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Abstract— The hand-eye calibration problem was first for-
mulated decades ago and is widely applied in robotics, image
guided therapy, etc. It is usually cast as the “AX = XB”
problem where the matrices A, B, and X are rigid body
transformations in SE(3). Many solvers have been proposed to
recover X given data streams {Ai} and {Bi} with correspon-
dence. However, exact correspondence might not be accessible
in the real world due to the asynchronous sensors and missing
data, etc. A probabilistic approach named “Batch method”
was introduced in previous research of our lab, which doesn’t
require a prior knowledge of the correspondence between
the two data streams {Ai} and {Bj}. Analogous to non-
probabilistic approaches which require data selection to filter
out ill-conditioned data pairs, the Batch method has restrictions
on the data set {Ai} and {Bj} that can be used. We propose two
new probabilistic approaches built on top of the Batch method
by giving new definitions of the mean on SE(3), which alleviate
the restrictions on the data set and significantly improve the
calibration accuracy of X .

I. INTRODUCTION

The Hand-eye calibration problem, or the “AX = XB”
problem dates back to the 1980s when Shiu and Ahmad [1]
first proposed a solution. Even after a quarter of a century,
the topic remains active today in the areas such as aerial
vehicle sensor calibration [2], image guided therapy (IGT)
sensor calibration and endoscopic surgery [3].

Various AX = XB solvers have been proposed so far
for either same or different scenarios and applications. Tsai
[4] proposed a method as well as several principles on data
selection in 1989. A geometric view of AX = XB is
given by Fassi and Legnani [5] and the over-constrained and
singular conditions are also discussed. Many other AX =
XB methods include but are not limited to the Euclidean
Group method [6], the quaternion method [7], [8], the dual
quaternion method [9], the Kronecker method [10], and
the screw motion method [11]. Several new optimization
methods emerged recently such as the convex optimization
method [12] and the global optimization methods [13]. Most
of the above methods are designed for off-line usage where
a complete list of data pairs (Ai, Bi) where i = 1, 2, ..., n
has to be provided to recover X whereas online methods
are more preferable in real time applications [10], [14] A
common feature of these methods is that they demand the

This work was supported by NSF Grant RI-Medium: 1162095.
1Qianli Ma and Gregory S. Chirikjian are with the Department

of Mechanical Engineering and Laboratory for Computational Sens-
ing and Robotics, Johns Hopkins University, Baltimore, MD, USA,
mqianli1@jhu.edu, gregc@jhu.edu

2Haiyuan Li is with the School of Mechanical Engineering
and Automation, Beihang University, Beijing 100191, China
haiyuanli@hotmail.com

Fig. 1. Application of the AX = XB problem in the extrinsic calibration
of the ultrasound probe with respect to the UR5 robot arm. The white
squarish object in the middle represents the ultrasound calibration phantom.

exact correspondence between the data streams {Ai} and
{Bi}. This might not always hold because of asynchro-
nizicity of the sensors or missing data, etc. Therefore, a
probabilistic method called the “Batch method” that deals
with data pairs without correspondence was first brought up
in [15]. An information-theoretic approach is proposed in
[16] by viewing the problem as distributions on the spe-
cial Euclidean group SE(3) and minimizing the Kullback-
Leibler divergence on the distributions.

In the “AX = XB” formulation, A, X , and B are each
homogeneous transformations or equivalently, elements in
SE(3). Data pairs (Ai, Bi) are measured by the robot and
the sensors mounted at the end-effector such as cameras,
ultrasound probes, etc. Fig .1 shows that a UR5 robot uses
a phantom to calibrate the relative transformation between
the ultrasound probe and the end-effector of the robot. X is
the unknown rigid body transformation calculated by solving
AX = XB. It is well known that for non-probabilistic
methods, at least two exact data pairs (A1, B1) and (B2, B2)
are required to recover a unique X . For probabilistic ap-
proaches such as the Batch method, no correspondence
between A and B is needed and a comparison between the
Batch method and Kronecker product method in [15] shows
its extraordinary capability of handling data sets without
correspondence. However, as claimed in [15], the Batch
method has restrictions on the data set that can be used which
limits its scope of application. In addition, the definition of
mean on SE(3) plays an important role in the Batch method,
and the current definition can’t give the desired “average” of
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a set rigid body transformations for the use of “AX = XB”
problem. In this paper, we show that this restriction can be
alleviated and by using new definitions, the accuracy of the
calibrated X can be improved significantly.

The rest of the paper is organized as follows. In Section
II, the probabilistic Batch method is introduced along with
the definitions of the probability distribution function (PDF)
and convolution on SE(3). In Section III, we prove that
the assumption of using highly focused distribution for the
Batch method can be relaxed and the New Batch method
can be built by using a new definition of the mean in
SE(3). In Section IV, simulation experiments are performed
among the Kronecker product method, Batch method, and
two new Batch methods to show both the effectiveness and
the accuracy of the latter. In Section V, conclusions are drawn
and possible future directions are noted.

II. MATHEMATICAL BACKGROUND

In this section, the definition of PDF, Delta function
and the convolution on SE(3) will be introduced. Then
the mathematical formulation of the Batch method will be
presented explicitly and two key equations are obtained
for solving X . The first equation describes the relationship
between the mean of {Ai} and the mean of {Bj} , and
the second equations describes the relationship between their
covariance matrices. Lastly, the disadvantages of the Batch
method are pointed out, which serves as the motivation to
build for the new Batch methods.

A. PDF, Delta function and Convolution on SE(3)

Let Σ = ΣT ∈ R6×6 be a positive definite covariance
matrix. Assuming the norm ‖Σ‖ is small, we define a
Gaussian probability distribution function on SE(3) as:

ρ(H;M,Σ) =
1

(2π)3|Σ| 12
e−

1
2F (M−1H), (1)

where H ∈ SE(3), M ∈ SE(3) is the mean, Σ ∈ R6×6

is the covariance matrix, ‖Σ‖ denotes the determinant of Σ
and

F (H) = [log∨(H)]T Σ−1[log∨(H)]. (2)

If Z ∈ se(3) is the corresponding Lie algebra of H ∈ SE(3),
then exp(Z) = H , logH = Z and log∨(H) = z where
z ∈ R6×1 is the vectorization of Lie algebra.

The integration of a PDF on SE(3) is defined as follows:∫
SE(3)

f(H)dH
.
=

∫
q∈D

f(H(q))|J(q)|dq, (3)

where q = [q1, ...., q6]T is a global set of coordinates, dq =
dq1dq2 · · · dq6 and |J(q)| is the determinant of the Jacobian
matrix as:

J(q) =

[(
H−1

∂H

∂q1

)∨
;

(
H−1

∂H

∂q2

)∨
; · · ·

(
H−1

∂H

∂q6

)∨]
.

(4)
Given two functions f1, f2 ∈ (L1 ∩ L2)(SE(3)), their
convolution is defined as:

(f1 ∗ f2)(H)
.
=

∫
SE(3)

f1(K)f2(K−1H)dK, (5)

where K ∈ SE(3) and ∗ denotes the convolution of
functions on SE(3).

The Dirac delta function on SE(3) is defined as follows:∫
SE(3)

δ(H)dH = 1 (6a)

(f ? δ)(H) = (δ ? f)(H) = f(H). (6b)

It can also be viewed informally as

δ(H) =

{
+∞, H = I
0, H 6= I.

(7)

The shifted Dirac delta function is then defined as δX(H) =
δ(X−1H).

B. Batch Method

Given a set of data pairs (Ai, Bi) ∈ SE(3)×SE(3) with
correspondence, the following is true:

AiX = XBi, (8)

where i = 1, 2, ..., n. If we use the probability theory on
SE(3), Eq. (8) can be converted into:

(δAi
∗ δX)(H) = (δX ∗ δBi

)(H). (9)

Note that convolution is a linear operation on functions,
therefore n instances of Eq.(9) can be added into a single
equation as:

(fA ∗ δX)(H) = (δX ∗ fB)(H), (10)

where

fA(H) =
1

n

n∑
i=1

δ(A−1i H) and fB(H) =
1

n

n∑
i=1

δ(B−1i H).

(11)
The above functions can be normalized to be probability

densities:∫
SE(3)

fA(H)dH =

∫
SE(3)

fB(H)dH = 1. (12)

If we let the mean and covariance of a probability density
f(H) satisfy:∫

SE(3)

log(M−1H)f(H)dH = O (13a)

Σ =

∫
SE(3)

log∨(M−1H)[log∨(M−1H)]T f(H)dH.

(13b)

Then for a PDF fA(H) as given in Eq.(11), the discrete
version of the mean MA and covariance ΣA will be:

n∑
i=1

log(M−1A Ai) = O (14a)

ΣA =
1

n

n∑
i=1

log∨(M−1A Ai)[log∨(M−1A Ai)]
T . (14b)
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In [17], f1 and f2 are assumed to be highly focused
functions so that the mean and covariance for the convolution
can be closely approximated as:

M1∗2 = M1M2 (15a)

Σ1∗2 = Ad(M−12 ) Σ1Ad
T (M−12 ) + Σ2, (15b)

where

Ad(H) =

(
R O
x̂R R

)
. (16)

The “hat” operator ̂: R6×1 → se(3) maps a 6 by 1 vector to
its corresponding Lie algebra which satisfies the exponential
map exp : se(3)→ SE(3).

Employing the fact that the mean of δX(H) is MX = X
and the covariance ΣX = O6×6 is a zero matrix, Eq.(15a)
and Eq.(15b) give two key equations in the Batch method
as:

MAX = XMB (17)

and
Ad(X−1) ΣAAd

T (X−1) = ΣB . (18)

[16] notes that there are two degrees of freedom in
Eq.(17), so ΣA and ΣB are decomposed to provide the
required constraints:

Σi =

(
Σ1

i Σ2
i

Σ3
i Σ4

i

)
, (19)

where Σ3
i = (Σ2

i )T and the subscript i can be either A or
B. We can extract the first two blocks of Eq. (18) and we
can get:

Σ1
MB

= RT
XΣ1

MA
RX (20a)

Σ2
MB

= RT
XΣ1

MA
RX(R̂T

Xtx) +RT
XΣ2

MA
RX . (20b)

As described in [16], a unique RX can be obtained by
calculating the eigendecomposition of Σ1

MA
and Σ1

MB
as

Σi = QiΛQ
T
i , where Qi is the square matrix whose ith

column is the eigenvector of Σi and Λ is the diagonal matrix
with corresponding eigenvalues as diagonal entries. After
further derivations, the mean of the rotation component of
X can be written as:

RX = QMA
QQT

MB
, (21)

where Q is a diagonal matrix and there exist four candidates
of Q in total. The optimal solution of RX can be picked
by minimizing a cost function that contains the constraint
information from Eq. (17). The translation component tX
can be uniquely determined using Eq. (20b).

C. Open Problems

To determine the mean and covariance of the convolution
of two highly focused PDFs as in [17], the Baker-Campbell-
Hausdorff (BCH) formula is used:

log(eXeY ) = X + Y︸ ︷︷ ︸
0th order

+
1

2
[X,Y ]︸ ︷︷ ︸

1st order

+h.o.t. (22)

where h.o.t. stands for the 2nd and higher order terms.
If X and Y are further constrained to be small so that
‖X‖ � 1 and ‖Y ‖ � 1, then the first order approximation
of Eq. (22) can be used to derive Eq. (15a) and Eq. (15b).
In the “AX = XB’ context, eX and eY represent Ai and
Bi respectively. This derivation constrains the distribution
function fA and fB to be highly focused. However, this
condition is not necessary as proved later. Moreover, the
current definition of mean on SE(3) as in Eq.(14a) can’t
closely reflect the desired “average” of MA and MB in the
probabilistic AX = XB context. It will be shown that two
new ways of defining the mean can be used to augment the
existing Batch method which can even significantly improve
the accuracy of X depending on the distributions of {Ai}
and {Bj}. In later sections, we will call the original Batch
method as the “Batch method” and the two augmented Batch
methods as the “Batch1” and “Batch2” methods.

III. NEW BATCH METHODS

In this section, we first prove that unlike in [15], Eq. (17)
and Eq. (18), which is also referred to as the key equations,
are exact (rather than approximate) expressions that do not
depend on the smallness of Σ or any assumptions about the
form of the functions fA or fB . Then two new definitions of
the mean on SE(3) will be given based on the 1st order and
2nd order approximation of of Eq. (13a). The new means for
{Ai} and {Bj}, and the corresponding covariance matrices
ΣA and ΣB , can be directly incorporated into the Batch
method to form the Batch1 and Batch2 methods.

A. Conditions for the Key Equations

Starting with Eq.(9), performing a convolution on the left
of both sides of the equation with δX−1(H), and using
the associativity of convolution and the properties of delta
functions, Eq.(9) can be replaced with:

(δX−1 ∗ δAi ∗ δX)(H) = δBi(H) (23)

and summing both sides over i and dividing by n gives

(δX−1 ∗ fA ∗ δX)(H) = fB(H). (24)

Let MA be the mean of fA and MB be the mean of fB as
defined in Eq.(14a). After using the properties of the delta
function and Eq.(24),∫

SE(3)

log(M−1B H)(δX−1 ∗ fA ∗ δX)(H)dH =∫
SE(3)

log(M−1B H)fA(XHX−1)dH = O.

Changing variables as K = XHX−1 and using the invari-
ance of integration,∫

SE(3)

log(M−1B X−1KX)fA(K)dK = O. (25)

Multiplying on the left by X and right by X−1

and using the fact that X[log(M−1B X−1KX)]X−1 =
log(XM−1B X−1K) gives XM−1B X−1 = M−1A , which is the
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same as Eq.(17). The proof for Eq.(18) follows in a similar
way.

This result broadens the types of data sets {Ai} and
{Bj} that can be used for the Batch method. However, the
mean definition as in Eq.(13a) doesn’t always provide the
desired MA and MB in terms of minimizing C1(RX) =
||RMA

RX − RXRMB
|| or C2(tX) = ||RMA

tX + tMA
−

RMX
tMB

− tMB
||, which are simply the error metrics for

the rotational and translational components of Eq. (17). To
find a better definition of mean under the “AX = XB”
context, we start by assuming M−1H is small such that
‖M−1H − I‖ � 1. This is different from the assumption
of the Batch method that H is small enough such that
‖log(H)‖ � 1. From there, the 1st order and 2nd order
approximations of the mean in Eq.(13a) can be achieved
and new definitions are proposed accordingly. As will be
shown in section IV, the new definitions are more than just
the approximations of the original mean.

Note that though Eq. (13a) and Eq. (13b) have a similar
form, they are not necessarily bounded together. Equiva-
lently, Eq. (13b) will be valid as long as the mean M is given,
which does not have to be defined as in Eq. (13a). Therefore,
it is appropriate to use a different mean while using the same
definition of the covariance. One thing to be noted is that the
proof of Eq. (15b) does not depend on the definition of mean,
but only on the 1st order approximation of BCH. Therefore,
Eq. (18) will still be valid when we use the new definitions of
mean. As for Eq. (17), the 1st or 2nd order approximations
can be made on log(XM−1B X−1K) in the previous proof
by treating XM−1B X−1 as a whole. The same result can be
obtained by following the similar procedure in the definitions
as below, which will not be mentioned in detail here.

Batch1 and Batch2 methods simply replace the old means
of {Ai} and {Bj} with new ones, obtain the corresponding
covariances in terms of the new means, and use the two
key equations to solve for X . For the two different kinds of
distributions of {Ai} and {Bj} that are tested, Batch1 and
Batch2 methods are able to recover a much more accurate
RX in a consistent manner, and recover tX to a certain level
of accuracy depending on the type of distribution.

B. Mean Based on the 1st Order Approximation

Consider the Taylor expansion of the matrix logarithm
described as:

log(I +X) = X − 1

2
X2 +

1

3
X3 − ... (26)

If ‖M−1H − I‖ � 1 and we retain the 1st order approxi-
mation of Eq.(26), it can be written as:

log(M−1H) = log(I + (M−1H − I)) ≈
(
M−1H − I

)
.

(27)
The first order approximation of Eq.(13a) is:∫

SE(3)

(M−1H − I)f(H)dH ≈ O. (28)

Note that f(H) is a normalized probability density such that∫
SE(3)

f(H)dH = 1, so:

M−1
∫
SE(3)

Hf(H)dH ≈ I. (29)

Define the first order approximation of M ∈ R4×4 as M̂ :

M̂
.
=

∫
SE(3)

Hf(H)dH /∈ SE(3). (30)

Take {Ai} for an example, the corresponding discrete
version of M̂ will be:

M̂A
.
=

n∑
i=1

Ai

 1

n

n∑
j=1

δ(A−1j Ai)

 =
1

n

n∑
i=1

Ai /∈ SE(3).

(31)
Note that though Eq.(30) and Eq.(31) are obtained based on
the 1st order approximation of the matrix logarithm, M̂ is
not the 1st order approximation of the mean M ∈ SE(3)
because it is not necessary a group element in SE(3) and
elements in SE(3) do not add. Therefore, we define a new
mean based on Eq.(31) by projecting M̂ onto SE(3), where
singular value decomposition is performed on the “rotation
component” R̂

M̂A
of M̂A:

R̂
M̂A

= UΣV T . (32)

The rotation component RMA
∈ SO(3) can be obtained

according to [18] as:

RMA
= UV T . (33)

After recovering the rotation component, the new mean
based on the 1st order approximation becomes:

M1
A =

(
RMA

1
n

∑n
i=1 tAi

0T 1

)
. (34)

Using this definition of mean, M1
A and M1

B can be calculated
in a straight way. Σ1

A and Σ1
B can be obtained by Eq. (14b)

afterwards. Batch1 method uses the above means and covari-
ances for recovering X , and all the other procedures strictly
follow the procedure described as in Eqs. (17-21).

C. Mean Based on the 2nd Order Approximation

In this section, we further define a mean on SE(3) based
on the second order approximation of Eq.(13a). Under the
assumption that ‖M−1H − I‖ � 1 and using the Eq, (27),
the 2nd order approximation of Eq.(13a) can be written as:∫

SE(3)

(
(M−1H − I)− 1

2
(M−1H − I)2

)
f(H)dH ≈ O.

(35)
Expand Eq.(35) and multiply M on both sides of Eq.(35):∫

SE(3)

(
2H − 1

2
HM−1H − 3

2
M

)
f(H)dH ≈ O. (36)

Substituting Eq. (30) into Eq.(36), we have:

2M̂ − 1

2

∫
SE(3)

HM−1Hf(H)dH − 3

2
M ≈ O. (37)
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Let the 2nd order approximation of M ∈ R4×4 be denoted
by M :

2M̂ − 1

2

∫
SE(3)

HM−1Hf(H)dH − 3

2
M = O. (38)

Take the data set {Ai} for an example, the discrete version
of Eq.(38) is:

2

n

n∑
i=1

Ai −
1

2n

n∑
i=1

AiM
−1
A Ai −

3

2
MA = O. (39)

Similar to the 1st order case, MA is the 2nd order ap-
proximation of MA ∈ R4×4, because the candidates that
satisfy Eq.(39) are not likely to be elements of SE(3). A
straight forward way of calculating MA is by using nonlinear
optimization technique given an initial guess. It is possible
to solve for MA ∈ R4×4 and then project MA back to
M2

A ∈ SE(3) as shown in [19], where M2
A denotes the new

mean based on the 2nd order approximation. However, this
highly nonlinear problem can be linearized by defining the
update law as below:

MA[j + 1] = MA[j] exp (ΩA) ≈MA[j](I + ΩA), (40)

where MA[j] is the value of MA at the jth step, ΩA ∈ se(3)
is a Lie algebra element such that ‖ΩA‖ � 1. Under this
assumption, the inverse of MA can be updated as:

M−1A [j + 1] = exp−1 (ΩA)M−1A [j] ≈ (I− ΩA)M−1A [j].
(41)

Substituting Eq. (40) and Eq. (41) into Eq. (39), the previous
nonlinear problem on MA is then converted into a linear one
on ΩA, where only ΩA needs to be solved for given a known
MA[j]:

J · vec(ΩA) = b, (42)

where

J =
1

2n

n∑
i=1

(
(MA[j]Ai)

T ⊗Ai

)
− 3

2
(I⊗MA[j]) (43a)

b = vec(− 2

n

n∑
i=1

Ai +
1

2n

n∑
i=1

(AiMA[j]Ai) +
3

2
MA[j]).

(43b)

⊗ is the symbol for Kronecker product and vec() denotes
the vectorization of a matrix formed by stacking its columns
into a single column vector. .

To start with, we use the result M1
A obtained by Batch1

as the initial guess such that MA[0] = M1
A. We keep solving

for ΩA and update MA[j + 1] and M−1A [j + 1] until the
matrix norm of left hand side of Eq. (39) falls below a
small threshold. It is observed that MA[j] can converge
quickly in approximately 4 steps to obtain MA, which will
be projected onto SE(3) to get M2

A. Similar to the Batch1
method, Batch2 method uses the new means (M2

A,M
2
B) and

the corresponding covariances (Σ2
A,Σ

2
B) to recover X .

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations are performed to
show the advantages of using M1 and M2 as the means for
{Ai} and {Bj} when solving for X . These Batch methods
are compared with each other to show the accuracy in terms
of recovering RX and tX . They are also compared with the
Kronecker product to show the effectiveness of probabilistic
methods when dealing with data streams without correspon-
dence.

A. Generation of {Ai} and {Bj} Using Different Distribu-
tions

First, we generate (Ai, Bi) data pairs which have cor-
respondence given the ground truth of Xtrue. Then we
scrambled the data in {Ai} and {Bi} up to a certain
percentage rate to get {Ai} and {Bj} which have only partial
or no correspondence. Finally, the scrambled data streams
will be used in Batch, Batch1, Batch2 and Kronecker product
methods to calculate the RX and tX which will be compared
with RXtrue and tXtrue .

Eq. (44) and Eq. (45) show two ways to generate (Ai, Bi)
data pairs for numerical experiments, both of which sample
on Bi first and then given Xtrue obtain the corresponding
Ai:

Bi = B0 exp(δ̂i) exp(γ̂i) (44a)

δi = (0T
3×1, σn

T
1 )T ∈ R6×1 (44b)

γi = (σnT
2 /‖n2‖,0T

3×1)T ∈ R6×1 (44c)

σ ∈ R, n1,n2 ∈ N 3×1(0, 1) ∈ R3×1, (44d)

and

Bi = B0exp(δ̂i) (45a)

δi ∈ N (0; Σ) ⊂ R6 (45b)
Σ = σI6×6, σ ∈ R, (45c)

where B0 ∈ SE(3) is an arbitrary “baseline” for generating
the cloud of Bi, N 3×1(0, 1) denotes a 3 by 1 vector where
each vector element follows a standard normal distribution
N (0, 1). N (0; Σ) is a zero mean multivariate Gaussian
distribution. The major difference between Eq. (44) and
Eq. (45) is that when perturbing B0 to get {Bi}, the former
samples on the rotational and translational component of
se(3) separately while the latter samples on each component
simultaneously. After generating {Bi}, {Ai} can be easily
obtained as:

Ai = XtrueBiX
−1
true. (46)

It turns out that the way of generating the data streams
influences the effectiveness of different means. Equivalently
speaking, each type of mean might be better at representing
certain transformations in the AX = XB context.

Next, we compare the performances of all the four meth-
ods in numerical simulation. Given an arbitrary B0, 50
instances of Bi are generated using Eq. (44) and Eq. (45)
respectively, with σ = 0.9. If we provide the ground
truth Xtrue, 50 corresponding Ai can be calculated as in
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Fig. 2. Rotation error vs. percentage of scrambling in {Ai} and {Bj} for
the Batch, Batch1, Batch2 and Kronecker product methods where {Bi} is
generated using Eq. (44).
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Fig. 3. Translation error vs. percentage of scrambling in {Ai} and {Bj}
for the Batch, Batch1, Batch2 and Kronecker product methods where {Bi}
is generated using Eq. (44)

Eq. (46). In addition, different sets of {Bj} are obtained
by permuting the elements in {Bi} by a percentage rate
r = 0, 10, 20, ... , 100. Then the calculated RX and tX are
compared with the ground truth Xtrue using the following
error metrics:

errorR = || log∨(RT
XRXtrue)||2 (47)

errort =
||tX − tXtrue ||2
||tXtrue ||2

. (48)

Eq. (48) has the advantage of eliminating the influence
of using different units for the translation. 70 trials are
performed for each scrambling rate r and the averages of
errorR and errort are calculated for comparison.

B. Numerical Simulation Results

All the simulation results are plotted as in Figs. 2-7 where
Fig. 2-4 use the data sampled from Eq. (44) and Figs. 5-7
use the data sampled from Eq. (45). In addition, Fig 4 and
Fig. 7 are closer looks at the Batch methods in Fig. 2 and
Fig. 4 respectively. Several observations can be made from
the figures. First, Figs. 2-3 and Figs. 5-6 show that all the
Batch methods are invariant on the scrambling rate r whereas
the results of the Kronecker product deteriorate quickly as r
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Fig. 4. A close look at Fig. 2 for the Batch1 and Batch2 methods which
shows that the rotation errors from Batch1 and Batch2 methods are at the
magnitude of 10−15.

increases. Second, no matter which data sampling method is
used, Batch1 and Batch2 methods show significant improve-
ments over the Batch method on recovering RX . The rotation
error magnitude of Batch1 and Batch2 ranges from 10−14 to
10−15, while the rotation error from Batch is at the level of
10−1 in Fig. 2 and 10−4 in Fig. 7. Moreover, the rotation
error of Batch method can go beyond reasonable ranges
occasionally as can be seen in Fig. 2. Third, Fig. 3 shows
that the translational component tX obtained by Batch1 and
Batch2 are also better than Batch. However, Fig. 7 shows
that the performance of Batch1 and Batch2 is not as good
as that of Batch if Eq. (45) is used for data sampling.
Lastly, in Fig. 3 and Fig. 6, the translational error from
Batch2 is smaller than that of Batch1, which reflects the
necessity of using the new mean M2 based on the 2nd order
approximation to solve for X .

In summary, for data sets {Ai} and {Bj} without cor-
respondence, Batch1 and Batch2 are extremely good at
recovering RX in a precise and consistent manner no matter
which sampling method is chosen. The accuracy of the
calculated tX is dependent on the sampled data, which is
true for both the old and new Batch methods. One can be
better than another if a different type of data samples is used.
However, the Batch2 method is always better than Batch1
method in terms of getting a more accurate tX .

V. CONCLUSION

In this paper, we brought up two new probabilistic meth-
ods which can handle the “AX = XB” problem without a
priori knowledge of the correspondence between {Ai} and
{Bj}. We build our new approaches on top of the Batch
method which is a previous work of the lab, and show
that an appropriate definition of mean for a set of rigid
body transformations in SE(3) can affect the effectiveness
of the probabilistic methods to a large extent. The new
definitions of means are derived from the 1st order and 2nd
order approximations of the original definition. Rather than
simple approximations, they reflect the “average” of a set of
rigid body transformations from different perspectives, which
significantly improves the accuracy and consistency for the
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the Batch, Batch1, Batch2 and Kronecker product methods where {Bi} is
generated using Eq. (45).
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Fig. 6. Translation error vs. percentage of scrambling in {Ai} and {Bj}
for the Batch, Batch1, Batch2 and Kronecker product methods where {Bi}
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calibration of X given data sets without correspondence.
Numerical simulations are performed to show the superiority
of the Batch1 and Batch2 methods.

This work opens up many future directions. For the
“AX = XB” problem which assumes data correspondence,
how to design the trajectory of the robot arm to achieve
the optimal calibration result is of critical importance to
the non-probabilistic solvers. Similarly, planning a robot
trajectory generated from the desired distribution of {Bi}
(or {Ai}) plays an important role in probabilistic approaches.
Moreover, other potential definitions of means and how to
match a given set of data to the appropriate mean definition
can be explored for better performance.
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