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A model for angular errors in multi-loop structures with joint clearances is established. A closed-
form solution of the model is obtained. By using optimization methods and geometric methods,
the boundaries of the studied angular errors are determined with reduced computation complex-
ity. In a single loop, the same size joint clearances have identical contributions to the angular error;
while in the proposedmulti-loop design, the position of themultiple-joint also affects the angular
error greatly. The probability density functions (pdfs) of the stated closed-loop errors are also an-
alyzed based on the open loop manipulator. The functions approach being Gaussian distributions
if there are many joint clearances. A simple method is presented to evaluate the average and the
variance of the pdfs. The method is verified by Monte Carlo simulations.
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1. Introduction

In high precision tasks, accuracy is always of the utmost importance. Several factors that lead tomechanism angular and positional
errors include backlash, compliance,manufacturing errors and input errors [1,2], and sometimes the input errors are considered as the
largest error source [3]. But the joint clearances should be considered seriously for at least two reasons: Inmost complexmechanisms,
moving parts are connected by many joints with clearances which are necessary and also cannot be eliminated, so the cumulative
error is considerable; the mechanism accuracy is still affected by the joint clearances even if the active joints are frozen.

The problem is being studied persistently in a rather wide range. Path-generating accuracy with joint errors was studied byMallik
and Dhande [4] by using a stochastic model in the confidence level of three-sigma. The path generation and transmission quality was
investigated by Erkaya and Uzmay [5], and the joint clearancewas considered as a virtual link. Pandey and Zhang [6] applied the prin-
ciple ofmaximumentropy to compute the error in the trajectory of a serialmanipulator. The trajectory curve error of a four bar linkage
with joint gaps was also studied by using Lagrange's equation [7]. In order to keep the output error within the desired limits, a toler-
ance allocationmethodwas proposed by Fenton, Cleghorn and Fu [8]. Tsai and Lai [9,10] explainedwhymulti-loop linkage accuracy is
difficult to analyze, and they used the transmission wrench screw and joint twist screw to solve the problem. Furthermore, screw
theorywas used to calculate the position accuracywith length or joint errors [11,12]. The principle of virtualworkwas applied to eval-
uate the clearance influence. Parenti-Castelli and Venanzi [13] proposed a model for clearance-affected pairs. It was effective when
inertial forces acting on links have to be considered. Similarly, pose errors in a 3-UPU robot were investigated in [14] and the position
error due to clearances with external load was studied by Innocenti [15], and an example of multi-loop manipulator with locked ac-
tuators was given. Joint clearances have a side effect on the system dynamic performance. Flores and Lankarani [16] discussed the dy-
namic behaviormodel of rigidmultibody systemswithmultiple revolute clearance joints. The dynamic response of dry, lubricated and
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frictionless clearance joints were studied by Koshy [17], Machado [18], Tian [19], Flores [20] and Muvengei [21], etc. The work has
been extended from rigid body to rigid-flexible multibody [22]. A 2-DOF manipulator [23] and a slider-crank mechanism [24–26]
have been studied in terms of their dynamic response. Most of these studies need to rely on the force/torque equilibrium conditions
even though the problem is focused only on the geometry errors. In fact, the errors exist objectively with or without load or gravity.
Venanzi and Parenti-Castelli [27] proposed a new technique where the force acting on the mechanismwas not needed and themax-
imum displacement error caused by clearances can be directly determined. Other methods used for clearance and tolerance analysis
include the matrix method [28], the interval approach [29], the direct linearization method [30], Lie group and Lie algebra methods
[31] and a method based on the generalized kinematic mapping of constrained plane motions [32,33]. Most of these methods can
dealwith the outputmaximumerror caused by joint clearances effectively.Wang andEhmann [34] analyzed the accuracy of a Stewart
platform and described the error sensitivity. Ting, Zhu and Watkins [35] showed that the same value joint clearances contributed to
the direction error equally in a single loop linkage. The output error of a mechanism distributes in a scope because uncertainty in the
joints deviate. Xu and Zhang [36] established stochastic models for several kinds of joints. Similar research on stochastic errors in-
cludes Monte Carlo simulation [37] and variance analysis [38]. Zhu and Ting [39] studied the end point position probability density
function of open loop mechanisms. The manipulator error propagation is studied by Wang and Chirikjian [40]. It is shown that the
errors propagate by convolution on the Euclideanmotion group. Additionally, some research on accuracy focuses on specific mecha-
nisms, such as the 3T1R robot [41], a welding robot [42], a Stewart platform [43], the in-situ fabrication ofmechanisms [44] and a class
of 3-DoF planar robots [45].

For a deployable mechanism, when somemoving parts (or actuators) are locked as a structure, the joint clearances still affect the
output accuracy. The output accuracy refers to the positional or angular accuracy of a specific component that we are interested in. In
this paper, a model of planar multi-loop structure with joint clearances is established. The angular error boundaries of this model are
determined by using an optimization method. In order to simplify the multivariate problem, a geometric analysis is performed. The
relationship of serial linkage length errors and a single closed loop angular error is investigated. Then the pdf of the multi-loop
direction errors can be given approximately. These functions are compared with the Monte Carlo simulation results.

2. Error model

Although amulti-loop structure can be constructed arbitrarily, the extendible support structure (ESS) is preferred as a good exam-
ple to illustrate the error analysis clearly. The ESS is used to deploy and support the synthetic aperture radar (SAR) panels for a satellite
[46]. The pointing direction of the panels should be accurate for better radar images, which is why the method presented below
focuses exclusively on orientational errors. The ESS is always a structure with symmetry and can be described in a plane as shown
in Fig. 1, which shows a deployed ESS configuration. Link FG is affixed to the satellite and link FD and DE are the inner panel and
the outer panel, respectively.

The ESS is a 3-degree-of-freedommechanismbefore it becomes a structurewith stable triangles, so some joints should be frozen in
Fig. 1, and joints H, I and J are chosen to be locked. The nominal directions of the two panels are perpendicular to FG. But if all joints
fromA to J arewith clearances, the pointing directionswill deviate from the expected angles. Then the following questions need to be
answered. How to obtain the angular errors of the two panels caused by the joint clearances?Which is the greatest error contribution
joint? What does the probability distribution of the error look like?

The character and the influence of the locked joints should be studied first. A typical lock mechanism for the space deployable
device is shown in Fig. 2. The joint is driven by a torsional spring to deploy the ESS. A pin is connected to link 1 with a torsion spring,
too. The pinmoves along the hinge surface of link 2 and finally falls into the groove to complete the locking. If there is a clearance, the
locked joint can be shown as in Fig. 3.

In Fig. 3, τ1 is much greater than τ2, and a force couple is caused by τ1. Because of the couple, the joint stays at nearly the same
certain contact point, which means that the clearance has a very small influence on the locked links. But the deviation of the locked
angle as shown in Fig. 4 may lead to new errors.

The equivalent length l3 of the two links in Fig. 4 can be written as
l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22−2l1l2 cos β þ Δβð Þ

q
: ð1Þ
Fig. 1. The support structure.



Fig. 2. The joint lock mechanism.
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By using the Taylor Series expansion, the error of l3 is
Δl3 ≈
l1l2Δβ

l3
sin β þ l1l2 Δβð Þ2

2l3
cos β: ð2Þ
From Fig. 1, we know links BC, CE and CG are all locked with β= π, so the first item of the right side of Eq. (1) is 0 and the second
high-order item can be neglected. The locked joints have a very minor influence, so the locked link can be seen as a single object.

We use twomodels of jointing a hinge. In Fig. 5(a), the pin is fixed at link 1, and the clearance can be represented by a virtual link
with length k. In Fig. 5(b), links 1 and 2 share a common pin, and the clearances can be represented by two virtual links.

For the ESS in Fig. 1, to simplify the model, the hinge model type 1 is used for all the joints except joint C. Assume that all of these
joints have the same gap size and the pins are in contact with the holes in a relatively stable state. Themodel can be given as shown in
Fig. 6. Such amodel is sufficient for analyzing the angular errors of interest in the ESS system. Thismodel is not a simple sum of several
triangles, because point B2 doesn't coincide with point D2. It will be discussed in the following sections.

The clearances are represented as dashed lines with length k. The angular errors between F1G2, F2D2 and F1G2, D1E2 are what we
want to study. Themiddle loop is chosen to be analyzed first. Let F2D2 be the fixed link and coordinate A1-xy is affixed to this linkwith
axis x along A1B2. Let lengths of A1B2, B1C1 and C2A2 are l1, l2 and l3, respectively. And the middle loop DoF is
F ¼ 3� 6−2� 7 ¼ 4: ð3Þ
It equals the numbers of the dashed links in the loop, so the virtual links can move independently. Let the angles between the
virtual links and axis x be θi (i = 1, 2, 3, 4). Points of this loop can be expressed as
A1 ¼ 0 0½ �T ð4Þ
B2 ¼ l1 0½ �T ð5Þ
Fig. 3. The locked joint.



where

Fig. 4. Locking angular deviation.
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B1 ¼ B2 þ k cθ1 sθ1½ �T : ð6Þ
Let α1 denote the angle between B1C1 and axis x, so
C1 ¼ B1 þ l2 cα1 sα1½ �T ð7Þ
C3 ¼ C1 þ k cθ2 sθ2½ �T ð8Þ

C2 ¼ C3 þ k cθ3 sθ3½ �T ð9Þ

A2 ¼ k cθ4 sθ4½ �T ð10Þ

, c and s denote cos and sin, respectively.
(a) Type 1

(b) Type 2

Fig. 5. Hinge configurations.



Fig. 6. Support structure with joint clearances.
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According to structural constraints,
then
l3− A2C2k k ¼ 0: ð11Þ
Let
t1 ¼ tan
α1

2
ð12Þ

sin α1 ¼ 2t1
1þ t21

; cos α1 ¼ 1−t21
1þ t21

: ð13Þ
So t1 can be solved from Eq. (11) as
t1 ¼
2kl2b1 � 2l1l2 þ 2kl2a1ð Þ2− 2kl1a1 þ 2k2c1 þ d1

� �2 þ 4k2l22b
2
1

� �1
2

2k l1−l2ð Þa1−2l1l2 þ 2k2c1 þ d1
ð14Þ
where,
a1 ¼
X4
i¼1

hicθi ð15Þ

b1 ¼
X4
i¼1

hisθi ð16Þ

c1 ¼
X3
j¼1

X4
i¼ jþ1

hic θ j−θi
� �

ð17Þ

d1 ¼ l21 þ l22−l23 þ 4k2 ð18Þ

hi ¼ 1; i ¼ 1;2;3ð Þ
−1; i ¼ 4ð Þ

�
: ð19Þ
These coefficients need to be adjusted according to the numbers of the clearances. In Eq. (14), there are two solutions for this loop.
In the presented configuration, symbol “−” is applied. It can be substituted in Eqs. (4)–(10) to get the point positions. The other two
loops can be calculated by using the same model, but one less clearance should be applied. Point C3 is solved from Eq. (8), and then
points A1 and B2 can be replaced by points C3 and D2 in the right loop. The angle α2 between D1E2 and axis x is obtained accordingly.
Similarly, if the angle between F1G1 and axis x is denoted as α3, then replace points C3 and D2 with points F2 and C3, α3 can be given.
Notice that the configuration of the left triangle loop is different from the other two loops, so symbol “+”will be applied. The angular
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error between F1G1 and axis x isα3− π / 2 and the angular error propagation between F1G1 and D1E2 isα3−α2− π / 2. The process is
summarized as shown in Fig. 7. It is shown that the constraint coupling problem of the multi-loop structure is totally solved.

3. The extreme angular errors

3.1. Model analysis

The extremeangular errors of the twopanels and the error contribution of each joint clearancewill be discussed in this section. It is
an optimization problem to get the maximum errors. In coordinate A1-xy, the maximum (minimum) value of the right angular error
(panel D1E2) α2 can be computed from
maxerrorR ¼ α2 θ1; θ2;…; θ7ð Þ
s:t: 0 ≤ θi b 2π i ¼ 1;2;…;7ð Þ: ð20Þ
And the angular error between F1G1 and D1E2 is
maxerror ¼ α3 θ1;…; θ4; θ8;…; θ10ð Þ−α2 θ1; θ2;…; θ7ð Þ−π
2

s:t: 0 ≤ θi b 2π i ¼ 1;2;…;10ð Þ
ð21Þ
where, θi is the direction of each joint clearance.
In fact, they are unconstraint optimization problems since θi can be with any value. However, there are seven variables in Eq. (20)

and ten variables in Eq. (21). Although it is claimed that the single-loopmethod in reference [35] can be extended to somemulti-loop
mechanisms, it needs to be discussed further. A single loop structure with joint clearances is shown in Fig. 8.

The angle we care about is γ, and an equivalent model is as shown in Fig. 9.
To find the maximum γ, two possible configurations should be investigated, as shown in Fig. 10.
Calculate
cos γ1max− cos γ2max ¼ l21 þ l22− l3 þ Kð Þ2
2l1l2

− l1−Kð Þ2 þ l22−l23
2 l1−Kð Þl2

¼ K K−l1 þ l2 þ l3ð Þ K−l1−l2 þ l3ð Þ
2l1l2 l1−Kð Þ b 0 ð22Þ
where, K = k1 + k2 + k3, then
γ1max N γ2max: ð23Þ
Fig. 7. Error computation process for multi-loop structure.



Fig. 8. Single loop with clearances.
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So in configuration A, γ reaches its peak value, and all the clearance directions can be known immediately.
However, as mentioned in the last section, the multi-loop structure is not a simple sum of single loops. For example, in Fig. 11, by

maximizing∠P,∠Q doesn't reach itsminimum. This is because when B1C1 rotates anticlockwise, the distance between C3 and D2may
become longer, and as a result, ∠P may tend to be smaller.

For the above reason, the stated geometric method can only be used in the outermost single loop. But it should still reduce the
computational complexity. In Eqs. (20) and (21), the variable numbers go down from seven and ten to four. Also, there is another
way to make the calculation much easier, as shown in Fig. 12.

Curves N1N3 and N2N4 are sections of the circles with center at A1 (in Fig. 11) and radii equal to lA2C2± 2 k; while curves N1N2 and
N3N4 are sections of the circleswith center at B2 and radii equal to lB1C1±2 k. Point C3must lie in the shadow area. These curves can be
seen as four straight lines which are easy to be determined. So Eq. (21) can be expressed as
maxerror ¼ f C3ð Þ
s:t: C3 intheshadowarea:

ð24Þ
Accordingly, the minimal values of these errors can be given. Although the joint clearances affect the angular error equally, their
contributions to the displacement of position C3 are different, as shown in Fig. 13.

In Fig. 13, each joint gap is removed individually. Point T3 coincideswith point T2, whichmeans clearances k2 and k3 have the same
effect, while k1 and k2 are not. The difference is shown in Fig. 13(b) and the nominal point T is shown in Fig. 13(a). In the presented
triangles, the horizontal displacement of T is affected more by k1 while the vertical displacement is affected more by k2.
Fig. 9. Equivalent single loop with clearances.



(a) Configuration A

(b) Configuration B

Fig. 10. Two possible configurations of maximum angle.
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3.2. Numerical example

A numerical example is given according to the derivation above. The example parameters are listed in Table 1.
According to the analysis of the last subsection, the boundaries of some angular errors in coordinate A1-xy are summarized in

Table 2 with the corresponding point C3, where, the first three errors are as defined at the end of Section 2, and the error sum is
[α2

2 + (α3 − π / 2)2]1/2. The direction parallel to the x axis is defined as 0.
Fig. 11. Explanation of multi-loop angular error.



Fig. 12. Area of point C3.
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4. Probability distribution functions of angular errors

The error propagation problemwith pdf analysis of open loopmechanisms has been studied by convolution on the Euclideanmo-
tion group, SE(n) [40,47,48]. As pointed out in these references, if an open loopmanipulator is separated into two segmentswith error
workspace densities of ρ1(g) and ρ2(g), g = (R,x)∈SE(n), convolving the densities results in the density for the whole manipulator.
The joint positional and orientational density for the two segments' manipulator will be
ρ1;2 R; xð Þ ¼
Z
A∈SO nð Þ

Z
y∈Rn

ρ1 A; yð Þρ2 ATR;AT x−yð Þ
� �

dAdy ð25Þ
where, dA is the Haar measure for SO(n) and dy is the Lebesgue measure for R n.
It is already complicated. In addition, the closed loop structures are evenmore difficult to analyze because of coupling constraints.

In Fig. 14, the length of l3 with clearances k should be studied first.
Obviously, the length is an open loop problem, since the clearance is small enough, a simpler way can be found, since (ksinη1)2 is a

negligible high order item, then
l31 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l3 þ k cosη1
� 	2 þ k sinη1

� 	2q
≈ l3 þ k cosη1: ð26Þ
If there are more joint gaps, then
l3n ≈ l3 þ k
Xn
i¼1

cos ηi: ð27Þ
In the space environment, it is reasonable to assume that the clearance angle ηi distributes uniformly. So the pdf is
ρηi ¼
1
2π

; ηi ∈ 0;2π½ Þ: ð28Þ
The cumulative distribution function of cosη1 is
P cos η1≤X
� 	 ¼ P arccos X≤ η1≤ 2π− arccos X

� 	 ¼ P η1≤2π− arccos X
� 	

−P η1≤ arccos X
� 	

¼ 1− arccos X
π

; X ∈ −1;1½ �:
ð29Þ
So,
ρ cosη1
¼ P0 cos η1≤ X

� 	 ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−X2

p : ð30Þ
Let ai = cosηi, then
P a1 þ a2≤ Xð Þ ¼ P a2≤ X−a1ð Þ ¼
Z þ∞

−∞

Z X−a1

−∞
ρa1a2

a1; a2ð Þda1da2 ð31Þ



(a) k1 removed 

(b) k2 removed 

(c) k3 removed 

Fig. 13. Position effects of joint clearances.

Table 1
Structure parameters (mm).

Middle loop A1B2 B1C1 A2C2

198 93 214.67
Right loop B2D2 D1E2 E1C4

11 208 242
Left loop A1F2 F1G2 G1C5

14 125 210
Clearances k

0.5
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Table 2
Angular error boundaries.

Right error α2 Left error α3 − π/2 Error propagation Error sum

Maximum (rad) 0.0407 0.0257 0.0403 0.0482
C3 (mm, mm) N1 (191.98, 93.81) N1 (191.98, 93.81) N4 (195.08, 91.95) N1 (191.98, 93.81)
Minimum (rad) −0.0417 −0.0257 −0.0393 0.0011
C3 (mm, mm) N4 (195.08, 91.95) N4 (195.08, 91.95) N1 (191.98, 93.81) (193.84, 92.50)
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so,
or exp

and,
ρa1þa2
Xð Þ ¼

Z þ∞

−∞
ρa1

a1ð Þρa2
X−a1ð Þda1 ¼ 1

π2

Z 1

−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a1

2
q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− X−a1ð Þ2
q da1 ð32Þ

ressed in convolution form,

ρa1þa2
Xð Þ ¼ ρ cosη1

� ρ cosη2
Xð Þ ð33Þ

ρa1þa2þ…þan
Xð Þ ¼ ρ cosη1

� ρ cosη2
�… � ρ cosηn

Xð Þ: ð34Þ
Infinity spikes in these functions in small intervals make sense. For example, Eq. (30) is infinity when X=±1, but its integral can
be expressed as Eq. (29).

Eq. (32) is an improper integral, and we will have trouble in solving it even by using numerical methods, not to mention Eq. (34).
However, according to the Lindeberg–Levy central limit theorem, Eq. (34) will approach the Gaussian distribution when n→ ∞. The
average and variance of ai are
μ i ¼ μ ¼
Z 1

−1

ai

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a2i

q dai ¼ 0 ð35Þ
σ2
i ¼ σ2 ¼

Z 1

−1

a2i

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a2i

q dai ¼
1
2
: ð36Þ
Let
a∑ ¼
Xn
i¼1

ai ð37Þ
Fig. 14. The equivalent length with clearance.



(a) n=2 

(b) n=3 

(c) n=4 

(d) n=5 

Fig. 15. Monte Carlo simulation frequency.
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then
ρa1þa2þ…þan
Xð Þ≈ 1ffiffiffiffiffiffiffiffiffi

2nπ
p

σ
e
−a2∑
2nσ : ð38Þ
Monte Carlo simulations are conducted when n equals 2 to 5 (105 times for each). The frequency of each point is plotted in Fig. 15.
In the electronic version of this paper, the color code goes from blue to red, with red denoting high frequency.

According to the simulations of Fig. 15, further study shows that when n ≥ 5, Eq. (38) is close enough to a Gaussian distribution.
When n = 5, taking the parameters listed in Table 1, Eq. (27) can be seen as a convergence in distribution to
ρl3n
∼N l3;5k

2σ2
� �

¼ N 214:670:625ð Þ: ð39Þ
The pdf is compared with the Monte Carlo simulation result in Fig. 16.
The following analysis is for the closed loop angular errors, based on the open loop conclusions above. If the pdf ρx is known, and

y = f(x), then
ρy Yð Þ ¼ ρx f−1 Yð Þ
� � d f−1 Yð Þ

dY












: ð40Þ
As shown in Figs. 8 or 9, let b = cosγ, so,
l3n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22−2l1l2b

q
: ð41Þ
According to Eq. (40),
ρ cosγ bð Þ ¼ ρl3n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22−2l1l2b

q� �
l1l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l21 þ l22−2l1l2b
q ð42Þ
and,
ργ γð Þ ¼ ρ cosγ cos γð Þ sin γ: ð43Þ
Again, since the joint clearances are very small, γ changes slightly, so
ργ γð Þ≈ l1l2 sin γ0

l3
ρl3n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22−2l1l2 cos γ

q� �
ð44Þ
where, γ0 is the nominal value of γ, or expressed as
γ0 ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22−l23

q
2l1l2

: ð45Þ
The result of Eq. (44) is plotted in Fig. 17 with the simulation density.
Fig. 16. Comparison of the pdf and simulation for l35.



Fig. 17. Comparison of the pdf and simulation for γ (n = 5).
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It still looks like a Gaussian distribution, but it can't be explained by Eq. (44). We need to find another way to explain the curve
directly. In fact, we have
γ ¼ arccos
l21 þ l22− l3 þ ka∑

� 	2
2l1l2

ð46Þ
and
γ≈ γ0 þ
l3kþ k2a∑

l1l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− l21þl22− l3þka∑ð Þ2

2l1 l2

� �2
s : ð47Þ
Ignoring small items, obtain
γ≈ γ0 þ
l3k

l1l2 sinγ0
a∑: ð48Þ
So Eq. (44) can be replaced by
ργ � N γ0;
l3k

l1l2 sinγ0

� �2
nσ2

� �
¼ N 1:5228;8:51� 10−5

� �
: ð49Þ
While the average and variance of the simulation in Fig. 17 are 1.5228 and 8.50 × 10−5, respectively, they are nearly the same.
The above analysis is suitable for single closed-loop structure with any number of joint clearances. But the Gaussian distribution

can only be used when the number is equal to or greater than 5. However, multiple joints are more often used than single joints,
so there are at least 6 clearances even in a three-joint-triangle structure.

For themulti-loop structure in Fig. 1, the angular errorΔγ_R betweenDE and axis x is mainly affected by∠CBA and∠CDE. Tomake
it simpler, we can ignore the error caused by the positional errors, and just investigate how the joint clearances (four independent
joint clearances in the middle triangle and three in the right triangle) affect Δγ_R independently. The sum of the seven errors can
be seen approximately as Δγ_R. Again, by using Monte Carlo simulation, we know that the error approaches a Gaussian distribution,
then according to the Lindeberg–Feller central limit theorem,
ρΔγ R � N 0;4
l3k

l1l2 sinγ0

� �2
σ2 þ 3

l6k
l4l5 sinγR0

� �2
σ2

� �
¼ N 0;1:27� 10−4

� �
ð50Þ
where, l4, l5 and l6 denote the lengths of CD, DE and CE and γR0 denotes the nominal value of ∠CDE.
Similarly, Δγ_L denoting the angular error between FG and axis y is
ρΔγ L � N 0;3:74� 10−5
� �

: ð51Þ
They are both plotted in Fig. 18 with the simulation results.



(a) Right angular error

(b) Left angular error

Fig. 18. Angular errors for multi-loop structure.
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The analysis for the multi-loop errors is not as good as that for the single-loop because the model has been simplified. Because
lCD b lCF, point C3 has a smaller effect in the right loop, that is the reason why Fig. 18(a) is much more accurate than Fig. 18(b).
However, it is not necessary to make any simulations to obtain the pdf roughly.
Fig. 19. Modified left angular error.
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To make the analysis more accurate, Monte Carlo simulations for the middle triangle are needed. In fact, Δγ_L is caused by the
clearances of the left ΔGFC and point C3. They can be seen as two independent parts. Let C3 = (Cx, Cy), in Fig. 1, Δγ_L caused by
point C3 only is
e1 ¼ arccos
l2GF þ l2FC−l2CG

2lGFlFC
þ arctan

Cy

Cx þ lFA
−π

2
ð52Þ
where,
lFC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cx þ lFAð Þ2 þ C2

y

q
: ð53Þ
By the Monte Carlo simulation, we get var(e1) = 2.4780 × 10−5.
According to Eq. (49), the variance of the error caused by the ΔGFC (triangle lengths change very small) is 2.4574 × 10−5. In

Eq. (50), the pdf of Δγ_L can be modified as
ρΔγ L � N 0;2:4780� 10−5 þ 2:4574� 10−5
� �

¼ N 0;4:9354� 10−5
� �

: ð54Þ
Accordingly, Fig. 18(b) is modified as in Fig. 19.
The difference between Figs. 18(b) and 19 is mainly caused by the position of C3. The pdf of the errors that caused this point is

difficult to determine, so the Monte Carlo simulation method is used. However, only the simulation for the middle loop is enough
to estimate the errors of the multi-loop structure. In Fig. (19), compared to the bar chart, the computational work to generate the
curve is reduced nearly by half.

5. Conclusions

The angular errors for amulti-loop structurewith joint clearances are studied in this paper systematically. Themodel of clearances
for single joint, multi-joint and locked joint are presented. Accordingly, the explicit solutions for the multi-loop angular errors are
obtained. Then the boundaries of the errors are investigated by using the optimization method. The joint clearance geometry config-
urations are studied to explain and to simplify the optimization problems. It is shown that the angular errors of the end loops are af-
fected by the angular and positional errors together of the middle loop, and in the end loop, the same size joint clearances contribute
to the angular error identically. In the presented structure, the optimization variables are reduced to four from seven (two loops) and
ten (three loops), respectively. The analysis of probability density function is extended to dealwith themultiple closed-loop structure.
The studied errors are distributed according to the Gaussian distribution. All of the analyses are verified by using the Monte Carlo
simulations.
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