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Abstract We present a self-assembly planning algorithm to allow regular modular
robots to assemble into some specified shapes. By tiling a shape using connected
lattices in accordance with the robotic geometry, a parallel sequence is obtained to
plan self-assembly in successive layers. Robots are identical and autonomous. They
use local interactions to seek for a grown shape and update the connection infor-
mation to determine the corresponding shape. We calculate self-assembly steps of
different sizes of shapes to obtain the optimal initial node for square shapes and
simulate the self-assembly process.

Keywords Self-assembly � Swarm robots � Collective construction

1 Introduction

Self-assembly has been viewed as an intelligent approach to enable shaping what
are desired by autonomously assembling components. Especially, it has been
attracting the robotic community over the last decades [1, 2], because it seems to
improve automating construction to some extent and adaptation in setting where
human activity is difficult. Self-assembly in robotics can make a shape specified by
a user or constrained by environments, which resembles morphogenesis that is a
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biological process where physical processes and constraints affect biological growth
to develop an organism’s shape. To build a desired two-dimensional shape, unlike
using static blocks, we use a group of regular modular robots which have the simple
autonomous capability to assemble themselves.

There are three types of robots creating self-assembly ability: robot swarms,
collective robotic construction, self-reconfigurable robots. In robot swarms, each
individual component forming a shape is an autonomous robot. Inspired by mul-
ticellular organisms at micro-scale level or social insects at the colony level, robot
swarms cooperate through local interactions in a large group for shape formation.
Although an individual robot is simple, swarm intelligence can make the group
more powerful. Based on interactions in local area, a swarm of simple and identical
agents can construct a polygon in the plane [3]. In addition to the polygon for-
mation, self-assembly of a continuous-space shape was addressed in algorithms and
physical system [4]. Nagpal’s group demonstrates a thousand-robot swarm form
different shapes only using local message and sensing. There robots can aggregate
into a formation but they don’t have inter-robot physical connection for whole
structure. Equipped with the appropriate grasping or connecting mechanisms, dis-
tributed robot swarms can connect with the beacon to build a shape [5, 6]. This
shape can move collectively or be capable to stand up in 3D space [7].

Collective robotic construction combines the passive blocks and active mobile
robots. Inspired by social insects, the mobile ground robots [8] or aerial vehicles [9]
or external propulsion/fabrication devices [10] can collect the modular passive
blocks to construct complex shapes. A great challenge for collective construction is
how to find individual rules for robots, given a shape. Two problems are forward
prediction and inverse solution. Based on individual rules of a robot, forward
prediction is used to define what they can use passive blocks to build while
inversely given a shape, a construction path must be solved in inverse solution.

Self-reconfigurable robots can be viewed as a large swarm of connected robots
to reconfigure the shape of the single entity without disassembly [2]. Chain-like
robot can been used to reconfigure into multi-branch structures [11, 12], however
the potential shapes are limited. Chirikjian presents a hexagonal metamorphic robot
which can reconfigurable into multi-branch or solid shapes [13]. Reconfiguration
planning from an initial configuration into a goal is a key issue [14].

Our work is combination of robot swarms and collective construction. We
present a self-assembly planning algorithm for regular modular robots to form some
possible shapes according to a certain sequence. A continuous space of shape can
be tiled by a large group of tiny regular lattices. These lattices with specified inter-
lattice connection can be replaced by robots with same geometry and inter-robot
connection. We begin with an overview of the self-assembly problem in Sect. 2.
Then we present a complete self-assembly planning algorithm in Sect. 3. In Sect. 4,
we analyze the algorithm using some examples and simulate self-assembly process.
Finally, we draw conclusions.
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2 Self-assembly Problem for a Pre-designed Shape

We consider that a large-scale robot swarm assemble into a two-dimensional shape
by tiling a user-specified plane with regular polygons. A polygon is called lattice
which can be occupied by a robot as a part of structure. When these lattices are
connected in certain way corresponding to connection mechanism between two
robots, it can generate a stable and complete structure.

Considering that a lattice geometry is a regular polygon, the interior angle and
edge number of each polygon is a and n, respectively. There exits k 2 N such that
ka ¼ 2p when polygons titling a plane meet at each vertex. Meanwhile, sum of
exterior angles of a regular polygon of n edges satisfies nðp� aÞ ¼ 2p. We can
obtain n ¼ 2þ 4

k�2. The possible value of n is 3, 4 and 6 respectively corresponding
to k = 6, 4, and 3. Therefore, the regular polygons to tile the space of a shape are
triangles, squares and hexagons. In this paper, we focus on self-assembly of a
swarm of robots with square geometry. As shown in Figs. 1 and 2, a shape is
described in black pixels in a binary image. A group of robots are capable of
moving with self-contained controllers and sensors to interact with others and
position themselves. Meanwhile, by connection mechanisms, these robots can
attach themselves to the grown structure. The self-assembly algorithm presented in
this paper work on the swarm robot characterized by the following properties.
(1) Modularity. The robots are homogeneous with regular geometry (2) Autonomy,
including Mobility, Sensing, and Computations. Robots can move autonomously
and interact with others. (3) Inter-robot Communication. Robots can communicate
with neighboring robots via interfaces when connected. (4) Connection. The
inter-robot connection is created using a pair of mating active/passive connectors.

Fig. 1 Self-assembly planning for a spanning tree from a binary shape
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These robot capacities have been demonstrated in a variety of modular mobile
robots [7]. Connection way between robots determines the self-assembly sequence
of a desired shape.

3 Self-assembly Planning

A desired structure is presented by a binary image. Each robot occupying a lattice is
denoted by a node vi and the connection between neighboring robots is denoted by
an edge eij. A graph G is used to describe self-assembly planning of robot swarms
forming the shape.

3.1 Graph Construction by Tiling a Shape

We use a breadth-first algorithm to tile a shape using lattices. Firstly, we build a
coordinate system whose originates at the center of the root node to obtain shape
matrix Mshape from an image. In the counterclockwise direction, starting from the
bottom side, four areas are visited one by one. As for each area, a matrix Mmask

representing the geometry of a robotic lattice is used to cover the pixels. If the
visited area is a part of shape (black pixels) and has never been visited, it will be
assigned a number and an edge as a newly added node. Algorithm 1 gives the
pseudocode procedure of transferring a shape into a group of lattices with edges.
We uses ray casting algorithm to find the points inside a robotic lattice and build
Mmask representing the pixel distribution of a robot shape.

Fig. 2 Left Rewriting of a self-assembly spanning tree to avoid constrained space. Right A group
of mobile robots connect to form a shape
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Algorithm 1: Graph construction by using robot swarms’ 
geometry to tile a shape

1: Mshape := mij , S :=StackInit, G := {{v},{eij},{le}}
2:  Define position and orientation of the root node;
3:  visit root node and insert root node into G;
4:  Push(v0,S) 
5: while S != Null, do
6: Vj := Pop(S) 
7: for each neighboring area i around Vj, do
8:      State = Threshold(Mshape,Mmask_i) 
9: if "State: unvisited in i" 
10:       insert new {v,eij,le} in G
11: Push (vi,S) 
12: else if State:visited area occupied by j in i 
13:       update {v,eij,le} in G
14: end if
15: end for
16: end while
17: return G

3.2 A Spanning Tree Defining Connection

A robot has only one active connector. Therefore, a robot can only use one active
connector to dock with another. Although the shape may have a loop branch, its
topology graph is connected and have no cycles. That is, the graph presenting the
shape can be transferred into a directed rooted tree.

As for a node, there exits at most one directed edge starting from it and there are
at most three directed edges ending up with it. The edge is assigned a weight to
denote which side the neighboring node is connected with it on. Problem is to find
out a spanning tree Ttree ¼ V 0;E0; l0ð Þ; V 0 ¼ fvig, E0 �V 0 � V 0; l0 : E0 7!R0;
R0 ¼ f1; 2; . . .; ng, rooted at a node v0. In Fig. 1c, we can obtain a directed rooted
tree from a graph and the pseudo code is presented in Algorithm 2. We choose a
lattice as a root node to start building a spanning tree, based on breadth-first
searching algorithm (BFS). BFS can make more robots participate in self-assembly
in parallel because robots can approach and connect with the grown structure from
all directions. Because Algorithms 2 also use BFS, it can be inserted in Algorithms
1. However, here we still present it alone in case of a graph given directly rather
than a binary image.
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Algorithm 2: Self-assembly sequence using breadth-first 
searching algorithm to obtain a spanning tree

Input G=(V,E,lE) 

1: Slevel:={v0},Vtree:={v0},Ttree:={Vtree,Etree,Wtree} 
2: for each x in Slevel, do
3: for each neighbor y of x in V-Vtree, do
4: if x != v0
5:        find the parent z of x in
6: else
7: lE(v0,v0):= active dir. of the root node
8: end if
9:      update wE(x,y) in Wtree from lE(x,y),lE(z,x)  
10: Vtree:={Vtree,y},Etree:={Etree,(x,y)}
11: end for
12: if no neighbor y of x in V-Vtree
13: return Ttree:={Vtree,Etree,Wtree} 
14: end  if
15: Slevel:= unvisited neighbors of Slevel in V
16: end for

3.3 Rewriting

There are some criteria concerning the topological order for robots in self-assembly
planning. A directed path rooted at the root is considered as a critical path. Lattices
with circled number are parts of a shape in Fig. 2 while empty lattices don’t belong
to this shape. A quad-tree is obtained according to Algorithm 2. There are eight
critical paths, {1, 2, 6, 13, 21}, {1, 2, 6, 14, 22}, {1, 2, 7, 15}, {1, 2, 8, 16}, {1, 3,
9, 17, 23}, {1, 3, 10, 18}, {1, 4, 11, 19, 24}, and {1, 5, 12, 20}. That is the robot
i + 1 cannot start docking until the robot i in the same critical path has finished. In
the coordinate originated at the root node numbered 1, we think all the nodes along
the four edges of a square centered at the root are in the same orbit which has the
same background grayscale in Fig. 2. Robots in different critical paths can dock
with the grown shape simultaneously but there must be sufficient room in the
potential docking side for a robot to maneuver and align its active connector with
the passive connector installed on the parent robot. The left or right adjacent square
lattice must be open. If two adjacent square lattices like node 9 and 21 are occupied,
the robot can’t move inside into the position of node 15 to attach to node 7.
Therefore, we improve the topological order of the tree and rewrite the rules in
Algorithm 3. In this algorithm, we assume except the root node, the parent node of
a node i on orbit Oj has to lie on the same orbit Oj or the inner orbit Oj−1.
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Algorithm 3 Rewriting the self-assembly sequence 
1: for each Oj in Ttree, do
2: for each Pi in Oj, do
3: if Pi is O1 or Pi is not adjacent to Pi-1
4: f(Cp1)=f(Oj-1)+1
5: else if Pi∩Pi-1=CPi
6: f(Cpi)=f(Cpi-1) 
7: else if Pi is adjacent to Pi-1 and Pi is CW 
8: Transfer Pi-Cpi into a CW path 'Pi-1,  
9: Attach 'Pi-1 to Pi-1, Update f(cx) in 'Pi-1
10: else if Pi is adjacent to Pi-1 and Pi is CCW
11: f(Cpi)=f(Pi-1)+1
12: WaitForNode(Cpi) = neighbor node in Pi-1 to Cpi
13: end if
14:     update all f(ck+1)=f(ck)+1, ck(k=2…m) in P1
15: end for
16: If Pn is adjacent to P1
17:       Divide Pn∪P1 into two new paths Pn

' and P1
'

18:    {Pn
' ends up with LB corner, P1' starts after it}

19: WaitForNode(CLB Corner) = the first node in P1
20: Update f(cx) in P1, f(cy) in Pn
21: end if
22: end for
23: return (Ttree,f(Ttree),WaitForNode(Ttree)) 

The rules consist of two principal metrics. (1) The shape is assembled from inner
orbits to outer orbits; (2) any lattice to be docked has at least one empty neighboring
lattice. An orbit is denoted by a set Oj, e.g. Oj = {2, 7, 3, 10, 4, 11, 5, 8}. The
connected nodes on an orbit are in the same critical path. All the paths on the same
orbit are denoted Pk. On O3, there are eight critical paths P1 ¼ 6; 14; 22f g; P2 ¼
6; 13; 21f g, P3 ¼ f15g, P4 ¼ 9; 17; 23f g, P5 ¼ 18f g, P6 ¼ 19; 24f g, P7 ¼
12; 20f g, and P8 ¼ 16f g. Each Pi on Oj+1 have a child node connected to a parent

node on Oj and we call the child node Cpi. If Pi extends counterclockwise along an
orbit, it is a CCW path, e.g. {6, 13, 21}, otherwise it is a CW path, e.g. {6, 14, 22}.
Starting visiting all nodes counterclockwise from the left bottom corner, Pi

including the first CPi is P1 and the next path is P2…Pn. f(x) is the order of a node x;
f(Oi) presents the maximum of orders of all the nodes on an orbit Oi; f(Pi) is the
order of the last node when visiting a path Pi on Oi counterclockwise. These results
can be seen Pi �Piþ1 , f(Pi) ≤ f(Pi+1), Oj �Ojþ1 , f(Oj)� f(Oj+1), Pi \Piþ1 6¼
NULL ) Pi \ Piþ1 ¼ CPi ¼ CPiþ1. If two paths on an orbit are not adjacent, they
can begin self-assembly with their own CPi at the same time, otherwise the latter
must wait until the neighboring node in former path has finished connecting. It
needs to be mentioned that if the last path is adjacent to the first path, they are
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rewritten and separated by the node in the left bottom corner. In Fig. 2, we get Ttree,
f(Ttree) and WaitForNode (Ttree), where WaitForNode (x) means a node for x 2 Vtree

to wait for.

3.4 Self-assembly Control for Robots

Once the self-assembly order for a desired shape is planned above, the root robot
can start the self-assembly process. There are two pairs of emitter-detector infrared
sensors installed on each side of a robot. If this robot needs another robot to dock
with on a side, it can open the corresponding infrared sensors on this side, and then
when a free mobile robot receives this signal, it will connect with it. As for each
robot attached to the assembled shape, they determine whether and when to open
their sensors according to T 0

tree. For example, firstly, root node 1 checks there are no
empty nodes whose order are smaller than it and starts self-assembly on the next
orbit 2. There are 2, 3, 4, 5 child nodes on orbit 2 and however, node 3 needs to
wait for node 7, node 4 does wait for node 10 and node 5 does wait for node 11.
Node 1 opens the emitter sensors on the side reserved for node 2. Once a free
mobile robot maneuvers and detects this signal, it connects with node 1 and
becomes node 2. Furthermore, node 1 will send node 2 a sub tree rooted at node 2
belonging to T 0

tree. After that, node 2 determines whether and when to open its
sensors like node 1. And so on, all the nodes on orbit 2 finish connecting to the
grown shape, and continue on the next orbits.

If a large number of free mobile robots are recruited, they move toward the
grown shape (phototaxis). When they encounter the grown shape, they use
edge-following algorithms presented in previous work [15] around the stationary
shape to search for the signals. After that, the free mobile robots will dock with the
parent nodes. These procedures including phototaxis, edge-following and docking
are identical for all the robots maneuvering in parallel. Using these free robots, the
shape builds up in successive orbits in the designed self-assembly order.

4 Results and Discussion

We use the algorithms to plan self-assembly order for a group of shapes of interest.
We assume the size of a robotic lattice is 100� 100 in pixels. Figure 3 shows a few
examples. A square shape with size 700� 700 is tiled by 49 lattices and a cross
shape is assembled by 45 lattices. Note that number of steps for a group of robots to
assemble into a shape depends on the initial position of the root node, partially
because we start to plan all the lattices from the left bottom corner on an orbit.
Meanwhile, the gaps between the lattices can obviously reduce number of steps on
an orbit, although it increases number of orbits.
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Only considering square shapes, Fig. 4 shows number of steps when 1600
robotic lattices form a 800� 800 square, starting at different root nodes. Minimum
number of steps occurs when root nodes are in the right parts of the first row
(Row = 1, Column = 20–40). We implement the algorithms on a variety of sizes of
square shapes whose edges are 100k in length. It means these shapes will be
assembled by k2 robots. Maximum number of steps for n = k2 robots is n, that is,
these robots will connect to the grown shape one by one. As shown in Fig. 4 Right,
statistically, we found minimum of self-assembly steps of n robotic lattices is
1
2 nþ ffiffiffi

n
pð Þ; n ¼ k2. Here, we prove this equation. When the root note lies on the

right parts of the first row, if the length of a square shape increases from k − 1 to k,
minimum of self-assembly steps increases by k steps. Using this recursive formula,

Fig. 3 Examples: self-assembly planning of a square shape and a cross shape

Fig. 4 Left number of self-assembly steps for 1600 robots starting at different initial nodes. Right
Number of self-assembly steps versus number of robots

Self-assembly Planning of a Shape by Regular Modular Robots 875



we can obtain 1þ � � � þ k ¼ 1
2 k2 þ kð Þ. The shapes considered to be formed are

limited and the constraint is that as for each node in the tree except the root one, its
parent node has to lie on the same orbit or the neighboring inner orbit. Therefore, a
convex shape can start from center. For a concave shape or ones including holes, a
root node should be chosen to meet the above constrains if exists.

We use the self-assembly control to simulate a self-assembly process of a shape.
Successive snapshots during this process are shown in Fig. 5. Here, we let only one
robot enter the edge-following stage once. The robot in red is following the edge of
the grown shape to find an infrared beam in red. Planned self-assembly order gives
the robot at least two lattices of space to enter. We believe adding multi-robots
simultaneously will greatly improve the efficiency, especially for shapes including
more gaps.

5 Conclusion

This paper presented a method by which regular robots can use local interactions to
build a shape without knowing any information about the desired shape. They only
implement their motion until receiving a connection signal from the grown shape.
The new node is in self-assembly sequence which is designed by tiling a shape and
planning a specified spanning tree. Through analysis of square shapes, we obtained
self-assembly starting at the nodes at the second half of the first row can get the
least steps. The constraints defining possible shapes were given.

Gaps in a desired shape can make the self-assembly fast, because they can open
more nodes at a time. Although in simulation we only put a robot once, the robot
may have more than one signal to choose and if so, it will choose the first one,
which makes the self-assembly fast to some extent. When multi-robots work
simultaneously, self-assembly can be implemented in parallel.

Fig. 5 Self-assembly demonstration of a square shape
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