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Abstract This paper makes three original contributions: (1) Explicit closed-form parametric
formulas for the boundary of the Minkowski sum and difference of two arbitrarily oriented
solid ellipsoids in n-dimensional Euclidean space are presented; (2) Based on this, new
closed-form lower and upper bounds for the volume contained in these Minkowski sums
and differences are derived in the 2D and 3D cases and these bounds are shown to be better
than those in the existing literature; (3) A demonstration of how these ideas can be applied
to problems in computational geometry and robotics is provided, and a relationship to the
Principal Kinematic Formula from the fields of integral geometry and geometric probability
is uncovered.
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1 Introduction

The Minkowski sum of two convex point sets (or bodies) centered at the origin, C1 and C2

in R
n , is denoted by C1 ⊕ C2 and is defined as

C1 ⊕ C2
.= {p1 + p2 | p1 ∈ C1, p2 ∈ C2} . (1)

The Minkowski difference between C1 and C2, denoted by C1 � C2, is defined as [48]

C1 � C2
.=

⋂

p2∈C2

(C1 + p2), (2)
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Alternatively, by the definition of the Minkowski sum, we can define the Minkowski differ-
ence of two convex bodies as C1 � C2 = C ′

1, where C1 = C ′
1 ⊕ C2.

Minkowski operations are used in a wide range of applications such as robot motion
planning [33], CAD/CAM, assembly planning [25] and computer-aided design [26]. For
example, consider an obstacle P and a robot Q that moves by translation. If we choose a
reference point attached to Q, then P ⊕ Q is the locus of positions of the reference point
where P ∩ Q �= ∅. In the study of motion planning this sum is called a configuration space
obstacle. Alternatively, if P is an arena in which the robot Q is confined to move, then P�Q
is the locus of positions of the reference point where P ∩ Q = Q, and represents the robot’s
collision-free configuration space with respect to the arena.

While defining theMinkowski operations mathematically is easy, computing useful repre-
sentations of Minkowski sums or differences can be difficult and computationally expensive,
especially when the exact boundary of the resulting objects needs to be represented explic-
itly. Much work has been done on obtaining boundaries of the Minkowski sums of two sets
in two and three dimensions and on developing fast algorithms for computing Minkowski
sums numerically [5]. The Minkowski sums of polygons (for two-dimensional cases) and
polyhedra (for three-dimensional cases) have been extensively studied in the computational
geometry literature [2,14,22,23,26]. The related algorithms are mainly based on either the
computation of the convolution of geometric boundaries [22], or polygon/polyhedra decom-
positions [2,14,23,26]. Minkowski sums of curved regions/surfaces have also been studied
(e.g. [4,28,34,41]).

Motivated by the robot motion planning problem using ellipsoidal bounding boxes, we
present an approach to parameterizing the exact Minkowski sum and difference of two solid
ellipsoidal bodies in closed form. The Minkowski sum can be computed numerically by
rapidly determining when two particular ellipsoidal bodies at given center positions and
orientations intersect or not [3,10,19,36], or by ellipsoidal calculus [31,32,40]. However,
the exact closed-form characterization of this fundamental result appears not to have been
reported elsewhere in the literature. The basic idea of our approach is to use a combination
of affine transformations together with the analytic properties of offset surfaces to obtain an
exact closed-form parametric expression for the boundary. This approach can be used for
arbitrarily shaped ellipsoids (i.e., those with semi-axis lengths that can be different in each
direction) with arbitrary orientations, and the methodology applies both to Minkowski sums
and differences. The Minkowski sum and difference of two ellipsoidal bodies are in general
not ellipsoidal. Different than most of the existing methods, our approach is completely
analytical and has a closed form and therefore naturally provides improved efficiency.

The second half of the paper studies volume bounds for the Minkowski sum of two
ellipsoidal bodies. With our exact parameterization, they can be calculated numerically,
however, in general, formulas for the volumes enclosed in these regions do not have exact
closed-form expressions. Based on Steiner’s Formula, we develop an approach to provide an
exact closed-form formula for the volume in the axis-symmetric 3D case, and closed-form
upper and lower bounds in more general triaxial cases in 3D.We also develop related bounds
in the 2D case.

The remainder of this paper is structured as follows. Section 2 parameterizes in closed
form the bounding surface of the Minkowski sum and difference of two ellipsoidal bodies
at arbitrary orientations in n-dimensional Euclidean space. Section 3 studies the volume
enclosed in the Minkowski sum of two solid ellipsoids. An approach based on Steiner’s
Formula is presented to provide closed-form bounds of those volumes. These bounds and the
numerically calculated ground truth are compared and analyzed for different planar elliptical
and three-dimensional ellipsoidal examples. Then in Sect. 4 these results are applied to
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characterize the volume of free motion of an ellipsoidal robot moving among ellipsoidal
obstacles in an ellipsoidal arena. We also discuss a new extension of the Principal Kinematic
Formula. Finally, Sect. 5 presents our conclusions.

2 Closed-form characterization of Minkowski operations of two ellipsoids

In this section a combination of affine transformations and the analytic properties of offset
surfaces are used to obtain exact closed-form parametric expressions for the boundaries of
the Minkowski sum and difference of any two ellipsoidal bodies.1 In order to keep things
general, in addition to its usual meaning, the word “ellipsoid” is used to describe an ellipse
in two-dimensional space, and a hyper-ellipsoid in n-dimensional space when n > 3. And a
“solid ellipsoid” refers to the ellipsoidal body bounded by an ellipsoid.

Let E1 and E2 be two arbitrary solid ellipsoids in n-dimensional Euclidean space with
semi-axis lengths given by the row vectors a1 = [a1, . . . , an] and a2 = [a′

1, . . . , a
′
n], respec-

tively. The ellipsoidal boundary ∂E1 that encloses E1 has implicit and parametric equations
of the form2

xT A−2
1 x = 1 and x = A1u(φ) (3)

where A1 = R1Λ(a1)RT
1 with R1 denoting the n×n rotation matrix that orients E1 in space

and Λ(a1) = [λi j (a1)] is the n × n diagonal matrix with entries of the form λi j (a1) = ai δi j
(no sum), where δi j is the Kronecker delta symbol and the i th semi-axis length ai is the i th
component of a1. Here u(φ) is the standard parameterization of the hyper-sphere Sn−1 with
n − 1 angles φ = [φ1, . . . , φn−1] as used in [12]. Subscripts on the matrices AiΛ(ai ) and
Ri refer to ellipsoid Ei .

Let E2 translate around E1 and attach a reference point in the center of E2. Then the
boundary of E1 ⊕ E2 becomes the locus of positions of the reference point of E2 where
E1 ∩ (t · E2) �= ∅ for all translations t ∈ R

n where t · E2 denotes a translated version of E2

defined by t · E2 = {x + t |x ∈ E2}.
The basic idea of our approach is to apply an affine transformation to E1 and E2 that results

in shrinking E2 into a ball of radius r , and calculating an offset surface of the transformed
∂E1 with offset distance r . We then stretch the resulting offset surface using the inverse
of the previous affine transformation. For a graphical explanation, this general algorithm is
illustrated with a planar example in Fig. 1a–c. In Fig. 1a, the boundary of the Minkowski
sum of E1 and E2 is constructed by the center of E2 when it is touching E1. It forms a
deformed offset curve/surface of the motionless ellipsoid with variable offset distances. To
characterize the boundary of E1 ⊕ E2, first, as shown in Fig. 1b we shrink both ellipsoids
together until ∂E2 changes to a circle/sphere with radius r . Here, r is chosen as the smallest
semi-axis length of E2 i.e., r = min{a′

1, a
′
2, . . . , a

′
n}. Therefore, the boundary of E1 ⊕ E2

in this case becomes an offset curve/surface. After this affine operation E1 still remains an
ellipsoid but with changed semi-axis lengths, ãi , and changed orientation.

The “shrinking” operation on E1 can be represented as

x′ = R2Λ
−1(a2/r)RT

2 x, (4)

1 In the case of the Minkowski difference, mild conditions are imposed requiring one body to be containable
in the other at all orientations and under all kissing conditions.
2 Of course the same applies for E2 in its principal axis frame with a1 → a2.
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Fig. 1 The algorithm for
obtaining the parametric
representation of the boundary of
the Minkowski sum of two
elliptical bodies E1 and E2. In a,
both bodies are shrunk in the
direction with the rotation angle
θ2 [see (4)] until ∂E2 becomes a
circle. After the shrinking
process, ∂E1 remains elliptical
but with different semi-axis
lengths and rotation angle,
whereas ∂E2 becomes a circle
(see b). The Minkowski sum in
this transformed space is then an
offset surface. In c, everything is
stretched back in the same
direction until the surrounding
circle becomes the original
version of ∂E2 again. The shaded
region in c represents E1 ⊕ E2.
We note that the shaded regions
in b, c that may appear to be
elliptical are actually not ellipses,
and the amount that they deviate
from being ellipses depends on
the eccentricity of the elliptical
bodies

(a)

(b)

θ2

(c)

E1

E2

where x and x′ specify the coordinates of the original and shrunk versions of E1, respectively.
R2 is the rotation matrix describing the orientation of E2.

Then x can be represented as

x = R2Λ(a2/r)RT
2 x′. (5)

By substituting (5) into the first equation in (3), we can get the implicit expression of the
shrunk version of ∂E1 of the form

Φ(x′) .= (x′)T A′−2
1 x′ = 1, (6)

where A′
1 depends on the rotation matrices R1, R2, and the semi-axis lengths a1 and a2.

A parameterized offset hyper-surface xof s(φ) of an orientable, closed, and differentiable
hyper-surface x′(φ) ∈ R

n with the offset radius r is defined as

xof s(φ) = x′(φ) + r n′(φ), (7)

where n′ is the outward-pointing unit surface normal. In the case of the ellipsoidal surface
in (6), the outward pointing normal can first be computed from the implicit equation as

∇Φ(x′) = 2A′−2
1 x′

and then evaluated with the parametric equation and normalized as
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Fig. 2 The algorithm for
obtaining the parametric
representation of the boundary of
the Minkowski difference of two
solid ellipses E1 and E2. This
presumes that the radius of
curvature of the resulting
circle/sphere is smaller than the
smallest semi-axis length of the
bounding shrunk ellipsoid. The
algorithm follows the same steps
as Fig. 1. The shaded region in c
represents E1 � E2

(a)

(b)

(c)

θ2

E1
E2

n′(φ) = ∇Φ(x′(φ))

‖∇Φ(x′(φ))‖ (8)

where x′(φ) = A′
1u(φ) is analogous to the parametric expression on the right side of (3).

Substituting this into (7) gives a closed-form expression for the offset of the affine-
transformed version of ∂E1. After computing the offset hyper-surface xof s , we just need
to transform the result back until the shrunk version of E1 becomes to the original one again
(see Fig. 1c), and after this “stretching” operation, the exact boundary of E1 ⊕ E2 can be
finally represented in closed form as

xeb = T xof s where T = R2Λ(a2/r)RT
2 . (9)

The boundary of the Minkowski difference of two ellipoids E1 and E2 is denoted as
∂(E1 � E2). When E2 is “small enough” relative to E1∂(E1 � E2) can be parameterized in
exactly the same way as above for ∂(E1 ⊕ E2), with the single change that in (7) r → −r .
Here “small enough” means that at any orientation a translate of ∂E2 can simultaneously
kiss ∂E1 at a single point and be fully contained in E1. This amounts to the maximal radius
of curvature of ∂E2 to be less than the minimal radius of curvature of ∂E1.

The procedure for generating the boundary of the Minkowski difference is illustrated in
Fig. 2.
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3 Volume of the Minkowski sum of two ellipsoids

Here we show that using the methods developed in the previous section it is possible to
approximate the volume of the Minkowski sum of two arbitrary ellipsoidal bodies with
lower bounds that are tighter than the Brunn–Minkowski inequality

V (E1 ⊕ E2)
1
n ≥ V (E1)

1
n + V (E2)

1
n . (10)

Moreover, using similar methods, we can also generate tight upper bounds. The bounds that
we develop in this section use Steiner’s formula [43,47]

V
(
C ⊕ r · Bn) = W0(C) +

n∑

k=1

(
n
k

)
Wk(C)rk (11)

where C is an arbitrary convex body and Bn is a unit ball in R
nr is a radius andWi (C) is the

i th quermassintegral. In the current context, C is the interior of an n-dimensional ellipsoid,
which is an affine transformed version of the original E1, and r · Bn is the solid ball resulting
from the same affine transformation applied to E2. The affine transformation that transforms
r · Bn back into E2 is defined by its action on an arbitrary point x ∈ R

n into T x where T
is the n × n matrix in (9) with det T > 0. The volume V (C ⊕ r · Bn) is then related to
V (E1 ⊕ E2) by the formula

V (E1 ⊕ E2) = det(T ) · V (Cr ) (12)

where the shorthand

Cr
.= C ⊕ r · Bn

is used here and in the subsequent subsections. Even though the boundary is parameterized
in closed form, not all of the quermassintegrals can be evaluated in closed form. However,
we show in the following subsections that they can all be bounded well in 2D and in 3D.

For theMinkowski difference, the same formula can be used with r → −r under the same
relative size conditions on E1 and E2 as in the previous section. These conditions amount
to the smallest radius of curvature of ∂E1 being larger than the largest radius of curvature of
∂E2, with this comparison being performed over all points on both bodies.

3.1 Volumes of offsets via Steiner’s formula (planar case)

In the planar case, Steiner’s Formula becomes3

V (Cr ) = V (C) + r L(∂C) + πr2, (13)

where L(∂C) represents the perimeter of the ellipse. The perimeter of an ellipse with semi-
axis lengths a and b with a ≤ b can be written exactly as

L(a, b) = 4b E

⎛

⎝π

2
,

√

1 − a2

b2

⎞

⎠ (14)

where E(ϕ,m) is the incomplete elliptic integral of the second kind. Using this, the exact
area contained inside of the offset curve can be obtained, and the exact area of theMinkowski

3 Since area takes the place of volume in 2D problems, and we retain the symbol V when referring to area.
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sum of two ellipses results. Nevertheless, it can be useful to evaluate lower and upper bounds
using elementary functions.

The perimeter of an ellipse can be approximated by Legendre’s exact expansion [35],

L(a, b) = 2πa

[
1 − w2

4
− 3w4

64
− (2ν − 1)−1 (

2νν
)2 (w

4

)2ν − · · ·
]

, (15)

where w is the eccentricity of the ellipse, i.e., with a ≥ b,

w =
√

1 − b2

a2
. (16)

Therefore, we can use the first few terms as an upper bound, for example

Lub = 2πa

(
1 − w4

4
− 3w2

64

)
. (17)

Also, by the isoperimetric inequality [30], we have a lower bound of L as

Llb =
√
4π2ab + 4π(a − b)2. (18)

3.2 Volumes of offsets via Steiner’s formula (spatial case)

For a finite convex 3DbodyC with volume V (C) enclosed by a compact surface ∂C , Steiner’s
formula calculates the volume enclosed by the surface offset by an amount r from ∂C [24]:

V (Cr ) = V (C) + r F(∂C) + r2M(∂C) + r3

3
K (∂C). (19)

Here F(∂C) is the area of the bounding surface, M(∂C) is the mean curvature integrated
over the bounding surface, and K (∂C) is the Gaussian curvature integrated over the bounding
surface. From theGauss–Bonnet theorem applied to the surface bounding a simply-connected
body (as must be the case for a convex body),

K (∂C) = 4π. (20)

and so, if the surface area and integral of mean curvature can be computed, we can exactly
compute the volume of the offset surface.

This, together with (12) and our construction of the Minkowski sum of ellipsoids by the
application of appropriate linear transformations resulting in offset surfaces of ellipsoids,
allows us to bound the volume of the Minkowski sum of ellipsoids in closed form. Here
we seek to bound these quantities from below and above, thereby bounding the volume of
the offset of an ellipse, and from our previous construction, bounding the volume of the
Minkowski sum of two arbitrary ellipsoids at arbitrary orientations.

In the spatial case, both the surface area and mean curvature must either be computed,
bounded, or approximated.

3.2.1 Total mean curvature

Exact formulas are not known to us for the total mean curvature M , for a triaxial ellipsoid.
But several approaches to bounding this quantity are possible.
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Given the parameterized equation of a triaxial ellipsoid

x(φ, θ) =
⎛

⎝
a cosφ sin θ

b sin φ sin θ

c cos θ

⎞

⎠

the outward pointing normal is

n(φ, θ) =
(

∂x
∂θ

× ∂x
∂φ

)
·
∥∥∥∥

∂x
∂θ

× ∂x
∂φ

∥∥∥∥
−1

=
⎛

⎝
bc cosφ sin θ

ac sin φ sin θ

ab cos θ

⎞

⎠ · (
b2c2 cos2 φ sin2 θ + a2c2 sin2 φ sin2 θ + a2b2 cos2 θ

)−1/2

Therefore,

x · n = abc · (
b2c2 cos2 φ sin2 θ + a2c2 sin2 φ sin2 θ + a2b2 cos2 θ

)−1/2

and the element of surface area is

dS =
∥∥∥∥

∂x
∂θ

× ∂x
∂φ

∥∥∥∥ dφdθ (21)

= (
b2c2 cos2 φ sin2 θ + a2c2 sin2 φ sin2 θ + a2b2 cos2 θ

)1/2
sin θdφdθ.

In general, the mean curvature can be computed using the formula [17]

m = ‖∇Φ‖2 tr(∇∇TΦ) − (∇TΦ)(∇∇TΦ)(∇Φ)

2‖∇Φ‖3 (22)

= ∇ ·
( ∇Φ

‖∇Φ‖
)

.

For the triaxial ellipsoid

Φ(x) .= xT A x (23)

with

A = Δ−1(a2, b2, c2), (24)

we evaluate at x = x(φ, θ) (using the same parametric equation above), which gives

m(φ, θ) =
(
xT A2 x

)
tr(A) − xT A3 x

2 · (
xT A2 x

)3/2 (25)

= abc
[
(a2 + b2) cos2 θ + (

(a2 + c2) sin2 φ + (b2 + c2) cos2 φ
)
sin2 θ

]

2(a2b2 cos2 θ + c2(b2 cos2 φ + a2 sin2 φ) sin2 θ)3/2

The total mean curvature of a triaxial ellipsoid is

M =
∫

∂C

mdS (26)

=
π∫

0

2π∫

0

abc
[
(a2+b2) cos2 θ+(

(a2+c2) sin2 φ+(b2+c2) cos2 φ
)
sin2 θ

]

2
(
a2b2 cos2 θ+c2

(
b2 cos2 φ+a2 sin2 φ

)
sin2 θ

) sin θdφdθ.
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We note that the fractional power disappeared due to the product of m · dS.
One approach to obtain bounds for M is to tackle the problem by integrating M over φ

first. In order to simplify the discussion, we denote

k0 = abc

2
, (27)

k1(θ) = [
(a2 + c2) sin2 θ + (a2 + b2) cos2 θ

]
sin θ,

k2(θ) = [
(b2 + c2) sin2 θ + (a2 + b2) cos2 θ

]
sin θ,

h1(θ) = (
a2b2 cos2 θ + a2c2 sin2 θ

)1/2
,

h2(θ) = (
a2b2 cos2 θ + b2c2 sin2 θ

)1/2
.

and M in (26) can be rewritten as

M = k0

π∫

0

2π∫

0

k1(θ) sin2 φ + k2(θ) cos2 φ

h21(θ) sin2 φ + h22(θ) cos2 φ
dφdθ. (28)

We integrate M over φ first,

2π∫

0

k1(θ) sin2 φ + k2(θ) cos2 φ

h21(θ) sin2 φ + h22(θ) cos2 φ
dφ (29)

= 2π

(
k1(θ)

h1(θ)(h1(θ) + h2(θ))
+ k2(θ)

h2(θ)(h1(θ) + h2(θ))

)
.

Since

π/2∫

0

cos2 x dx

α2 sin2 x + β2 cos2 x
= π

2β(α + β)
,

π/2∫

0

sin2 x dx

α2 sin2 x + β2 cos2 x
= π

2α(α + β)
,

moreover, a general principle is that if

A =
π/2∫

0

f (cos2 x, sin2 x)dx and B =
π/2∫

0

f (sin2 x, cos2 x)dx

then

π∫

0

f (cos2 x, sin2 x)dx = A + B and

2π∫

0

f (cos2 x, sin2 x)dx = 2(A + B) ,
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and so
2π∫

0

cos2 x dx

α2 sin2 x + β2 cos2 x
= 2π

β(α + β)
,

2π∫

0

sin2 x dx

α2 sin2 x + β2 cos2 x
= 2π

α(α + β)
.

Then M becomes

M = 2k0π

π∫

0

(
k1(θ)

h1(θ)(h1(θ) + h2(θ))
+ k2(θ)

h2(θ)(h1(θ) + h2(θ))

)
dθ, (30)

in which
π∫

0

k1(θ)

h1(θ)(h1(θ) + h2(θ))
dθ (31)

=
1∫

−1

α1t2 + β1
√

α2t2 + β2

(√
α2t2 + β2 + √

α3t2 + β3

) dt.

where

α1 = b2 − c2, (32)

α2 = a2
(
b2 − c2

)
,

α3 = b2
(
a2 − c2

)
,

β1 = a2 + c2,

β2 = a2c2,

β3 = b2c2.

We can bound the term
√

(α2t2 + β2)(α3t2 + β3) as

α′t2 + β ′ ≤
√(

α2t2 + β2
) (

α3t2 + β3
) ≤ α′′t2 + β ′′ (33)

and in this way, replace the denominators with α′t2 + β ′ and α′′t2 + β ′′, and bounding
integrals that can be computed in closed form.

To get (α′, β ′) and (α′′, β ′′), first we expand out
(
α2t

2 + β2
) (

α3t
2 + β3

) = (α2α3) t
4 + (α2β3 + α3β2) t

2 + β2β3.

Next, compare with a candidate perfect square

(αt2 + β)2 = α2t4 + 2αβt2 + β2.

We have complete control over defining α, β ∈ R≥0, and want to choose them so that one of
the results (αt2 + β)2 ≤ (α2t2 + β2)(α3t2 + β3) or (αt2 + β)2 ≥ (α2t2 + β2)(α3t2 + β3)

holds, and is as tight as we can make it.
If we choose

β2 .= β2β3 and 2αβ
.= α2β3 + α3β2
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then the difference

(αt2 + β)2 − (α2t
2 + β2)(α3t

2 + β3) = t4
(β2α3 − β3α2)

2

4β2β3
≥ 0.

And since t4 is very small on much of the range −1 ≤ t ≤ 1, using this fact will result in a
good upper bound of the form

√
(α2t2 + β2)(α3t2 + β3) ≤ α′′t2 + β ′′

as in the right-hand side of (33), where

β ′′ .= √
β2β3 and α′′ .= α2β3 + α3β2

2
√

β2β3
.

As for a lower bound, if we define α2 .= α2α3 and β2 .= β2β3 then

(αt2 + β)2 = (α2α3)t
4 + 2

√
α2α3β2β3 t

2 + β2β3. (34)

But from the AM-GM inequality

a + b

2
≥ √

ab,

it follows that the middle term in (34) is less than α2β3 + α3β2. And so

(α′t2 + β ′)2 ≤ (
α2t

2 + β2
) (

α3t
2 + β3

)

where

α′ .= √
α2α3 and β ′ .= √

β2β3

give the constants so that the lower bound in (33) holds.
Therefore, we have

1∫

−1

α1t2 + β1

(α2 + α′)t2 + (β2 + β ′)
dt ≤

π∫

0

k1(θ)

h1(θ) (h1(θ) + h2(θ))
dθ, (35)

π∫

0

k1(θ)

h1(θ)(h1(θ) + h2(θ))
dθ ≤

1∫

−1

α1t2 + β1

(α2 + α′′)t2 + (β2 + β ′′)
dt.

In the same way,

1∫

−1

α4t2 + β4

(α3 + α′)t2 + (β3 + β ′)
dt ≤

π∫

0

k2(θ)

h2(θ) (h1(θ) + h2(θ))
dθ, (36)

π∫

0

k2(θ)

h2(θ) (h1(θ) + h2(θ))
dθ ≤

1∫

−1

α4t2 + β4

(α3 + α′′)t2 + (β3 + β ′′)
dt.
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From these observations, we can bound M from below and above with integrals that can be
computed in closed form as

Mlb1 = 4π

⎛

⎝ α1

α2 + α′ −
(α1(β2 + β ′) − β1(α2 + α′)) tan−1(

√
α2+α′
β2+β ′ )

(α2 + α′)
√

(α2 + α′)(β2 + β ′)

+ α4

α3 + α′ −
(α4(β3 + β ′) − β4(α3 + α′)) tan−1(

√
α3+α′
β3+β ′ )

(α3 + α′)
√

(α3 + α′)(β3 + β ′)

⎞

⎠ , (37)

Mub1 = 4π

⎛

⎝ α1

α2 + α′′ −
(α1(β2 + β ′′) − β1(α2 + α′′)) tan−1(

√
α2+α′′
β2+β ′′ )

(α2 + α′′)
√

(α2 + α′′)(β2 + β ′′)
(38)

+ α4

α3 + α′′ −
(α4(β3 + β ′′) − β4(α3 + α′′)) tan−1(

√
α3+α′′
β3+β ′′ )

(α3 + α′′)
√

(α3 + α′′)(β3 + β ′′)

⎞

⎠ .

We now explore a second set of bounds on M for triaxial ellipsoids. Since the total mean
curvature of uniaxial ellipsoids is known as exact expressions in both the prolate and oblate
cases, by inscribing and circumscribing the tightest uniaxial ellipsoids around a given triaxial
ellipsoid, we can obtain bounds on M of the form

Mlb2 ≤ M(∂C) ≤ Mub2 (39)

The explicit formulas for the total mean curvature of uniaxial ellipsoids are given below.
If a = b = R and c = λR with 0 < λ < 1, then [24]

M = 2πR

[
λ + arccosλ√

1 − λ2

]
. (40)

When λ > 1,

M = 2πR

[
λ + log(λ + √

λ2 − 1)√
λ2 − 1

]
. (41)

To circumscribe a tight uniaxial ellipsoid around a given triaxial ellipsoid with a ≤ b ≤ c, we
stretch the triaxial ellipsoid along the x-axis until the semi-axis length changes from a to b, or
we can stretch it along the y-axis until the semi-axis length changes from b to c. The tightest
circumscribed uniaxial ellipsoid can be chosen as the one with the smallest M and this M
(denoted as Mub2 in this method) provides an upper bound of the M of the triaxial ellipsoid.

Wecan inscribe auniaxial ellipsoid into the triaxial ellipsoid in the similarwayby shrinking
it along the z-axis until the semi-axis length changes from c to b and the M of this uniaxial
ellipsoids provides a lower bound of the M of the triaxial ellipsoid. However, we notice that
an even tighter lower bound can be found by using the “Schwartz-symmetrized”-version
of the triaxial ellipsoid instead of a fully inscribed version. The “Schwartz-symmetrized”-
version of a convex body C , denoted as C∗ can be generated by condensing C into circular
cross sections along an axis through the center of C . Each line keeps its original area, and so
V (C) = V (C∗). By the fact of M(C∗) ≤ M(C), we can obtain a lower bound of M and it
is tighter than the one from the inscribed ellipsoid. For our ellipsoidal case, we can just let
the semi-axis lengths of the “Schwartz-symmetrized” version of the triaxial ellipsoid either
be a∗ = a, b∗ = c∗ = √

bc or a∗ = b∗ = √
ab = c and the one with larger M is chosen as

the lower bound of the M (denoted as Mlb2).
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Fig. 3 Upper and lower bounds, Mub1, Mub2Mlb1 and Mlb1, are compared with the exact values of M in
100 random trials, in which the semi-axis lengths and rotation angles of the ellipsoids are randomly sampled
from uniform distributions U [10, 50] and U [0, 2π ], respectively

In practice, we choose the tightest bounds as our bounds of M , i.e.,

Mlb = max {Mlb1, Mlb2} , (42)

Mub = min {Mub1, Mub2} .

To better illustrate different bounds of M , we use 100 random trials, in which the semi-axis
lengths and rotation angles of the ellipsoids are randomly sampled from uniform distributions
U [10, 50] andU [0, 2π], respectively. The results ofMub1Mub2 andMlb1,Mlb2 are compared
with the numerically calculated M (treated as the exact value of M) in Fig. 3.

To illustrate how the ratios among different semi-axis lengths affect the performance of
the bounds of M , we also plot the relative errors of the bounds of M , i.e.,

eMub = (Mub − M)/M, (43)

eMlb = (Mlb − M)/M,

on a 2D grid plot, with the axes of b/a and c/a. Here, b/a and c/a ∈ [1, 5], represent the
ratios between the semi-axis lengths b, a and c, a, respectively (see Fig. 4). In all the trials,
the errors of the bounds are less than 5%. Mlb1 and Mub1 always provide very tight bounds.
Mlb2 and Mub2 perform better when the triaxial ellipsoid is close to a uniaxial one, and for
the uniaxial case, the error becomes absolute zero.

3.2.2 Surface area

The surface area of a triaxial ellipsoid with a ≤ b ≤ c can be written exactly as [39]

F(a, b, c) = 2π

(
a2 + ba2√

c2 − a2
F(ϕ,w) + b

√
c2 − a2 E(ϕ,w)

)
(44)
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(a) Upper Bound Error of M (b) Lower Bound Error of M
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Fig. 4 With different aspect ratios of semi-axis lengths, errors of Mub and Mlb are shown on a 2D grid plot,
with the axes of b/a and c/a, where b/ac/a ∈ [1, 5]

where

w = c2(b2 − a2)

b2(c2 − a2)
and ϕ = sin−1

⎛

⎝
√

1 − a2

c2

⎞

⎠ .

Here F(ϕ,w) and E(ϕ,w) are respectively the incomplete elliptic integrals of the first
and second kind. These integrals are built into packages such as Matlab, and values can be
looked up efficiently. Nevertheless, it can be useful to evaluate bounds in terms of elementary
functions.

Flb(∂C) ≤ F(∂C) ≤ Fub(∂C). (45)

Numerous papers provide lower and upper bounds on the surface area of ellipsoids [6,14,
39,40].

A convenient and very tighter upper bound of F can be found from the Cauchy–Schwartz
inequality [35,37].

Fub1 = 4π√
3

(
a2b2 + b2c2 + c2a2

) 1
2 . (46)

Since the explicit formulas for the surface area of uniaxial ellipsoids are also known as
follows. If a = b = R and c = λR with 0 < λ < 1, then [24]

F = 2πR2

[
1 + λ2√

1 − λ2
log

(
1 + √

1 − λ2

λ

)]
.

When λ > 1,

F = 2πR2
[
1 + λ2arccos(1/λ)√

λ2 − 1

]
.

We can also circumscribe a tightest uniaxial ellipsoid around a given triaxial ellipsoid as we
did for M to obtain an upper bound of F , denoted as Fub2.

Moreover, using the same “Schwartz-symmetrized” uniaxial ellipsoidal approximation,
as what we did for M and the fact that F(C∗) ≤ F(C), we can obtain a tight lower bound of
F , denoted as Flb.
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Fig. 5 Upper and lower bounds, Fub1, Fub2 and Flb , are compared with the exact values of F in 100 random
trials, in which the semi-axis lengths and rotation angles of the ellipsoids are randomly sampled from uniform
distributions U [10, 50] and U [0, 2π ], respectively
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Fig. 6 With different aspect ratios of semi-axis lengths, errors of Fub and Flb are shown on a 2D grid plot,
with the axes of b/a and c/a, where b/ac/a ∈ [1, 5]

To compare the results, we also use the same 100 random trials for F . The results of
Fub1Fub2 and Flb are compared with the exact value of F in (44) in Fig. 5.

Similarly, we also plot the relative errors of the bounds of F , i.e.,

eFub = (Fub − F)/F, (47)

eFlb = (Flb − F)/F,
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on a 2D grid plot with the axes of b/a and c/a (see Fig. 6). Here,

Fub = max {Fub1, Fub2} . (48)

Among all the trials, the errors of the bounds of F are always less than 10%. The error
becomes smaller when the triaxial ellipsoid is very close to a uniaxial one, and for the
uniaxial case, the error becomes absolute zero.

3.3 Numerical comparison of bounds

This section evaluates the bounds derived in the previous sections. We begin with the planar
case, and then address the spatial case.

3.3.1 Bounds for the planar case

For planar cases, we define bounds on the area enclosed by the Minkowski sum of ellipses
as follows,

VBM =
(
V (E1)

1
2 + V (E2)

1
2

)1/2
, (49)

Vlb = det(T )
(
V (C) + r Llb + πr2

)
, (50)

Vub = det(T )
(
V (C) + r Lub + πr2

)
, (51)

Vexact = det(T )
(
V (C) + r L + πr2

)
, (52)

where VBM is a lower bound of the area from the Brunn–Minkowski inequality (10)). Vlb and
Vub are the lower and upper bounds from our Steiner’s Formula-based approach. For planar
cases, V (C) becomes the area of the shrunk version of E1 with semi-axis lengths ã1 and b̃1,
i.e.,

V (C) = π ã1b̃1, (53)

and r = min{a2, b2}. LlbLub defined in (17), (18) and L defined in (14) are the upper, lower
bounds and the exact formula for the perimeter of an ellipse, respectively. These are evaluated
with the parameters ã1 and b̃1 for the shrunk version of ellipse E1.

Figure 7 illustrates the Minkowski sums of two ellipses in two different cases. Figure 8
shows the results of the relative errors for different bounds based on 100 trials, in which the
semi-axis lengths and rotation angles of the ellipses are randomly sampled from uniform
distributionsU [10, 50] andU [0, 2π ], respectively. The relative error km for different bounds
is defined as km = (Vm − Vtrue)/Vtrue. In Fig. 8, we can that see that Vub and Vlb provide
good upper and lower bounds with the relative errors less than 8%.We note that VBM always
provides a much looser lower bound than Vlb. To avoid unnecessary scaling effect on the
figure, we only plot Vlb, Vub and Vexact in Fig. 8.

3.3.2 Bounds for the spatial case

For three-dimensional cases, VBM [based on theBrunn–Minkowski inequality (10)], Vlb1Vub1
and Vlb2Vub2 are defined as follows,

VBM =
(
V (E1)

1
3 + V (E2)

1
3

)1/3
, (54)

Vlb1 = det(T )
(
V (C) + r Flb + r2Mlb + 4πr3

3

)
, (55)

123



Geom Dedicata (2015) 177:103–128 119

Fig. 7 Comparisons of different
bounds and exact values of
Minkowski sums of two ellipses
in two different cases. a Both
ellipses are circles with radius 3
and 1.5, respectively. In this case,
VBM = Vlb = Vub = Vexact =
π(3 + 1.5)3 = 63.61. b The
ellipses have semi-axis lengths 1,
5 and 3, 6, and rotation angles 0
and π/4, respectively. VBM =
131.9 < Vlb = 165.2 <=
Vexact = 171.1 < Vub = 179.1

VBM  = Vlb  = Vub   = Vexact

(a)

VBM  = Vlb  < Vexact < Vub   

(b)
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Fig. 8 The upper and lower bounds, Vub and Vlb , compared with the exact value of the Minkowski-sum
volumes of two ellipses, Vexact , based on 100 trials, in which the semi-axis lengths and angles of the ellipses
are randomly sampled from uniform distributionsU [10, 50] andU [0, 2π ], respectively. The relative errors of
the upper and lower bounds, kub and klb , are calculated and shown in the figure. Here, kexact = 0

ub1 = det(T )
(
V (C) + r Fub + r2Mub + 4πr3

3

)
, (56)

lb2 = det(T )
(
V (C) + r F + r2Mlb + 4πr3

3

)
, (57)

ub2 = det(T )
(
V (C) + r F + r2Mub + 4πr3

3

)
, (58)

exact = det(T )
(
V (C) + r F + r2M + 4πr3

3

)
, (59)

where V (C) is the volume of the shrunk version of E1, with semi-axis lengths ã1b̃1 and c̃1,
i.e.,

V (C) = 4π

3
ã1b̃1c̃1, (60)
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VBM  = Vlb1 = Vlb2 = Vub1 = Vub2 = Vexact

(a)

(c)

(b)

VBM  < Vlb1 = Vlb2 = Vexact = Vub2 < Vub1

VBM < Vlb1 < Vlb2 < Vexact < Vub2 < Vub1  

Fig. 9 Comparisons of different bounds and exact values of Minkowski sums of two ellipsoids in three
different cases. a Both ellipsoids are spherical balls with radius 4 and 2.5, respectively. In this case, VBM =
Vlb1 = Vlb2 = Vexact = Vub2 = Vub1 = 4π

3 (4 + 2.5)3 = 1.15 × 103. b One ellipsoid is a spherical ball
with radius 2, the other one is axis-symmetric with semi-axis lengths 2, 2, 6. VBM = 448.1 < Vlb1 = Vlb2 =
Vexact = Vub2 = 563.3 < Vub1 = 573.7. c Both ellipsoids are triaxial with semi-axis lengths as 7, 3, 3 and
2, 3, 4, and ZXZ Euler angles as −π/4,−pi/8, π/4 and π/3, π/4, −π/6, respectively.VBM = 1354.4 <

Vlb1 = 1678.8 < Vlb2 = 1724.3 < Vexact = 1725.9 < Vub2 = 1729.2 < Vub1 = 1741.2

and r = min{a2, b2, c2}. After calculating the offset surface, the “stretching” operation T can
be found in (9). F is defined in (44) as the exact surface area and the exact value of the total
mean curvature M is calculated numerically based on (26). MlbMub and FlbFub are the best
lower and upper bounds of the totalmean curvature and the surface area, respectively. Vlb1 and
Vub1 use bounds for bothM and F ,whileVlb2 andVub2 use the exact value of F and the bounds
of M . These are all evaluated with the parameters ã1b̃1c̃1 for the shrunk version of ellipse E1.

Figure 9 illustrates theMinkowski sums of two ellipsoids in three different cases. Figure 10
shows the results of the relative errors for different bounds based on 100 trials, in which the
semi-axis lengths and rotation angles of the ellipsoids are randomly sampled from uniform
distributions U [10, 50] and U [0, 2π ], respectively. With our best bounds of M and F , the
relative errors of the Minkowski-sum volumes can be bounded by 6%. With the best bounds
of M and the exact value of F calculated in closed form in (44), the relative errors can be
further reduced and bounded by 2%.

3.4 Volume estimates derived from bounds

In addition to exact lower and upper bounds on the volume of Minkowski sums of ellipsoids
based on our parametric description, we consider estimates of the volume. Two immediate
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Fig. 10 The upper and lower bounds, Vub1Vub2Vlb1 and Vlb2, are compared with the exact value of the
Minkowski-sum volumes, Vexact , based on 100 trials, in which the semi-axis lengths and angles of the
ellipses are randomly sampled from uniform distributions U [10, 50] and U [0, 2π ], respectively. The relative
errors of these bounds, kub1kub2klb1 and klb2, are calculated and shown in the figure. Here, kexact = 0

estimates are obtained from taking the arithmetic and geometric means of our best lower and
upper bounds Vlb1 and Vub1, induced by our best bounds of M and F :

VAM = 1

2
(Vlb1 + Vub1), (61)

VGM = √
Vlb1 · Vub1. (62)

From the AM-GM inequality, VGM ≤ VAM .
Other estimates can be obtained by replacing the lower and upper bounds on F (Fig. 12),

or in the planar case, L (Fig. 11) with their estimates.
For example, a modified Ramanujan approximation of the perimeter of an ellipse with

a ≤ b is [42]

Lest = π(a + b)

(
1 + 3(b − a)2/(b + a)2

10 + √
4 − 3(b − a)2/(b + a)2

)
. (63)

An approximate formula for the area of a triaxial ellipsoid has been given recently (by
Thomsen and Cantrell independently) as [1]

Fest = 4π

(
a pbp + a pcp + bpcp

3

)1/p

where p = 1.6075. (64)

With

Mest = 1

2
(Mlb + Mub), (65)
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Fig. 11 The relative errors of different area estimates, VAMVGM and Vest , for E1 ⊕ E2 are calculated based
on 100 trials, in which the semi-axis lengths and angles of the ellipses are randomly sampled from uniform
distributions U [10, 50] and U [0, 2π ], respectively
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Fig. 12 The relative errors of different volume estimates, VAMVGM and Vest , for E1 ⊕ E2 are calculated
based on 100 trials, in which the semi-axis lengths and angles of the ellipsoids are randomly sampled from
uniform distributions U [10, 50] and U [0, 2π ], respectively

these can be used in Steiner’s formula to obtain an estimate of the volume within an offset
of an ellipse or ellipsoid.

The relative errors of the estimated volumes VAMVGM and Vest of the 2D and 3D cases
are compared in Figs. 11 and 12. In planar cases, the relative errors of Vest provides a very
accurate estimation, i.e., kest ≈ 0. VAM and VGM , computed from our best lower and upper
bounds Vlb1 and Vub1, are very good estimations as well, with the relative errors bounded by
0.7%. In spatial cases, the relative errors of Vest become larger. VAM and VGM in this case
provide better estimations, with the relative errors always less than 1%.
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4 A kinematic formula for containment

In classical integral geometry, the Principal Kinematic Formula plays a central role. The
formula expresses the average Euler characteristic of the intersections of rigid bodies moving
uniformly at random in terms of fundamental quantities of these bodies (volume, area, etc.).
When the bodies are convex, the intersections are convex, and the Euler characteristic can
be replaced by the set indicator function, ι(·) which takes a value of 1 when the argument
is nonempty, and 0 otherwise. The resulting formula works in R

n and has been extended
to general spaces of constant curvature. But we are concerned only with two- and three-
dimensional Euclidean space, in which case the result is in the following subsections.

4.1 Planar cases

Theorem 1 ([7,8,38]) Given convex bodies C0 and C1 in R
2, then

∫

SE(2)

ι(C0 ∩ gC1) dg = 2π [V (C0) + V (C1)] + L(∂C0) · L(∂C1). (66)

where V (·) is the area of the planar body and L(·) is its circumference. In R
3

∫

SE(3)

ι(C0 ∩ gC1) dg = 8π2[V (C0) + V (C1)]

+2π [F(∂C0)M(∂C1) + F(∂C1)M(∂C0)] (67)

where F(·) and M(·) are respectively the area and integral of mean curvature of the surface
enclosing the body, and V (·) is the volume of the body. In these equations, SE(n) denotes the
(n+1)n/2-dimensional Lie group of proper rigid-body motions in n-dimensional Euclidean
space, and dg denotes its (unnormalized) Haar measure. For the proof and pointers to the
literature, see [7,8,29,43–45,47].

An alternative proof specifically for convex bodies was given in [13]. In that proof, the
center of the moving body, C1, visits every point in the fixed body, C0, and rotates freely,
each time contributing to the integral, and resulting in the 2πV (C0) and 8π2V (C0) terms.
Then, the moving body is decomposed into concentric shells, and as each shell makes every
possible point contact with the boundary ∂C0, intersections of the original bodies is also
guaranteed. Adding up these contributions results in the above formulas.

This alternative proof is mentioned, because a new kind of kinematic formula can be
derived in essentially the sameway. In this new formula, we are concerned notwithmeasuring
the volume in SE(n) corresponding to all possible intersections of bodies, but rather the
integral of the volume in SE(n) corresponding to all possible ways that C1 can move while
being fully contained inC0. To this end, let b(gC1 ⊂ C0) take a value of 1 when gC1 ⊂ C0

and a value of zero otherwise, corresponding to the binary truth of the statement that the
moving body is fully contained in the stationary one.

Theorem 2 Given convex bodies C0 and C1 in R
n for n = 2, 3 such that C0 can be written

as the Minkowski sum C ′
0(R) ⊕ RC1 for any R ∈ SO(n) where C ′

0(R) is a convex body that
depends on R, then

∫

SE(2)

b((g · C1) ⊂ C0) dg = 2π [V (C0) + V (C1)] − L(∂C0) · L(∂C1) (68)
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Fig. 13 A planar example when
one ellipse can move freely at all
the orientations inside another
without collision and it is
desirable to compute the free
room to move

and
∫

SE(3)

b((g · C1) ⊂ C0) dg (69)

= 8π2[V (C0) − V (C1)] − 2πF(∂C0)M(∂C1) + 2πF(∂C1)M(∂C0).

For example, if C0 and C1 are circular disks in the plane with radii r0 > r1, then L(∂Ci ) =
2πri V (∂Ci ) = πr2i and the above planar formula (68) gives 2π

2(r0−r1)2, which is 2π times
the area of a disk of radius r0−r1. Similarly, in the 3D case where F(∂Ci ) = 4πr2i M(∂Ci ) =
4πri V (Ci ) = 4

3πr
3
i , the above 3D formula (70) gives 8π2 times the volume enclosed by a

sphere of radius r0 − r1.

We know of no other work that addresses this problem. The closest works are those of
Zhou [51–54] that address when one body can be contained within another (but not the
amount of motion allowed for a contained body). In some practical engineering contexts,
this can be quite important [9,11,27].

Figure 13 illustrates a planar example with the semi-axis lengths of E1 and E2 are 18, 15
and 2, 3, respectively. We numerically calculated the sum of all volumes of the Minkowski
difference of two ellipses when one can move freely at all the orientations inside another
without collision. The relationship between the result of Theorem 2 and the main topic of
this paper is that

Vnum =
∫

SE(2)

b ((g ◦ E1) ⊂ E0) dg =
∫

SO(2)

V (E0 � (g ◦ E1)) dg. (70)

In the example of Fig. 13, we compare Vnum with VPK , the volume calculated based on (68).
The result shows that Vnum = VPK = 3.799 × 103.

4.2 Spatial cases

The subject of translative kinematic formulas for general bodies that compute integrals of
the form

∫

Rn
ι(C0 ∩ tC1) dt for convex bodies has been addressed extensively in [15,16,18,

20,21,46,49,50]. Using our method, given ellipsoidal bodies E0 and E1 with

a1 ≤ b1 ≤ c1 ≤ a0 ≤ b0 ≤ c0

we can compute a translative integral geometric formula for containment of the form
∫

Rn

b (t E1 ⊂ E0) dt = V (E0 � E1) .
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Fig. 14 A spatial example when
one ellipsoid can move freely at
all the orientations inside another
without collision

The result of this formula is related to the formulas given in the previous section because

∫

SE(3)

b ((g · E1) ⊂ E0) dg =
∫

SO(3)

V (E0 � (R · E1)) dR.

But by using our closed-form translative kinematic formula for containment (which uses
the Minkowski sum and difference results from earlier in the paper), we can also compute
what the volume of motion is in SE(3) when the range of rotations is restricted.

Figure 14 illustrates a 3D example with the semi-axis lengths of E1 and E2 are 30, 40, 50
and 1, 2, 3, respectively. In this case, Vnum is defined as

Vnum =
∫

SO(3)

V (E0 � (R · E1))dR. (71)

In this 3D example, we also compared Vnum with VPK [based on (69)] numerically. However,
it is only feasible to discretize the 3D space of SO(3) coarsely, and hence cross-validation
is only approximate. With the resolution of integration in each degree of freedom defined by
50 sample points, we have Vnum = 1.57 × 107 and VPK = 1.64 × 107, which verifies to
within discretization error that these quantities are the same.

We note that if an ellipsoidal robot navigates within an ellipsoidal arena containing ellip-
soidal obstacles, the methodology presented above can be used to compute the volume of
collision-free motion in SE(n) when certain conditions hold. In particular, if the obstacles
are small enough and placed far enough away from the boundary of the arena such that it is
never possible for the robot to simultaneously intersect two or more obstacles or an obstacle
and the boundary of the arena, then the volume of motions computed from our containment
formula can be computed first, and then the volume of motions computed from the Princi-
pal Kinematic Formula for the robot and each obstacle can be computed and subtracted. The
result will be the volume of free motion. If the conditions mentioned above regarding the size
and distribution of obstacles does not hold, then the result computed in this way will be an
upper bound on the free motion. Moreover, using our bounds on the volume of Minkowski
sums and differences, analogous quantities can be computed for the pure translative case
(under less restrictive conditions on the size and location of obstacles).
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5 Conclusion

In this paper, we derive closed-form parametric expressions for the exact boundaries of
the Minkowski sum and difference of two solid ellipsoidal bodies oriented arbitrarily in
n-dimensional Euclidean space. In contrast with existing methods, our approaches are com-
pletely analytical and have closed forms.With our exact parameterization, the volumes of the
Minkowski sum and difference of two ellipsoids can be numerically calculated efficiently.
For even faster evaluation of these volumes, we develop amethod based on Steiner’s Formula
to provide tight upper and lower bounds. These bounds deviate from the actual values only by
a few percent over a wide range of aspect ratios and orientations. In the context of a robotics
application we also illustrate the relationship between the Principal Kinematic Formula, a
related containment formula, and the volume bounds that we obtain for the Minkowski sums
and differences of ellipsoids.
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