Analysis of a mechanism with redundant drive for antenna pointing

Xin Li¹², Xilun Ding¹ and Gregory S Chirikjian²

Abstract
Orientation accuracy is a key factor in the design of mechanisms for antenna pointing. Our design uses a redundantly actuated parallel mechanism which may provide an effective way to solve this problem, and even can increase its payload capability and reliability. The presented mechanism can be driven by rotary motors fixed on the base to reduce the inertia of the moving parts and to lower the power consumption. The mechanism is redundantly actuated by three arms, and is used as a two-dimensional antenna tracking and pointing device. Both the forward and inverse kinematics are investigated to find all the possible solutions. Detailed characters of the platform are analyzed to demonstrate the advantages in eliminating singularities and improving pointing accuracy. A method of calculating the overconstrained orientational error is also proposed based on the differential kinematics. All the methods are verified by numerical examples.

Keywords
Antenna pointing mechanism, redundant drive, orientation workspace, singularity analysis, error analysis

Date received: 14 April 2015; accepted: 27 January 2016

Introduction
Conventional antenna mounts are serial kinematic devices with floating actuators as a part of the moving platform. The floating actuators lead to extra weight and rotary inertia. In order to lower the power consumption and improve the mobility, all of the actuators should be fixed to the base. Moreover, while a typical parallel mechanism consisting of more sub-chains can improve the accuracy and the load capacity of its platform. A two degrees of freedom (DOF) parallel antenna, named the Canterbury tracker, together with an analysis of its kinematics, has been studied by Dunlop and Jones.¹ Two actuated arms, one passive arm, and a strut, are attached to the platform and the base. The movable strut is not good for higher load capacity, but it is a novel design method. The antenna pointing device is actually a two or three DOF rotational mechanism. Accordingly, the relevant studies are investigated.

The well-known Omni-Wrist III is another two-DOF parallel mechanism. Driven by two linear actuators, it is capable of a full hemisphere of pitch/yaw motion.² Two-DOF parallel wrists with two rotary motors have been presented by Carricato and Parenti-Castelli,³ and Gogu,⁴ respectively. The workspace and the kinematics of one type of the wrist mechanisms have been studied,⁵ and the singularities have been analyzed by using a visual graphic approach.⁶ Merriam et al.⁷ developed a fully compliant pointing mechanism to eliminate friction and the joint backlash, but further design is needed to increase the workspace volume. For several reasons, more actuators than the number of DOF are often used. A redundantly actuated mini pointing device was described by Palpacelli, et al.⁸ To increase the workspace size of this flexure-base mechanism, a redundant linear actuator was added. Shao et al.⁹ designed a tilt platform driven by three piezoelectric actuators. Saglia et al.¹⁰ presented a high performance ankle rehabilitation mechanism. Driven by three linear actuators, the mechanism could deliver enough forces and torques needed for ankle exercises. Similar platforms include another three-DOF ankle rehabilitation mechanism proposed by Wang, et al.¹¹ A spherical wrist was proposed to show that actuator redundancy not only removed singularities but also increased dexterity.¹² Some singularity-free spherical wrists with parallel structure have been addressed by Lenarcic and Stanisic¹³ and Enferadi and
Tootoonchi, respectively. To simulate the humanoid humeral pointing motion, a parallel platform with moveable central strut was designed. Di Gregorio presented a family of three legs parallel spherical mechanisms. They are all spherical parallel mechanisms with many common characteristics, such as the kinematic properties including the singularity problems.

For the antenna pointing mechanism structure design, this paper proposes a rotational parallel platform with 2-DOF which is redundantly driven by three rotary motors. A central strut is used to improve the load capacity. The solutions are analyzed for both the forward and inverse kinematics. Then the workspace and the singularity analysis are presented. Furthermore, the pointing errors caused by joint clearances in redundant and non-redundant situations both are studied. The presented platform can also be used as mechanical eyes, robot wrists, and rehabilitation devices, etc.

Kinematics solution

Forward and inverse kinematics

A parallel pointing mechanism with three arms is presented as shown in Figure 1. It consists of a platform and a base. They are connected by a central strut and three identical arms. The central strut is fixed at the center of the base, and the other end is connected to the centroid of the upper platform by a universal joint. Arm1 \((A_1C_1B_1)\) with three joints is as shown in Figure 2. The revolute joints of the three arms are uniformly placed around the periphery of the base (marked as \(A\)), while the three universal joints are placed uniformly around the periphery of the upper platform (marked as \(B\)). Two parts of each arm are connected by a spherical joint (marked as \(C\)). Let the upper platform surface be parallel to the base surface, and it is as the initial (home) position of this mechanism. Point \(O\) is located at the centroid of points \(A_1, A_2,\) and \(A_3\), while point \(O_1\) is located at the centroid of points \(B_1, B_2,\) and \(B_3\). In Figures 1 and 2, coordinates \(O-xyz\) and \(O_1-x_1y_1z_1\) are affixed to the base and the upper platform, respectively, with their z-axes point vertically upwards. Axis \(x\) is along line \(OA_1,\) and axis \(x_1\) is along line \(O_1B_1.\) They are parallel lines at the initial position, and axis \(y_1\) coincides with the floating axis of the central strut universal joint. In Figure 1, the height of \(OO_1\) is \(h;\) Lengths of \(OA_i, O_1B_i, A_iC_i,\) and \(C_iB_i\) \((i = 1, 2, 3)\) are \(R, r, l_1,\) and \(l_2,\) respectively.

The central universal joint is as shown in Figure 3. The fixed coordinate \(O_1-x_1y_1z_1\) is parallel to the base surface, and it is the initial state of \(O_1-x_1y_1z_1.\)

Furthermore, the parallel platform can be proved as a 2-DOF rotational mechanism. If any two revolution joints of the three arms are driven by actuators, the platform is fully constrained. Accordingly, the motions can be controlled by two fixed rotary motors. If driven by three arms, the mechanism is redundantly actuated, which will be focused on in this paper. Also, if the universal joint of the central strut is replaced by a spherical joint, the platform turns into a 3-DOF rotational device which can also be applied as an antenna pointing mechanism.

The forward kinematics for this mechanism involves determining the angular position, velocity, and acceleration of the upper platform by giving the driven arm angles, while the inverse kinematics is the reverse process. In Figure 1, arms \(A_1C_1B_1, A_2C_2B_2,\) and \(A_3C_3B_3\) can be called arm1, arm2, and arm3 and let their position angles be \(\theta_1, \theta_2,\) and \(\theta_3,\) respectively.

Every point at the upper platform can be determined by performing two rotations. In Figure 3, the
platform first rotates α about axis x_1, and then rotates β about the axis y_1. \mathbf{R}_1 denotes the first rotation matrix, and then the direction of the floating axis y_1 is

$$y_1 = \mathbf{R}_1y_{10} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\alpha & -s\alpha \\ 0 & s\alpha & c\alpha \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ c\alpha \\ s\alpha \end{bmatrix}$$

(1)

where c and s denote \cos and \sin, respectively.

Let the rotation matrix about y_1 be \mathbf{R}_{y_1}, and

$$\mathbf{R}_{y_1} = \begin{bmatrix} c\beta & -s\alpha s\beta & c\alpha \\ s\alpha s\beta & c^2\alpha + s^2\alpha c\beta & s\alpha c(1 - c\beta) \\ -c\alpha s\beta & s\alpha c(1 - c\beta) & s^2\alpha + c^2\alpha c\beta \end{bmatrix}$$

(2)

In the base coordinate, point B_i ($i = 1, 2, 3$) can be obtained by using matrix multiplication

$$\mathbf{B}_i = \mathbf{O}_1 + \mathbf{R}_i \mathbf{R}_i \mathbf{B}_0, \quad (i = 1, 2, 3)$$

(3)

where \mathbf{B}_0 is the initial position vector (3×1). According to the structure constraint

$$\|\mathbf{B}_i - \mathbf{C}_i\| = l_2, \quad (i = 1, 2, 3)$$

(4)

three equations are obtained for the arms

$$F_i = p_{11}s\theta_i + p_{12}c\beta_i + p_{13} = 0$$

(5)

where, p_{ij} are the corresponding dimensional parameters.

According to equation (5), F_i is a function of α, β, and θ_i, so the solution of the inverse kinematics is easy to get.

Figure 3. Universal joint of central strut.

<table>
<thead>
<tr>
<th>R</th>
<th>r</th>
<th>h</th>
<th>l_1</th>
<th>l_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>126</td>
<td>140</td>
<td>70</td>
<td>134</td>
</tr>
</tbody>
</table>

Let

$$t_i = \tan \frac{\theta_i}{2}$$

(6)

then

$$t_i = \frac{-p_{11} \pm \sqrt{\Delta_i}}{p_{13} - p_{12}}$$

$$\Delta_i = p_{11}^2 + p_{12}^2 - p_{13}^2$$

(7)

Thus, the displacement of each arm is obtained.

The forward kinematics of parallel mechanisms is a challenging problem. For the forward kinematics of this two-DOF mechanism, only two of the three arms are needed to determine the rotation angles of the platform, even all of the three arms are actively driven. Taking arm1 and arm2 as active sub-chains, variables α and β can be determined by θ_1 and θ_2.

Rearrange (5) as

$$F_1 = q_{11}c\beta + q_{12}c\alpha s\beta + q_{13} = 0$$

(8)

where

$$\begin{cases} q_{11} = -2r(R + l_1 c\theta_1) \\ q_{12} = 2r(-h + l_1 s\theta_1) \\ q_{13} = R^2 + r^2 + h^2 + l^2 - 2l_1(hs\theta_1 - Rc\theta_1) \end{cases}$$

(9)

Similarly, let

$$t_a = \tan \frac{\alpha}{2}, \quad t_b = \tan \frac{\beta}{2}$$

(10)

Solving the resulting quadratic equation for t_b gives

$$t_b = \frac{q_{12}(t_a^2 - 1) \pm \sqrt{\Delta_{a1}}}{(q_{13} - q_{12})(t_a^2 + 1)}$$

$$\Delta_{a1} = (q_{11}^2 - q_{13}^2)$$

(11)

$$\times (t_a^2 + 1)^2 + q_{13}^2(t_a^2 - 1)^2$$

The rotation angle β is then expressed as a function of α. Furthermore, it could be substituted into the equation for F_2 to get a closed-form solution. The solution is complicated and it is not an expected result. However, the explicit relationships between α and β according to equations F_1 and F_2 are given and it is important even a numerical method is used. A specific platform is constructed in Table 1 as an example.

The structure parameters of the proposed mechanism are listed in Table 1. Assume that θ_1 and θ_2 are at...
30° and 60°, respectively. Repeating the process of equations (8) to (11) according to the result, the relationship of curves of α and β is as shown in Figure 4.

In Figure 4, two loops for arm1 and arm2 are drawn, respectively. As pointed in equation (11), there are two possible solutions, and in the figure, they are plotted in dashed lines and solid lines. The two intersection points of the loops are the possible solutions of the platform rotation angles. The two matched configurations are shown in Figure 5. The position of arm3 can be calculated from equation (7).

There are at most four intersections for two different loops. From the above analysis, it is known that by using equation (11), all possible solutions could be found even if the final forward kinematics closed-form solution is not given. In addition, as it is shown in Figure 4, the dashed line for arm1 is nearly parallel to axis α which means α is sensitive to β. So in equation (11), choosing the independent variable from \(t_\alpha \) and \(t_\beta \) should be done carefully.

The Jacobian matrix is establishes the relationship between the angular velocity of the upper platform and the active joint angular velocity. The partial derivative equations of equation (5) can be expressed as

\[
J_{\omega \dot{\alpha}} + J_{\dot{\omega} \dot{\beta}} + J_{\omega \dot{\theta}_1} = 0
\]

where

\[
\begin{align*}
J_{\omega \dot{\alpha}} &= 2r(h - l_1 s \theta_1) s \alpha \beta + \sqrt{3c\alpha} \\
J_{\omega \dot{\beta}} &= 2r(R + l_1 c \theta_1)s \beta - (h-l_1 s \theta_1)c \alpha c \beta \\
J_{\omega \dot{\theta}_1} &= 2l_1 (h + r c \alpha) c \theta_1 - (R-r \beta c \alpha) s \theta_1 \\
J_{\omega \dot{\theta}_2} &= l_1 \left(\frac{\sqrt{3}r c \alpha - r c \beta}{2} \right) s \theta_2 \\
J_{\omega \dot{\theta}_3} &= l_1 \left(\frac{\sqrt{3}r s \alpha - r c \alpha - r c \beta}{2} \right) s \theta_3
\end{align*}
\]

The angular velocities of both forward and inverse kinematics can be accordingly obtained. Repeating the differentiate process, the angular accelerations can also be known.

Numerical example

A numerical example is calculated according to the derivation above. Taking the parameters as listed in Table 1, when α and β both move from −15° to 15° with constant speed 1°/s, the inverse displacements are shown in Figure 6.

According to equation (7), each arm has two possible inverse kinematics solutions. They are as shown in Figure 6(a) and (b), respectively. One set of the solutions is as shown in Figure 6(a), and the intersection point of the three lines indicates that the three arms have the same displacement at this moment. It matches the configuration in Figure 1 as the initial
position. In the configuration, the angular velocities and accelerations are given, as shown in Figure 7.

If the angular displacements of arm1 and arm2 both are from 30° to 60°, according to the forward kinematics analysis, the relationship between θ_1, θ_2, and α can be shown as a mesh in Figure 8(a). In the same way, another mesh can be obtained for β as shown in Figure 8(b).

Workspace and Singularity

The workspace for the 2-DOF parallel mechanism considered as a pointing device is defined in the three-dimensional (3D) space, called orientation workspace. The orientation workspace is the set of all attainable orientations of the mobile platform about a fixed point. The 3D orientation workspace is nearly the most difficult one to represent. The parallel mechanism closed-loop nature brings complex singularities inside the workspace. The singular configurations have an important influence on the performance of the parallel mechanisms. The problem has been addressed by using geometry method or by Jacobian matrix. In addition, the redundantly actuated method has been applied to reduce or eliminate the singularities.

In this section, the orientation workspace is analyzed with singularity configurations. Assuming that a unit vector from O_1 pointing outwards is perpendicular to the upper platform surface. All the possible points which the end of the vector can attain constitute the workspace. Accordingly, in the coordinate system $O_1-x_10\cdot y_10\cdot z_10$ as is shown in Figure 3, the orientation of the platform is

\[
P = R_y \cdot R_x \cdot [0 \ 0 \ 1]^T = \begin{bmatrix} \sin \beta & -\sin \beta & \cos \beta \end{bmatrix}^T
\]

(16)

Searching all the values of α and β, if Δ_j in equation (7) are all greater or equal to zero, then α and β can be substituted in equation (16) to determine the workspace. Still using the parameters constructed in
From Figures 9 and 10, some characters of this mechanism can be known. The relationship between α and β in equation (18) is as shown in Figure 10. Since each arm has two possible configurations, assuming the initial position of these arms is as shown in Figure 1, the top view of the orientation workspace discussed above with singularities is as shown in Figure 10.

In Figure 10, the dashed lines are where the mechanism is in singular configurations. In fact, the two lines A are singularities caused by arm1, and the lines B and C are caused by arm2 and arm3, respectively. From Figures 9 and 10, some characters of this mechanism can be known. In the coordinate system $O_{x_1y_1z_1}$, the figure is only symmetrical about axis x_{10}, which means that even if the three arms are identical, the workspace will not be rotationally symmetric. The lines A in Figure 10(a) and (b) do not intersect the line B and the line C, so the singularities caused by arm1 can be totally eliminated by arm2 and arm3. To explain it, let

$$
\begin{align*}
\alpha &= 22.9183^\circ \\
\beta &= -12.7512^\circ
\end{align*}
$$

(19)

which fulfills equation (18) driven by arms 1 and 2, and this configuration is as shown in Figure 11.

It is difficult to identify which configurations in Figure 11(a) cause a singularity. So in Figure 11(b), it shows a geometric representation. Arm2 is represented by $A_2C_2B_2$. If only arm2 tries to control the platform, the instantaneous rotation axis can be determined as

$$
s_{a_1} = \left[\cos \beta - s_\beta \frac{R + l_1 c_\theta_1}{h - l_s c_\theta_1} \cos c_\beta \quad s_\beta c_\beta \right]^T
$$

(20)

where from equations (6), (7), and (19) we get

$$
\begin{align*}
\theta_1 &= 57.6163^\circ \\
\theta_2 &= 19.4063^\circ \\
\theta_3 &= 60.3638^\circ
\end{align*}
$$

(21)

So, the rotation axis in equation (20) is

$$
s_{a_1} = \frac{1}{\|s_{a_1}\|} \begin{bmatrix} 0.9983 \\ -0.0544 \\ -0.0230 \end{bmatrix}
$$

(22)

This axis has been plotted in Figure 11(b). As can be seen, the instantaneous rotation line intersects the extension line of C_2B_2. Arm2 cannot provide any drive torques, so the mechanism loses a degree of freedom.

To solve the forward singularity problem, use arm3 as an additional input, then

$$
\begin{bmatrix}
J_{1a} & J_{1b} \\
J_{2a} & J_{2b} \\
J_{3a} & J_{3b}
\end{bmatrix}
\begin{bmatrix}
\dot{\theta}_1 \\
\dot{\theta}_2 \\
\dot{\theta}_3
\end{bmatrix}
= 0
$$

(18)

Since θ_1 can be expressed as a function of α and β, according to equations (6), (7), (13), and (14), the relationship between α and β in equation (18) is obtained. Then substituting the solved α and β in equation (16), all the singular points in the workspace can be determined. If arm2 or arm1 is passive, the singularity analysis is similar. Since each arm has two possible configurations, assuming the initial position of these arms is as shown in Figure 1, the top view of the orientation workspace discussed above with singularities is as shown in Figure 10.
which means $J_{yi} = 0$. Accordingly, the workspace with these singular configurations is shown in Figure 12.

In Figure 12, the dashed lines are the inverse kinematics singularities. As expected, they are the boundary lines. It is a way to determine the scope of the workspace exactly. If the parameters in Table 1 are modified as shown in Table 2, a platform with a larger orientation workspace (even can cover a whole sphere) also can be designed. However, by giving the above smaller workspace example, the characters of the mechanism should be presented more clearly.
The error can be measured by the modulus of equation (25) as

$$\| \Delta P \| = \sqrt{(\Delta \alpha c \beta)^2 + (\Delta \beta)^2}$$

(26)

To get $\Delta \alpha$ and $\Delta \beta$, the clearance of each spherical joint can be seen as an error of l_2. So the length of $B_i C_i$ will be $l_2 \pm \Delta l_i$, where $-\epsilon_i \leq \Delta l_i \leq \epsilon_i$. Since the forward kinematics is a time consuming task and it is difficult to determine the maximum error, a new method should be proposed. If all the active arms move to their nominal angles, variables α, β, and l_2 may have errors. Assuming the nominal values of α and β are α_0 and β_0, respectively, using Taylor’s theorem we get

$$F_i(\alpha_0 + \Delta \alpha, \beta_0 + \Delta \beta, l_2 + \Delta l_i) \approx F_i(\alpha_0, \beta_0, l_2) + \frac{\partial F_i}{\partial \alpha} \Delta \alpha + \frac{\partial F_i}{\partial \beta} \Delta \beta + \frac{\partial F_i}{\partial l_2} \Delta l_i$$

(27)

According to equation (5)

$$\begin{cases}
F_i(\alpha_0 + \Delta \alpha, \beta_0 + \Delta \beta, l_2 + \Delta l_i) = 0 \\
F_i(\alpha_0, \beta_0, l_2) = 0
\end{cases}$$

(28)

Since the clearances are always small, the following equation will be precise enough

$$J_{ia} \Delta \alpha + J_{ib} \Delta \beta - 2l_2 \Delta l_i = 0$$

(29)

First, let the mechanism be driven by arms 1 and 2 only, while arm 3 is passive. Solving the equations (not in singularity configuration), we get

$$\begin{cases}
\Delta \alpha = \frac{2l_2(J_{ja} \Delta l_2 - J_{ja} \Delta l_1 - J_{ja} \Delta l_3)}{J_{ia} J_{ja} - J_{ia} J_{ja}} \\
\Delta \beta = \frac{2l_2(J_{ia} \Delta l_1 - J_{ja} \Delta l_2)}{J_{ia} J_{ja} - J_{ia} J_{ja}}
\end{cases}$$

(30)

Substituting it to equation (26), the maximum error is

$$\| \Delta P_{\text{max}} \| = \frac{2l_2}{2l_2 - J_{ja} J_{ja}} \left[\left(J_{ja}^2 + J_{ja}^2 c^2 \beta \right) \Delta l_1^2 + \left(J_{ia}^2 + J_{ia}^2 c^2 \beta \right) \Delta l_2^2 + 2(J_{ia} J_{ja} + J_{ia} J_{ja} c^2 \beta) \Delta l_1 \Delta l_2 \right]$$

(31)

From the result, it can be seen that ΔP reaches its peak ΔP_{max} when $|\Delta l_1|$ and $|\Delta l_2|$ both get their maximum values. The sign selection of the term $\Delta l_1 \Delta l_2$ depends on the sign of the terms $J_{ia} J_{ja} + J_{ia} J_{ja} c^2 \beta$. Assume $\epsilon_i = 0.1$ ($i = 1, 2, 3$), structure parameters are as shown in Table 1, and $\alpha, \beta [-15^\circ, 15^\circ]$, the calculation result of the errors is plotted in Figure 14.

Orientation error analysis

In pointing mechanism applications, the accuracy is of the utmost importance. Some previous works studied the accuracy of parallel mechanisms. An error prediction model for overconstrained or non-overconstrained parallel mechanism was proposed. Chang and Tsai introduced a redundant drive method to control the backlash of a gear-coupled robotic mechanism. In this section, besides the analysis of the error caused by joint clearances, the error elimination by using redundant drive method is discussed.

For the presented mechanism, the analysis and manufacture of the spherical joints are the most complicated, so it is reasonable to assume each spherical joint has a joint clearance. As is shown in Figure 13, ϵ_i means the clearance of the $i\text{th}$ arm.

The clearances bring the errors of α and β directly, and then can be mapped to the orientation error which is obtained from equation (16) as

$$\Delta P = \frac{\partial P}{\partial \alpha} \Delta \alpha + \frac{\partial P}{\partial \beta} \Delta \beta \approx \begin{bmatrix}
\Delta \beta c \beta \\
-\Delta \alpha c \alpha \beta + \Delta \beta s \alpha \beta \\
-\Delta \alpha s \alpha \beta - \Delta \beta c \alpha \beta
\end{bmatrix}$$

(25)
In the same way, the errors of the mechanism driven by any other two sub-chain arms can be obtained. If the platform is redundantly actuated, the error analysis is a little difficult. There are three non-redundant driven situations, but their signs of Δl_i are probably not in agreement. Taking the calculation of $\|\Delta P_{\text{max}}\|$ in a specific position as an example, if the mechanism is driven by arm1 and arm2, assuming the signs of Δl_1 and Δl_2 are both $+$; if the mechanism is driven by arm2 and arm3, assuming the signs of Δl_2 and Δl_3 are both $+$; while if the mechanism is driven by arm1 and arm3, assuming the signs of Δl_1 and Δl_3 are $+$ and $-$, respectively. Then the two signs of Δl_3 are not in agreement, so the redundant error is not simply the minimum of the three situations. The redundant error analysis of the redundant drive mechanism should be as follows. All possible sign sets of the three arms are listed in Table 3.

<table>
<thead>
<tr>
<th></th>
<th>Arm1</th>
<th>Arm2</th>
<th>Arm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>2</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>3</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>4</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

In the same way, the errors of the mechanism driven by any other two sub-chain arms can be obtained. If the platform is redundantly actuated, the error analysis is a little difficult. There are three non-redundant driven situations, but their signs of Δl_i are probably not in agreement. Taking the calculation of $\|\Delta P_{\text{max}}\|$ in a specific position as an example, if the mechanism is driven by arm1 and arm2, assuming the signs of Δl_1 and Δl_2 are both $+$; if the mechanism is driven by arm2 and arm3, assuming the signs of Δl_2 and Δl_3 are both $+$; while if the mechanism is driven by arm1 and arm3, assuming the signs of Δl_1 and Δl_3 are $+$ and $-$, respectively. Then the two signs of Δl_3 are not in agreement, so the redundant error is not simply the minimum of the three situations. The redundant error analysis of the redundant drive mechanism should be as follows. All possible sign sets of the three arms are listed in Table 3.

<table>
<thead>
<tr>
<th></th>
<th>Arm1</th>
<th>Arm2</th>
<th>Arm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>2</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>3</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>4</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Comparing with Figure 14, the overall maximum error decreases from 0.2847° to 0.1358°. Generally, it can be seen that the errors are obviously reduced. The result corresponds to the intuition and gives a quantitative answer to the proposed accuracy problem. In fact, the errors can be totally eliminated by adjusting the displacements of the three redundant drive arms. Since α and β are both in their nominal values, according to the above error analysis

$$J_{\beta i} \Delta \theta_i - 2l_\beta \Delta l_i = 0$$

so

$$|\Delta \theta_i| = \frac{|2l_\beta \Delta l_i|}{J_{\beta i}}$$

For the given example, to eliminate the orientation errors, the absolute displacement values of the three arms should be adjusted as shown in Figure 16.

The three arms should be in an antagonistic configuration, so the adjustment direction of each arm can be determined quickly.

Conclusions

A redundantly actuated 2-DOF rotational parallel mechanism for use as an antenna pointing device has been proposed in this paper. The parallel platform can be driven by three identical arms with rotary actuators fixed on the base. Both the forward and inverse kinematics analyses of the mechanism have been investigated, including the study of the differential kinematics. There are two possible solutions of the inverse kinematics and at most four possible solutions of the forward kinematics. The orientation workspace of the device is given which is an axis-symmetric shape. The kinematic singularities in the workspace have been investigated according to the Jacobian matrix, and the geometry representation of the forward singularity is explained. The non-redundant drive forward singularities are caused by the arms and can be expressed as unbroken lines in the orientation workspace. It is clearly demonstrated that the singularities can be reduced or eliminated by using redundant drive method. The maximum orientation errors caused by the spherical joint clearances in redundant and non-redundant drive situations have
been obtained. In addition, the error elimination method of adjusting displacements of the three active arms has been proposed. All of these investigations are explained and verified by numerical simulations, which show the redundant drive method is an effective way to avoid singularity configuration and to improve the pointing accuracy.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 51125020, 51105013), the Innovation Foundation of BUA for PhD Graduates and the China Scholarship Council (Grant No. 201306020091) for the financial support of this work.

References
17. Lenarcic J, Stanisic MM and Parenti-Castelli V. Kinematic design of a humanoid robotic shoulder complex. In: ICRA 2000 IEEE international conference on

Appendix

Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>joint error</td>
</tr>
<tr>
<td>h</td>
<td>height of the central strut</td>
</tr>
<tr>
<td>J_i</td>
<td>Jacobian coefficient</td>
</tr>
<tr>
<td>l_1</td>
<td>length of the lower arm</td>
</tr>
<tr>
<td>l_2</td>
<td>length of the upper arm</td>
</tr>
<tr>
<td>p_{ij}</td>
<td>the corresponding dimensional parameters</td>
</tr>
<tr>
<td>P</td>
<td>pointing orientation</td>
</tr>
<tr>
<td>r</td>
<td>radius of the moving platform</td>
</tr>
<tr>
<td>R</td>
<td>radius of the base</td>
</tr>
<tr>
<td>R_x</td>
<td>rotation matrix about x axis</td>
</tr>
<tr>
<td>R_{y1}</td>
<td>rotation matrix about y_1 axis</td>
</tr>
<tr>
<td>α, β</td>
<td>pointing angles</td>
</tr>
</tbody>
</table>