the number of steps required for the method
in Section 4.2 can be small by choosing a relatively large �t , equivalent to the inverse of the total
number of steps (recall t ∈ [0, 1]). The cases marked with an asterisk in Tables IV and XII were
obtained with δθ = 0.05◦ and �t = 0.2, along with n = e3.

Now, we apply the Jacobian method with any vector of joint angles in Table VII. For instance, let
us choose the third set of joint angles which is, in fact, an incorrect one. We can generate a set of 64
different joint vectors by the joint vector chosen above, and then apply the Jacobian method for 64
cases. The results are shown in Table VIII and Fig. 4. By using the Jacobian method, we can get a
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Table VIII. The joint angles by the Jacobian method in example 2 [◦].

i θ1 θ2 θ3 θ4 θ5 θ6

1 166.3421 130.8356 161.0662 99.6300 0.6208 67.2585
2 14.2311 266.3025 217.1883 79.5403 131.5450 198.7827
3 143.3000 180.0000 87.6000 180.0000 323.5000 38.3000
4 43.2346 322.2025 79.8894 203.6847 64.0651 226.9007

Table IX. List of DH parameters for protein structures. This is
adopted from Manocha, et al.25.

Joint Link length ai [Å] Offset Li [Å] Twist angle αi [◦]

1 0 −5.81 8.67
2 0 9.44 70.05
3 0 −5.86 8.61
4 0 9.49 70.11
5 0 −5.78 8.68
6 0 9.42 70.12

Fig. 4. The true inverse kinematic solutions in example 2.

set of solutions with true joint angle vectors, which the extended elimination method does not give.
Looking at Fig. 4, we can see that all four of the solutions are correct.

5.3. Example 3
As the third example, we consider the polypeptide structure. In Fig. 5 is depicted the schematic picture
of a polypeptide unit, which is adopted from Manocha, et al..25 All four atoms in the peptide unit,
such as Cα , C and N , lie in the same plane. Noting that the each link P − Cα has the same rotation
with Cα − C and N − Cα , we can treat those two as the links in DH formalism. All DH parameters
are shown in Table IX. Originally, this data was obtained from a segment of α helix.25 Then, we apply
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Table X. The joint angles by the extended elimination method in example 3 [◦].

i θ1 θ2 θ3 θ4 θ5 θ6

1 −137.8070 −84.4386 −55.4536 84.1689 −66.0047 −4.1227
2 −168.0328 −74.2095 −50.4896 76.5695 26.6843 −112.6164
3 43.1351 110.6350 −35.1735 21.9682 82.0679 −132.8294
4 49.0000 130.0000 −30.0000 20.0000 −60.0000 30.0000
5 36.7905 95.7387 20.9278 −24.6038 80.8806 −144.9628
6 44.8240 115.5686 20.4050 −21.3483 −78.8559 37.3791

Table XI. The joint angles by the Jacobian method in example 3 [◦].

i θ1 θ2 θ3 θ4 θ5 θ6

1 48.9771 130.0056 330.0467 19.9652 299.9583 30.0309
2 36.7801 95.7592 20.8928 335.4277 80.8966 215.0271
3 44.8101 115.5937 20.3667 338.6866 281.1379 37.3918
4 191.9706 285.7823 309.5211 76.5626 26.6840 247.3806
5 222.2017 275.5502 304.5576 84.1604 293.9868 355.8842
6 43.1148 110.6383 324.8665 21.9368 82.0866 227.1408

Fig. 5. Schematic representation of peptide unit by DH formalism. Real lines represent the links in actual
calculations. This is adopted from Manocha, et al.25

our methods with the following pose of end effector

Hf =

⎛
⎜⎝

−0.8923 0.0738 0.4455 3.3759
−0.2368 0.7635 −0.6009 4.1505
−0.3845 −0.6416 −0.6637 0.6349

0 0 0 1.0000

⎞
⎟⎠ .

In Tables X and XI, we show the resulting joint angles by the extended elimination method and the
Jacobian method, respectively. Figure 6 shows all inverse kinematic solutions. Looking at Tables X
and XI, one can find that two results are not exactly the same. This is due to the fact that the desired
frame is expressed only with four digits. If we use longer digit numbers, for example as “format long”
style in Matlab, then we have the exactly same results. As shown in the figure and tables, both our
methods can be applied to the polypeptide structures.
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Table XII. Results of example 4 (tripzip2 case): original structures.

Extended elimination method Jacobian method

Trials # of solutions Computing time [s] # of solutions Computing time [s]

1 1 (2) 2.5757 × 10−3 (± 8.4090 × 10−5) 2 0.1122 (± 5.6673 × 10−3)
2

(
4.9820 × 10−3 (± 2.9500 ± 10−4)

)∗

2 6 2.6067 × 10−3 (± 9.9450 × 10−5) 6 0.0938 (± 3.4573 × 10−3)
3 4 2.6304 × 10−3 (± 2.6050 × 10−4) 4 0.1086 (± 2.9198 × 10−3)
4 2 2.6527 × 10−3 (± 3.1320 × 10−4) 2 0.1025 (± 2.7672 × 10−3)
5 6 2.6285 × 10−3 (± 1.5590 × 10−4) 6 0.0960 (± 3.5481 × 10−3)
6 4 2.5773 × 10−3 (± 7.5420 × 10−5) 4 0.1023 (± 2.4818 × 10−3)
7 2 2.5684 × 10−3 (± 7.5904 × 10−5) 2 0.1256 (± 3.0442 × 10−3)
8 2 2.5541 × 10−3 (± 6.5750 × 10−5) 2 0.1053 (± 2.2375 × 10−3)

∗Combined method

Fig. 6. The inverse kinematic solutions in the example 3. Red-colored bonds (color online) denote C − N bond
in polypeptide unit structure as shown in Fig. 5.

5.4. Example 4
As the final example, we consider the structure of tryptophan zipper (trpzip2, PDB code: 1LE1) which
was used in protein folding simulations by Monte Carlo algorithm.60, 61 Given the whole structure,
we randomly select eight three-peptide units (three consecutive residues), together with N − Cα and
Cα − C bonds attached at the proximal and distal ends of the selected three-residue structures, which
are used to calculate the initial and final poses according to DH parameterization (see Manocha,
et al.25 for more details). Also, we calculate offsets Li and twist angles αi (i = 1, . . . , 6) from PDB
coordinates of each structure based on the assumption that all four atoms Cα , C, N and Cα in a peptide
unit are in the same plane.25 Then, we solve for the inverse kinematics problem. Table XII shows
the number of solutions and average computing time for each structure. As done earlier, computing
time was calculated as the average of 20 trials given each three-residue structure. Note that in the
first trial case, the extended elimination method gives two solutions (as shown in the parentheses),
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Table XIII. Results of example 4 (tripzip2 case): perturbed structures.

The extended method Jacobian method

Trials # of solutions Computing time # of solutions Computing time

1 2 2.5613 × 10−3 (± 7.1410 × 10−5) 2 0.1115 (± 3.5357 × 10−3)
2 6 2.7044 × 10−3 (± 3.7720 × 10−4) 6 0.0940 (± 2.6699 × 10−3)
3 4 2.6775 × 10−3 (± 3.4480 × 10−4) 4 0.1051 (± 3.2846 × 10−3)
4 2 2.6183 × 10−3 (± 7.6130 × 10−5) 2 0.1073 (± 1.7974 × 10−3)
5 6 2.6157 × 10−3 (± 9.8490 × 10−5) 6 0.1005 (± 2.2602 × 10−3)
6 4 2.6847 × 10−3 (± 3.7270 × 10−4) 4 0.1031 (± 2.6349 × 10−3)
7 4 2.6086 × 10−3 (± 8.4520 × 10−5) 4 0.0946 (± 2.6288 × 10−3)
8 2 2.6531 × 10−3 (± 2.3180 × 10−4) 2 0.1012 (± 2.9837 × 10−3)

but one of them is not correct because one of joint angles become very close to 180◦ (180.01◦
as obtained by the Jacobian method which could give all correct solutions). When we apply the
combined method, then we could obtain two correct solutions again with a computation time almost
as good as the extended elimination method alone (marked with an asterisk in Table 5.3). After that,
we apply a slight angular perturbation (5◦) about N − Cα attached at the proximal end, and apply
our methods to obtain the inverse kinematic solutions. This process is to mimic “concerted rotations”
moves used in Monte Carlo simulations for chainlike molecules. This small perturbation affects the
initial pose of the chosen polypeptide structure, but we keep the final pose fixed, to seek the inverse
kinematic solutions. Table XIII shows the results of the perturbation (the number of solutions and
average computing time). In total, this example emphasizes the versatility of our methods even in
more realistic situations.

6. Conclusions
In this paper, we have presented two methods for finding all the possible conformations of short end-
constrained segments of polymers such as polypeptides and polypropylene. These segments have six
free joint angles (dihedral angles) with end constraints in position and orientation. As for the first
method in this paper, we have adopted and modified concepts from the inverse kinematics of the
general 6R manipulator, which break down in the case of polymer geometries. We have extended
an elimination method based on the work of Kohli and Osvatic which is suitable for the degenerate
geometry that polymers usually have. We have also developed a heuristic Jacobian-based method,
which can be implemented easily not only for a polymer but also for the general 6R manipulator
in that it does not require any symbolic computations. This method utilizes an artificial path in
Euclidean motion group. We compared the computational performance of these methods and found
that the extended elimination method is computationally more favorable than the Jacobian method.
However, when it comes to the kinematically degenerate cases such as when some of the joint angles
are equal to 180◦, the Jacobian method gives accurate solutions whereas the extended elimination
method cannot. We have also presented the combined method which utilizes the extended method
and the Jacobian method efficiently in degenerate cases. This method, which could generate all
correct solutions in degenerate cases, is shown to be as efficient as the extended method in terms of
computational speed. We have demonstrated this usefulness with appropriate numerical examples.
We expect that our method can be applied to the protein folding algorithms and protein engineering
such as drug design.
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