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Abstract This chapter presents a new distributed cooperative localization technique
based on a second order sensor fusion method developed for the special Euclidean
group. Uncertainties in the robot pose, sensor measurements and landmark posi-
tions (neighboring robots in this case) are modeled as Gaussian distributions in ex-
ponential coordinates. This proves to be a better fit for both the prior and posterior
distributions resulting from the motion of nonholonomic kinematic systems with
stochastic noise (as compared to standard Gaussians in Cartesian coordinates). We
provide a recursive closed-form solution to the multi-sensor fusion problem that can
be used to incorporate a large number of sensor measurements into the localization
routine and can be implemented in real time. The technique can be used for nonlin-
ear sensor models without the need for further simplifications given that the required
relative pose and orientation information can be provided, and it is scalable in that
the computational complexity does not increase with the size of the robot team and
increases linearly with the number of measurements taken from nearby robots. The
proposed approach is validated with simulation in Matlab.

1 Introduction

In recent years the field of Robotics and Automation has undergone a dramatic as-
cendency in terms of its significance in industrial and military applications as well
as its growing importance in service applications. Multi-robot systems (also known
as multi-agent systems) is a branch of robotics that deals with the collaboration
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among teams of robots (either homogenous or heterogenous) in accomplishing cer-
tain tasks. This section reviews some of the work done in the field of multi-robot
localization followed by an overview of the remainder of this chapter.

1.1 Introduction To Multi-Robot Localization

The path to true autonomy starts with robots knowing where they are in a given
workspace. Such a problem is known as robot localization. According to [15], the
localization problem can be categorized into two subproblems: (1) position tracking
(local localization) which aims to compensate for small dead reckoning errors using
sensor feedback, this approach is local in that the initial pose is assumed known;
and (2) global localization in which the robot “figures out” its position given no
knowledge of its initial pose. A tremendous amount of effort has been devoted to
effectively and efficiently solving the localization problem and the field has seen
major advancements in the establishment of highly practical and easy to implement
algorithms with the EKF (Extended Kalman Filter) and PF (Particle Filter) based
approaches the most widely accepted solutions to the problem. However, the ma-
jority of existing approaches are tailored to localizing a single robot. The field of
multi-robot localization remains relatively fresh and to be explored [6].

Performing the localization task with multiple robots possesses the advantage
of information sharing. Robots within a team can exchange information with other
members so to increase the accuracy and reduce uncertainty in their own estimates.
This advantage is shown both in simulation and experimentally in [6] in which two
robots explore an indoor environment executing their own single robot localization
scheme when they are far away from each other. And the proposed collaborative fu-
sion algorithm is used when the two robots come into each other’s detection range.
Results show that such an algorithmic reinforcement has the effect of significantly
reducing the ambiguities existing in the original estimates. A collaborative architec-
ture of this sort can effectively reduce the hardware cost of the entire team in that
if at least one robot has a good knowledge of its location, then other team mem-
bers can use this information along with relative measurements to infer their own
position and reduce estimation errors.

1.2 Comparison of Existing Distributed Localization Methods

The problem of cooperative localization has been tackled with a wide variety of
approaches over the years. And similar to single robot localization, many of the
existing algorithms can be considered variations of two main categories. The first
family of algorithms make use of recursive Gaussian filters. Distributed versions
of the Kalman Filter are proposed in [1] [14] to solve the cooperative localization
problem. The Extended Kalman Filter (EKF) is utilized in [12] while also provid-
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ing analytical expressions for the upper bound of the estimate uncertainty. In [2]
the EKF is also used, but the algorithm is reinforced with an entropic criterion to
select optimal measurements that reduce global uncertainty. The advantage of using
recursive Bayesian filters to fuse information lies in they are incremental in nature,
which makes them applicable to real time estimation. Closed-form expressions for
state estimation and update also facilitate computational speed. However these types
of algorithms deal only with Gaussian noise which may not be the case for some
real systems. And EKF linearizes the system dynamics around the state of estimate
which is prone to failure when errors grow.

The second family of algorithms are built upon sampling-based nonparametric
filters. Monte Carlo Localization methods are used in [9] to estimate the pose of
each member robot while using grid cells to describe the entire particle set. A global
collaborative localization algorithm is presented in [6] that also builds upon sample-
based Markov localization. In addition, [11][8][3] have all approached the problem
with different variations of the Particle Filter and have also applied their algorithm in
the SLAM (Simultaneous Localization and Mapping) context. Further experimental
validation is provided in [11] and [3]. Grid-based and sampling-based Markov lo-
calization techniques usually address the problem globally and can be improved via
carefully designed resampling processes to counteract localization failures. They
can also be used to accommodate non-Gaussian noise models. However like all
sampling-based approaches, a large number of grids/samples are usually needed to
acquire reasonable outcomes, and the computational cost grows dramatically with
the dimension of the problem. A table comparing the two families of methods is
provided below.

These two main categories of localization techniques presented in Table 1 cur-
rently dominate the field. Both possesses their own pros and cons and the choice
of which depend heavily on the type of applications they are desired for. The two
approaches can potentially be combined to yield superior outcomes. For more de-
tails regarding the Extend Kalman Filter (EKF) applied to multi-robot systems see
[14][12]. For details on Collaborative Monte Carlo Localization (MCL) see [6].

The following subsection explains how our approach differs.

1.3 Objectives, Contributions, and Outline

Existing approaches to the multi-robot localization problem usually consider only
uncertainties in each robot’s pose estimate and sensor measurement. The goal of
this chapter is to explore cooperative localization in a more generalized setting
where uncertainties in the sources of relative measurements (neighboring robots’
pose estimates) are also considered. The distributed localization approach proposed
in this chapter makes an effort to providing recursive closed-form expressions for
real time cooperative sensor fusion used for pose updates of robots within a team.
This work extends the method presented in [10], which considers cooperative lo-
calization with only one exact noise-free measurement (relative to a neighboring
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Table 1: Comparison Between Distributed EKF And MCL

Distributed EKF Multi-Robot MCL

Restrictions on
Error Distribution

Requires Gaussian process and
measurement error

Nonparametric particle
representation of posterior

belief, no assumptions
on noise distribution

Global Localization No Yes

State Recovery No
Possible given a well
designed resampling

process

Localization Accuarcy Accurate when error is small
Depends on the number

of particles used

Computational Cost
Small due to the closed

form propagation and update
equations

Depends on the number of particles.
Can increase dramatically with the

dimension of the state space
Ease of Implementation Simple Can be involved

Robustness
Prone to error due to

linearization

Quite resistant to errors given
multiple beliefs are maintained

simultaneously
Process Multiple

Detections Simultaneously No No

Complexity Relative
To Team Size

Fully distributed. Complexity
independent of team size

Complexity independent of
team size

robot), whereas the technique proposed here can take into account any number of
relative measurements while also considering sensor noise. This method is devel-
oped under the framework of exponential coordinates for Lie groups which gives
this exotic sounding methodology a down-to-earth benefit: Gaussian distribution in
Cartesian coordinates, (x,y,θ) - planar coordinates and heading angle, possesses el-
liptical probability density contours for each fixed θ and for marginal densities in
(x,y), whereas the banana-shaped distribution resulting from incremental motions
of a stochastic differential-kinematic system (i.e., a probabilistic model of mobile
robots with nonholonomic kinematic constraints) is better represented by a Gaus-
sian in exponential coordinates which produce a more conformable density contour
(see Figure 2a). This underlying framework allows the proposed algorithm to tol-
erate higher errors without worrying about collapse of the normality assumption as
uncertainty grows. Unlike most existing cooperative localization schemes that con-
sider only uncertainty in the pose of the robot to be estimated and measurement
noise, the presented method has also taken into account the uncertainty in the pose
of nearby robots from which relative measurements are taken, making it a more re-
alistic and dynamical localization technique. This approach is second order in its
expansion of the Gaussians that describes the pose and measurement distributions
using the Baker-Campbell-Hausdorff (BCH) formula [4], and no simplifications are
made regarding the system kinematics, thus preserving the full nonlinear character-
istics of the original system. Lastly, the form of sensor measurement in this method
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is kept generic without assuming the type of sensor or any underlying characteristics
given the Gaussian-in-exponential-coordinate model can be applied.

The remainder of this chapter is outlined as follows. Section 2 introduces the
mathematical foundation on which the proposed approach is based, namely the ba-
sics of Matrix Lie Groups and Exponential Mapping. Section 3 provides a detailed
derivation of the proposed technique. Section 4 describes the experimental setup in
simulation and provides a discussion of the results. And Section 5 concludes this
chapter.

2 Mathematical Background for The Group SE(n) and
Exponential Mapping

2.1 The Special Euclidean Group and Exponential Coordinates

2.1.1 The Special Euclidean Motion Group

The proposed technique is largely based on the notion of Lie groups and their pa-
rameterizations. According to [4], a group is defined as a pair (G,◦) consisting of
a set G and a binary operator ◦ such that g1 ◦ g2 ∈ G whenever g1,g2 ∈ G, the
operator is associative in the sense that (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) for all ele-
ments g1,g2,g3 ∈ G, there exists an identity element e ∈ G such that for all ele-
ments g ∈ G, g ◦ e = e ◦ g = g, and for each g ∈ G there exists an inverse element
g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e. For engineering applications, a group of
great interest is the Special Euclidean Group, SE(n), that describes rigid-body mo-
tions in n-dimensional Euclidean space. The elements of SE(n) can be represented
as (n+1)× (n+1) homogeneous transformation matrices of the form

SE(n) =
{[

R t
0T 1

]∣∣∣∣R ∈ SO(n), t ∈ℜ
n
}

(1)

where SO(n) is the Special Orthogonal group consisting of n× n rotation matrices
and ℜn is the n dimensional vector space representing translations. The binary op-
eration in this context is simply the matrix multiplication. The Special Euclidean
Group is also a Matrix Lie Group since each element is a real-valued matrix, the
whole set is a differentiable manifold, and both the operations of multiplication and
inversion of homogeneous transformation matrices are smooth operations. We note
that in most practical problems n takes only two values: n = 2 for planar motion and
n = 3 for 3 dimensional space motion.

Now we introduce the concept of Lie Algebra. Again following [4], elements of
a matrix Lie group can be written as g = exp(X) for X ∈ G where the set G is the
matrix Lie Algebra of G. The Lie Algebra for SE(2) (denoted as se(2)) can be rep-
resented by the linear combination of a set of basis
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Ese(2)
1 =

0 0 1
0 0 0
0 0 0

, Ese(2)
2 =

0 0 0
0 0 1
0 0 0

, Ese(2)
3 =

0 −1 0
1 0 0
0 0 0

.

The exponential coordinates for an element of SE(2) can be defined as xse(2) =
[v1,v2,α]T and under this definition an element of the the Lie algebra se(2) can be
written as a 3×3 matrix

X se(2) =

0 −α v1
α 0 v2
0 0 0

=
3

∑
i=1

Ese(2)
i xse(2)

i . (2)

The ‘hat’ and ‘vee’ notation is convenient to identify an element of se(2) with a
vector in ℜ3 as follows:

x̂se(2) = X se(2), and X se(2)∨ = xse(2).

The exponential map exp : se(2)→ SE(2) is surjective, but is not injective since
α = π and −π correspond to the same group element of SE(2). But by removing
from SE(2) the set of measure zero, M, corresponding to α = π , it is possible to
define an inverse map log : (SE(2)−M)→ se(2). Since the integral of well-behaved
functions over SE(2) and SE(2)−M are the same, we do not distinguish between
SE(2) and SE(2)−M in the remainder of this chapter.
For SE(2), exponentiation gives

R =

[
cos(α) sin(α)
sin(α) cos(α)

]
and t =

[
[v2(cos(α)−1)+ v1 sin(α)]/α

[v1(1− cos(α))+ v2 sin(α)]/α

]
. (3)

2.1.2 Adjoint Matrices

The adjoint operator Ad(g) and ad(X) are two important concepts in the derivations
that follow, and so their definitions as well as relevant properties are introduced in
this section. To define the adjoints, we need to first define the inner product and
Lie bracket operations for Lie algebras. According to [4], an inner product between
arbitrary elements of the Lie algebra Y = ∑i yiEi and Z = ∑i ziEi can be defined such
that

(Y,Z) =
d

∑
i

yizi (4)

where d is the dimension of G. In particular, for G = SE(n) the dimension is d =
n(n+1)/2. Choosing a basis {Ei} and requiring that (Ei,E j) = δi j, where δi j is the
Dirac delta function, defines an inner product for G and a metric for G.

The Lie Bracket of Y,Z ∈ G is defined as

[Y,Z] .= Y Z−ZY (5)
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With the above definitions in place, and any g ∈ G, the adjoint operators are

Ad(g)X .
=

d
dt
(g◦ exp(tX)◦g−1)|t=0 =

d
dt

exp(tgXg−1)
∣∣
t=0 = gX g−1

ad(X)Y .
=

d
dt
(Ad(etX )Y )

∣∣∣∣
t=0

(6)

Since the adjoint operators are both linear operators, they can both be written as
matrices that represent linear mapping. We call these matrices adjoint matrices and
define them as (in component form) [4]

[Ad(g)]i j =(Ei,Ad(g)E j)= (Ei,gE j g−1), [ad(X)]i j =(Ei,ad(X)E j)= (Ei, [X ,E j])
(7)

And written in terms of columns, the matrices have the form

[Ad(g)] = [(gE1g−1)∨, ...,(gEng−1)∨], [ad(X)] = [[X ,E1]
∨, ..., [X ,En]

∨] (8)

Some important properties of the adjoint matrices that are used in the following
calculations are listed as follow:

1. Ad(exp(X)) = exp(ad(X)), ad(X)X∨ = 0, ad(X)Y = XY −Y X = [X ,Y ]
2. ad(X)Y∨= [X ,Y ]∨, ad([X ,Y ])= ad(X)ad(Y )−ad(Y )ad(X), ad(X)Y∨=−ad(Y )X∨

3. Ad(g1)Ad(g2)X = g1(g2Xg−1
2 )g−1

1 = (g1g2)X(g1g2)
−1 = Ad(g1g2)X

4. log∨(g◦ eX ◦g−1) = Ad(g) log∨(eX )

For SE(2), the explicit form of the adjoint matrices are

Ad(g) =
[

R Mt
0T 1

]
∈ℜ

3×3, ad(g) =
[
−αM Mv

0T 0

]
∈ℜ

3×3 (9)

where M =

[
0 1
−1 0

]
, R and t defined by equation 1. (v,α) = (v1,v2.α) are the ex-

ponential coordinates of SE(2).

2.1.3 The Baker-Campbell-Hausdorff Formula

The Baker-Campbell-Hausdorf (BCH) formula [4] serves as the core of the sec-
ond order estimation of Gaussian convolutions (described in more detail in the next
section). In essence, the BCH formula establishes a relationship between the Lie
Bracket (defined in equation 5) and the matrix exponential. Let X ,Y ∈ G and define
Z(X ,Y ) = log(eX eY ), the BCH formula then takes the form
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Z(X ,Y )=X+Y +
1
2
[X ,Y ]+

1
12

([X , [X ,Y ]]+[Y, [Y,X ]])+
1

48
([Y, [X , [Y,X ]]]+[X , [Y, [Y,X ]]])+· · ·

(10)
This can be verified by expanding eX ,eY using matrix exponential Taylor series
eX = ∑

∞
k=0

Xk

k! and substitute into the Taylor series for matrix logarithm

log(eX eY ) = log(I +(eX eY − I)) =
∞

∑
k=1

(−1)k+1 (e
X eY − I)k

k
(11)

Applying the ∨ operator to (10) results in

z =x+y+
1
2

ad(X)y+
1
12

(ad(X)ad(X)y+ad(Y )ad(Y )x)

+
1

48
(ad(Y )ad(X)ad(Y )x+ad(X)ad(Y )ad(Y )x)+ · · ·

(12)

Equations (11) and (12) will be used extensively.

2.2 Gaussians on SE(n) and Second Order Convolution Theory

A Gaussian on the SE(n) is defined as

f (g; µ,Σ)
.
=

1
C(Σ)

exp
{
−1

2
[log∨(µ−1g)]T Σ

−1[log∨(µ−1g)]
}

(13)

where µ,g ∈ SE(n), C(Σ) ≈ (2π)
d
2 ‖det(Σ)‖ 1

2 is the normalizing factor when ‖Σ‖
is small.

For a domain of integration G = SE(n), the mean of the above Gaussian is defined
by the value µ ∈ G for which∫

G
log∨(µ−1g) f (g)dg = 0 (14)

and the covariance is given by

Σ
.
=
∫

G
[log∨(µ−1g)][log∨(µ−1g)]T f (g)dg (15)

For details on how to integrate on SE(n), please refer to [15] [16]. Given two Gaus-
sians f1(g) = f (g; µ1,Σ1) and f2(g) = f (g; µ2,Σ2) in the form of (13), their convo-
lution is defined as

( f1 ∗ f2)(g) =
∫

G
f1(h) f2(h−1g)dh =

∫
G

ρ1(µ
−1
1 h)ρ2(µ

−1
2 h−1g)dh
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with ρi(g) = f (g;e,Σi) denoting a Gaussian centered at the identity. It is proven
(refer to [16]) that the convolution ( f1 ∗ f2)(g) results (to the second order) in a
Gaussian with mean and covariance

µ1∗2 = µ1µ2, Σ1∗2 = A+B+F(A,B) (16)

with the terms A, B and F defined by

A = Ad(µ−1
2 )Σ1Ad(µ−1

2 )T and B = Σ2 (17)

where

F(A,B) =
1
4

d

∑
i, j=1

ad(Ei) B ad(E j)
T Ai j +

1
12

{
[

d

∑
i, j=1

A
′′
i j]B+BT [

d

∑
i, j=1

A
′′
i j]

T

}

+
1

12

{
[

d

∑
i, j=1

B
′′
i j]A+AT [

d

∑
i, j=1

B
′′
i j]

T

} (18)

and

A
′′
i j = ad(Ei)ad(E j)Ai j, B

′′
i j = ad(Ei)ad(E j)Bi j. (19)

The above results will be used for SE(2) in the next section, where the basis ele-
ments Ei as well as Ad and ad matrices as defined in the previous section.

3 Derivation of Second Order Bayesian Sensor Fusion on the SE
Group

This section presents a detailed derivation of the proposed technique. Again the
technique focuses on fusing the relative measurements of neighboring robots and
their pose information to reduce the estimation uncertainty of the current robot.
A probabilistic approach is adapted where uncertainties in the robot positions and
sensor measurements are modeled by Gaussians (refer to [5] for a more general-
ized formulation of non-linear measurement model approximation on Lie groups).
In addition, since the motion of a stochastic system with differential constraints is
modeled more accurately with Gaussians in exponential coordinates than that in
Cartesian coordinates, the proposed technique is developed under exponential coor-
dinates. The theory will first be developed for a system of two robots (which builds
on [10] by taking sensor noise into consideration) and be extended to the multi-robot
scenario.



10 Xiao Li Gregory S. Chirikjian

3.1 Localization for A Robot Pair

The problem is given by two mobile robots i and j moving in the plane whose priors
in position and orientation are Gaussians f (a−1

i gi; µi,Σi) and f (a−1
j g j; µ j,Σ j). Here

ai,a j ∈ SE(2) are the known initial positions of the robots relative to the world frame
at t = 0. At time t, µi,µ j ∈ SE(2) and Σi,Σ j ∈ R3×3 are the means (defined relative
to the initial frames ai,a j), and covariances obtained from a previous prediction step
which we’ll also assume to be known. In addition, a sensor measurement of robot
j relative to i is also obtained at time t and is given by the homogeneous matrix
mi j ∈ SE(2). Since we assume the sensor has Gaussian noise, its distribution is then
characterized by a Gaussian of the form Mi j(gi,g j) = f (g j;gimi j,Σm) which says
that according to the sensor, the position of robot j with respective to robot i has a
mean of mi j and covariance of Σm.

The goal is then to calculate a posterior for the position of robot i using the sensor
measurement to update the its prior. Because the sensor provides a relative measure-
ment, we first formulate the joint prior of robot i and j making the assumption that
the priors are independent of each other, giving

pi j(gi,g j) = f (a−1
i gi; µi;Σi) f (a−1

j g j; µ j;Σ j). (20)

Then according to Bayes’ Theorem, the joint posterior is given by

pi j = η1 pi jMi j (21)

where η1 is a constant normalizing factor. Similar normalizing factors result in all
fusion processes that follow and will be denoted by ηi. To save space in the deriva-
tions, we will denote ρi(µ

−1
i gi) = f (gi; µi;Σi) and the rest follows where ρi(g) is a

Gaussian with mean at the identity. The marginal distribution of the joint posterior
for robot i is then

pi(gi) = f (gi; µ i,Σ i) = η2

∫
G

pi j(gi,g j)Mi j(gi,g j)dg j

= η2ρi(µ
−1
i a−1

i gi)
∫

G
ρ j(µ

−1
j a−1

j g j)ρm(m−1
i j g−1

i g j)dg j

(22)

The goal is to find closed-form expressions for µ i and Σ i. Since ρm is symmet-
ric around the mean, we have ρm(m−1

i j g−1
i g j) = ρm(g−1

j gimi j). Letting g′ = gimi j,
equation 22 becomes

pi(gi) = η2ρi(µ
−1
i a−1

i gi)
∫

G
ρ j(µ

−1
j a−1

j g j)ρm(g−1
j gimi j)dg j

= η2ρi(µ
−1
i a−1

i gi)
∫

G
ρ j(µ

−1
j a−1

j g j)ρm(e−1g−1
j g′)dg j

(23)

where e∈ SE(2) is the identity element of SE(2). According to the definition of con-
volution in Section 2, the integral in equation 23 defines a convolution ( f1 ∗ f2)(g′)
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where f1(g′) = f (g′;a jµ j,Σ j) and f2(g′) = f (g′;e,Σm). Let f1∗2(g′; µ1∗2,Σ1∗2) =
( f1 ∗ f2)(g′), then (16)-(19) can be used to calculate the closed-form expressions of
µ1∗2 (which equals to a jµ j) and Σ1∗2. With the integral taken care of, (23) becomes

pi(gi) = f (gi; µ i,Σ i) = η2 f (µ−1
i a−1

i gi;e,Σi) f (gimi j;a jµ j,Σ1∗2) (24)

For a posterior of robot i formulated in the form of (24), the fusion technique devel-
oped in [10] can be used to derive the closed-form expressions for µ i and Σ i.

3.2 Localization for Multi-Robot Team

Now we are ready to extend the technique to multi-robot localization. Similar to the
previous subsection, the posterior of robot i is what we are trying to estimate, but
instead of taking measurement from a single neighboring robot, multiple measure-
ments are taken from however many neighboring robots that are in the sensing range
(for derivation purposes we label the neighboring robots as 1,2, ...,n). Following a
similar approach we have the joint prior

pi,1,...,n = f (a−1
i gi; µi;Σi) f (a−1

1 g1; µ1;Σ1)... f (a−1
n gn; µn;Σn)

= ρi(µ
−1
i a−1

i gi)ρ1(µ
−1
1 a−1

1 g1)...ρn(µ
−1
n a−1

n gn)
(25)

Let Min = f (gn;gimin,Σin) be the distribution of the sensor measurement of robot n
relative to robot i and assume independence among all the measurements. Then we
have the joint measurement distribution

Mi,1,...,n = Mi1Mi2...Min (26)

To further save space, we will write in short ρi = ρi(µ
−1
i a−1

i gi) as the position priors
and ρin = ρin(m−1

in g−1
i gn) = Min as the measurement distributions. We will further

define g′in = gimin. The posterior for robot i is then

pi(gi) = f (gi; µ i,Σ i) = η3

∫
G

∫
G
...
∫

G
pi,1,...,nMi,1,...,n dg1 dg2...dgn

= η3ρi

(∫
G

ρ1ρi1 dg1

)(∫
G

ρ2ρi2 dg2

)
...

(∫
G

ρnρin dgn

) (27)

Let fn(g′in) = f (g′in;anµn,Σn) and fin(g′in) = f (g′in;e,Σin), then (27) becomes

pi(gi) = f (gi; µ i,Σ i) = η3ρi(µ
−1
i a−1

i gi)( f1 ∗ fi1)(g′i1)( f2 ∗ fi2)(g′i2)...( fn ∗ fin)(g′in)
(28)

Calculating the convolutions using (16)-(19), we finally arrive at
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pi(gi) = f (gi; µ i,Σ i) = η3 f (µ−1
i a−1

i gi;e,Σi) f (gimi1;a1µ1,Σ1∗i1)× ...× f (gimin;anµn,Σn∗in)

(29)
An extension of the method provided by [10] (which fuses only one measurement)
gives the equations to calculate µ i and Σ i, and is presented as follows:

For neighboring robots 1, ...,k, ....,n

1. Define qk = mikµ
−1
k a−1

k aiµi, exp(x̂k) = qk., Γk = (I + 1
2 ad(x̂k)), Si = Γ T

i Σ
−1
i Γi

2. Define Sk = Γ T
m Ad−T (mik)Σ

−1
k∗ikAd−1(mik)Γk

3. S′ = Si +
n
∑

k=1
Sk, x′ = S̄′−1

n
∑

k=1
Skxk

With the above definitions, the posterior distribution for robot i can be calculated by

Σ i = Γ̄
′S̄′−1

Γ̄
′T

µ i = µi exp(− ˆ̄x′)
(30)

with the operator ∧ and ∨ defined in section 2.

3.3 A Complete Distributed Localization Algorithm Using
Bayesian Filter In Exponential Coordinates

The fusion technique introduced above defines the state update step for the proposed
localization method. However like all Bayesian Filters a complete recursive filter for
state estimation consists of a state prediction step as well as a state update step. This
section serves to provide the proposed algorithm in such a form.

Similar to the above setting, suppose at time tk robot i is the robot to be localized,
robots 1, ...,k, ...,n are its n neighbors. Their means are µi(tk),µk(tk) and covariances
Σi(tk),Σk(tk) respectively. Let the stochastic differential equation (SDE) governing
the motion of the robots be of the form

(g−1ġ)∨dt = hdt +Hdw (31)

where h is constant. When g≈ e and for a sampling time ∆ t a constant command u is
given to the system resulting in motion of the system from tk to tk+1, the distributed
localization scheme that estimates the location of robot i at time tk+1 follows two
steps (letting ∆ t = tk+1− tk). These are the prediction and update steps.

Prediction
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µi(∆ t) = exp
(∫

∆ t

0
ĥi dτ

)
Σi(∆ t) =

∫
∆ t

0
Ad(µ−1

i (t− τ))HiHT
i AdT (µ−1

i (t− τ))dτ

µi(t−k+1) = µi(tk)◦µi(∆ t)

Σi(t−k+1) = Ai(tk)+Bi(tk)+F(Ai(tk),Bi(tk))

(32)

where

Ai(tk) = Ad(µi(∆ t)−1)Σi(t+k )Ad(µi(∆ t)−1)T , Bi(tk) = Σi(∆ t)

Ai(tk)
′′
i j = ad(Ei)ad(E j)Ai(tk)i j, Bi(tk)

′′
i j = ad(Ei)ad(E j)Bi(tk)i j

(33)

Fi(Ai(tk),Bi(tk)) =
1
4

d

∑
i, j=1

ad(Ei)Bi(tk)ad(E j)
T Ai(tk)i j

+
1

12

{
[

d

∑
i, j=1

Ai(tk)
′′
i j]Bi(t)+Bi(t)T [

d

∑
i, j=1

Ai(t)
′′
i j]

T

}

+
1

12

{
[

d

∑
i, j=1

Bi(tk)
′′
i j]Ai(tk)+Ai(tk)T [

d

∑
i, j=1

Bi(tk)
′′
i j]

T

} (34)

The second equation in 32 follows from equation (19) in [13] given by

Σi(∆ t) =
∫

∆ t

0
Ad−1[µ−1

i (τ)µi(t)]HiHT
i Ad−T [µ−1

i (τ)µi(t)]dτ (35)

Since in our context the mean takes form of µ = exp(Xt) where X ∈ G is a con-
stant, it follows that µ

−1
i (t)µi(τ) = µi(τ)µ

−1
i (t) = µ

−1
i (t− τ). Combined with the

property of adjoint Ad−1(µ) = Ad(µ−1) gives the final expression in 32.
Also in the above equations, µi(∆ t) and Σi(∆ t) define the incremental distribu-

tion resulting solely from the input given at the ∆ t time frame with location given
with respective to µi(tk), not the fixed world frame. In order to take into account
the uncertainties already present at time t given by Σi(tk), the distribution at time tk
is convolved with the incremental distribution resulting in the predicted distribution
given by µi(t−k+1),Σi(t−k+1).

Update

Now to incorporate the relative measurements, for each of the neighboring robots
1, ...,k, ...,n, obtain the measurement distribution mik(t),Σik(t), then

Aik(tk) = Ad(mik(tk)−1)Σk(tk)Ad(mik(tk)−1)T , Bik(tk) = Σik(tk)

Aik(tk)
′′
i j = ad(Ei)ad(E j)Aik(tk)i j, Bik(tk)

′′
i j = ad(Ei)ad(E j)Bik(tk)i j

(36)
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and using (18),

Σk∗ik(t(tk)) = Aik(tk)+Bik(tk)+F(Aik(tk),Bik(tk)) (37)

1. Define qk(tk) = mik(tk)µk(tk)−1a−1
k aiµi(t−k+1), exp(x̂k(tk)) = qk(tk).

2. Define Γk(tk) = (I + 1
2 ad(x̂k(tk))), Si(tk) = Γi(tk)T [Σi(t−k+1)]

−1Γi(tk)
3. Define Sk(tk) = Γm(tk)T Ad−T (mik(tk))Σk∗ik(tk)−1Ad−1(mik(tk))Γk(tk)

4. S′(tk) = Si(tk)+
n
∑

k=1
Sk(tk), x′(tk) = S̄′(tk)−1

n
∑

k=1
Sk(tk)xk(tk).

Then

Σi(t+k+1) = Γ̄
′(tk)S̄′(tk)−1

Γ̄
′(t)tk , µi(t+k+1) = µi(t−k+1)exp(− ˆ̄x′(tk)) (38)

4 Simulation And Discussions

This section provides verification for the proposed technique in a Matlab simulated
environment. A team of two-wheeled differential drive robots are moving in the
field. The given inputs are such that all robots move along a straight line or a circu-
lar arc. However, due to the stochastic nature of the systems, errors accumulate over
time such that odometry or dynamics alone is insufficient in estimating the robot
poses. The results from the previous sections can therefore be used to update the
robots’ knowledge of their poses with the help of measuring their positions relative
to neighboring robots.

Figure 1 depicts a simple model of the two-wheeled differential drive robot which
is very useful in modeling segway-like mobile bases and various multi-robot exper-
imental platforms (E-pucks, iRobot create, Khepera, etc). According to [10], the
kinematics of such a mobile robot can be characterized by the stochastic differential
equation

(g−1ġ)∨dt =

 r
2 (ω1 +ω2)

0
r
2 (ω1−ω2)

dt +
√

D

 r
2

r
2

0 0
r
l −

r
l

[dw1
dw2

]
(39)

where g ∈ SE(2) is the homogenous matrix representing the pose of the robot, r is
the wheel radius, l is the axle length, ω1,ω2 are the wheel angular velocities, dwi
are unit strength Wiener processes and D is a noise coefficient. This stochastic dif-
ferential system can be simulated using the the Euler-Maruyama Method described
in [7]. Equation 39 can be written in short as

(g−1ġ)∨dt = hdt +Hdw (40)

when g is close to the identity, given an input pair [ω1,ω2]
T , the mean and covari-

ance of system 39 can be estimated by
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Fig. 1: Simple model for a two-wheeled differential drive mobile system

µ(t) = exp
(∫ t

0
ĥdτ

)
Σ(t) =

∫ t

0
Ad(µ−1(t− τ))HHT AdT (µ−1(t− τ))dτ

(41)

For simple motions like straight-line motion when ω1 = ω2, (41) can be evaluated
analytically as

µ(t)st =

1 0 rωt
0 1 0
0 0 1

 , Σ(t)st =


1
2 Dr2t 0 0

0 2Dω2r4t3

3l2
Dωr3t2

l2

0 Dωr3t2

l2
2Dr2t

l2

 (42)

The same can be done with circular motion of constant curvature

µ(t)cir =

cos(α̇t) −sin(α̇t) asin(α̇t)
sin(α̇t) cos(α̇t) a(1− cos(α̇t))

0 0 1

 , Σ(t)cir =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (43)

where
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σ11 =
c
8
[(4a2 + l2)(2α̇t + sin(2α̇t))+16a2(α̇t− sin(2α̇t))]

σ12 = σ21 =
−c
2
[4a2(−1+ cos(2α̇t))+ l2]sin(α̇t/2)2

σ13 = σ31 = 2ca(α̇t− sin(2α̇t))

σ23 = σ32 =−2ca(−1+ cos(α̇t))

σ33 = 2cα̇

c =
Dr2

l2α̇

(44)

With the pose priors calculated with (41) - (44), (36) - (38) are then applied with
sensor measurements to update the priors. For arbitrary inputs (ω1,ω2) an approxi-
mation will be applied to (41) which will be discussed in the next section.

This example simulates localization of a robot team in straight and circular
motion. In the set-up of this simulation, the model based parameters are set as
r = 0.033, l = 0.2. The simulation parameters for straight-line motion are D= 5,v=
0.5,T = 1.3, ω1 = ω2 =

v
r and T = 2, ω1 = 26.166,ω2 = 21.408 (for circular mo-

tion). The true robot motions are simulated 500 times using the Euler-Maruyama
Method [7] and the end position of each trial is plotted in the following figures. It
can be observed that the posterior of such a stochastic differential system (SDE)
results in a banana shaped distribution as is also discussed in [15].

In this simulation, all four robots are given the command to travel in a straight line
for 1.3 seconds at 0.5 m/s or along an arc of constant curvature of 1m at 45 deg/s
for 1 second. The blue dashed lines in the figures represent the desired path of travel
with the blue points at the two ends representing initial to final position. However
due to process noise each robot will eventually end up somewhere near the desired
goal and our objective is to estimate their true position along with a quantification
of our confidence of this estimate. Specifically for this example, the true pose of the
middle robot (cyan colored) is what we’re trying to estimate which we’ll call robot
i, while the neighboring robots (yellow) are members of this team where relative
measurements are obtained from. Among all the sampled end positions, one position
for each robot is chosen as the true end pose (red point) and this is used to generate
the mean of the measurement distribution min.

As the first step, the prior mean and covariance of robot i is calculated using
(42) and (43), and plotted in Figure 2a and 2b, the resultant prediction aligns per-
fectly with the desire path (blue dash line), and the error “ellipse” marginalized over
the heading angle is also plotted from the calculated covariance (magenta loop).
Since this error “ellipse” is a contour of the resultant distribution, It can be observed
that a Gaussian distribution under exponential coordinates is a much better fit for
characterizing the uncertainties in an SDE of this kind than that under Cartesian
coordinates. It is obvious that this prediction gives the same resultant distribution
regardless of the true position and is only effected by the system dynamics and input
commands. Therefore the next step is to update this prediction with measurements
relative to neighboring robots.
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(a) straight-line Motion (b) Circular Motion

Fig. 2: Localization with only the prediction model

It is assumed that robot i can exchange information with its neighbor when they
come into its sensing range, which means when a relative measurement is taken of
neighbor j relative to robot i, the belief (mean and covariance in this case) that j
holds for its current position can be communicated to i so that i can make use of
this information in its localization process (update step). In this example, this belief
(µ j,Σ j) for each neighboring robot j is taken to be the pose prediction calculated
from (42) or (43), but in reality this can very well be the posterior from their own
localization results. The covariance of the measurement distribution is chosen to be

Σm =

 0.01 0.02 0.001
0.02 0.25 0.015

0.002 0.0025 0.15



(a) straight-line Motion (b) Circular Motion

Fig. 3: Pose update after sensor measurement and fusion
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Figures 3a and 3b show the updated posterior of robot i calculated from fusing the
relative measurements taken from its three neighbors. The result indicates a more
accurate position mean (black dot) and a shrinked error “ellipse” representing higher
confidence in the estimate. Since this is a distributed localization technique aimed to
be implemented on the embedded processor of each individual robot, the procedure
is demonstrated only for one robot and the same goes for all other.

5 Conclusion

This chapter proposed a distributed cooperative localization technique that can in-
corporate multiple sensor measurements to achieve higher estimation accuracy.
Robots in a team can take measurements and exchange information among each
other to update their knowledge of the current position. Simulation is used to vali-
date the performance of the approach in Matlab. Results from the Matlab simulation
show a good localization accuracy of the presented approach. The proposed tech-
nique is distributed in that each robot can perform this localization process without
the help of a centralized processor, and is scalable for the computation time does not
increase as the robot team enlarges and increases only linearly with the number of
measurements taken. The generality of this scheme lies in the fact that uncertainties
in the belief of the current robot, neighboring robots and sensor measurements have
all been considered which yields a more realistic estimate. Unlike sampling-based
approaches, the proposed approach provides closed-form expressions which signif-
icantly increases computational efficiency. Most existing cooperative localization
schemes possess a subset of the the above attributes but rarely all. Lastly, this tech-
nique is of second order in its estimation of an updated posterior which is expected
to be more accurate and reliable than first order methods.

The limitation of this method is its dependency on Gaussian noises. Moreover,
at present this is a local technique in that it depends on known initial poses and
does not recover from localization failures (defined by [15]). In its current state, this
approach does not possess the ability to serve as the sole scheme to localize a team
of robots in that as errors accumulate in the beliefs of neighboring robots, erroneous
information will be given to the current robot that leads to localization failures.
However, this technique is local and prone to error accumulation only when none
of the member robots have a reasonable estimate of their positions. As long as one
robot possesses a good knowledge of its current pose (via more accurate sensors or
sophisticated but computationally expensive algorithms) then this information can
be used to drastically reduce the uncertainty of the entire team which introduces
a level of robustness to the system and can also significantly reduce hardware and
computational cost of the team. Table 2 shows a comparison of the proposed method
with two of the most representative and accepted approaches.

The accuracy of the exponential localization method is expect to see great in-
crease compared to results shown previously if the algorithm parameters (initial
pose covariance, process and measurement noise covariances, etc) can be fine tuned.
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Table 2: Final Comparison

Distibuted
EKF

Multi-Robot
MCL

Exponential
Localization

Restrictions on
ErrorDistribution

Requires Gaussian process and
measurement error

Nonparametric particle
representation of posterior

belief, no assumptions
on noise distribution

Gaussian

Global Localization No Yes No

State Recovery No
Possible given a well
designed resampling

process
No

Localization Accuarcy
Accurate when error

is small

Depends on the
number

of particles
used

Accurate within
an error range

Computational Cost

Small due to the
closed

form propagation
and update
equations

Depends on the number
of particles.
Can increase

dramatically with the
dimension of the state space

Small due to closed
form equations

Ease of
Implementation Simple Can be involved Simple

Robustness
Prone to error due

to
linearization

Quite resistant to errors
given

multiple beliefs are maintained
simultaneously

Less susceptible to
errors given the well

conformity to the
motion model

Process Multiple
Detections No No Yes

Complexity Relative
To Team Size

Fully distributed. Complexity
independent
of team size

Complexity independent
of

team size

Linear to
the Number of

measurements processed

Establishing a systematic way of tuning these parameters can be a topic of its own. It
is also incredibly beneficial if the proposed method can be combined with sampling
based approaches for their global localization and state recovery abilities. Lastly, ex-
periments on hardware are required to fully establish the advantage of the proposed
scheme. Overall this chapter has provided an alternative distributed cooperative lo-
calization technique in the domain of Lie Group and Exponential Coordinates and
has validated in simulation the potential of this technique as the next state of the art.
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