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Abstract: Point groups consist of rotations, reflections, 
and roto-reflections and are foundational in crystallog-
raphy. Symmorphic space groups are those that can be 
decomposed as a semi-direct product of pure translations 
and pure point subgroups. In contrast, Bieberbach groups 
consist of pure translations, screws, and glides. These 
“torsion-free” space groups are rarely mentioned as being 
a special class outside of the mathematics literature. Every 
space group can be thought of as lying along a spectrum 
with the symmorphic case at one extreme and Bieberbach 
space groups at the other. The remaining nonsymmorphic 
space groups lie somewhere in between. Many of these 
can be decomposed into semi-direct products of Bieber-
bach subgroups and point transformations. In particu-
lar, we show that those 3D Sohncke space groups most 
populated by macromolecular crystals obey such decom-
positions. We tabulate these decompositions for those 
Sohncke groups that admit such decompositions. This 
has implications to the study of packing arrangements 
in macromolecular crystals. We also observe that every 
Sohncke group can be written as a product of Bieberbach 
and symmorphic subgroups, and this has implications for 
new nomenclature for space groups.

Keywords: Bieberbach groups; crystallographic space 
groups; point groups.

Introduction
In any space group Γ there exist Bieberbach (torsion-free) 
subgroups (consisting only of translations, screw dis-
placements, and glides) and subgroups which contain 

only the identity and torsion elements (roto-reflections).1 
In the symmorphic case, the Bieberbach subgroup ΓB with 
smallest index in Γ is simply T, the translation group of 
the primitive lattice. And in this case it is well known that 
ΓP  =  T  P (the semi-direct product of T and P) where P is 
the point group. We have observed that for many nonsym-
morphic subgroups there is a Bieberbach group ΓB such 
that [Γ:ΓB]  <  [Γ:T] (where [G:H] denotes the index of H in 
G) and
	 where .BΓ Γ= <S S P� � (1)

(Here  <  denotes “is a proper subgroup of”.) In particular, 
in this paper we focus on the 65 Sohncke space groups 
that preserve the chirality of crystallographic motifs.

In our calculations we work in the factor group Γ/Σ 
where Σ   ≤   T is the translation group of a sublattice of the 
primitive lattice that is normal in Γ, and we arrive at state-
ments such as2

	
 where : BΓΓ

Σ Σ
= =B S B�

�
(2)

(which we call a semi-decomposition), and we show that 
the equalities in (1) and (2) are equivalent. The fraction 
notation is used to emphasizes that Γ/Σ  =  Σ\Γ, which 
holds when Σ is a normal subgroup. (Normality of a sub-
group is denoted as Σ  Γ.)

The primary goal of this paper is to identify which 
Sohncke groups can be decomposed as in (1) and to iden-
tify ΓB and S in these cases. We have found that all but 
four Sohncke groups can be decomposed in this way. As a 
secondary goal for these four we seek a weaker decompo-
sition of the form

	 BSΓ Γ= � (3)

where ΓB need not be normal. We find that two of these four 
can be decomposed in this way, and that (3) is backwards 

1 In general, an element g of a discrete group G is called a torsion 
element if gn = e (the group identity) for some finite natural number n. 
That is, a torsion element is an element of finite order. For any space 
group together with an appropriate choice of origin, each torsion 
element generates a cyclic subgroup of S: = {0}  S  <  Γ where S is a 
subgroup of the point group, P.
2 In fact, most of the time it is possible to take Σ  =  T, but there are a 
few cases where taking Σ  <  T enables the decomposition to be per-
formed when it would not be possible otherwise, as will be described 
later in the paper. (An example of this is P42.)
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compatible with (1). That is, whenever (1) holds, so must 
(3), but not the other way around.

We also observe that every Sohncke space group can 
be written as a product of the form

	
B SΓ Γ Γ= � (4)

where ΓB and ΓS are respectively Bieberbach and sym-
morphic subgroups, regardless of whether or not there 
is a normal ΓB, and (4) need not correspond to the above 
decompositions, though it is backwards compatible with 
them. That is, whenever (3) holds it must also be true that 
(4) holds, but not vice versa.

The remainder of this paper is structured as follows. The 
section “Motivation: the molecular replacement problem” 
describes our motivation in pursuing these decomposi-
tions. The section “Literature review” reviews the literature 
to explain where the current work fits in the broader world 
of mathematical crystallography. In the section “Definitions 
and core theorems” a small subset of the fundamental defi-
nitions and concepts from group theory most relevant to our 
study are reviewed. The section “Theory behind the decom-
posability of space groups” presents a new theorem to assist 
in our calculations. The section “Outline of decomposition 
algorithms for Sohncke groups” outlines the algorithmic 
approach that we take to performing these decompositions. 
In the section “Table of semi-decomposable nonsymmor-
phic Sohncke space groups” tables describing the complete 
results of these calculations are given.

�Motivation: the molecular 
replacement problem
In a series of papers [1–3] we are developing new methods 
for molecular replacement (MR) [4] for use in the field 
of macromolecular crystallography. This motivated the 
kind of decomposition proposed in this paper for certain 
of the Sohncke groups (i.e. the 65 of the 230 types that 
preserve chirality). Though the methodology presented 
here is applicable to many non-Sohncke groups as well, 
we limit the current presentation for issues of brevity and 
relevance to the MR application.

In MR, a diffraction pattern (or equivalently, the 
Patterson function) for a macromolecular crystal is pre-
sented, and a model for the hypothesized shape of the 
macromolecule (which is typically a protein) is con-
structed from information in the Protein Data Bank 
[5]. The problem is that the diffraction pattern does not 
contain phase information. Such information is often pro-
vided by additional experiments in which heavy metal 

atoms are introduced. The spirit of molecular replacement 
is that if the model is a good shape match for the actual 
protein molecule of interest, and if it has similar density, 
then the phase problem can be solved computationally 
rather than experimentally. Given such a model molecule, 
it should be possible to find a translation and rotation,3 
g  =  (R, t) ∈ SE(3):  =  ℝ3  SO(3) (the group consisting of all 
special Euclidean motions), to place the model molecule 
in the unit cell in the same way as the actual molecule. 
Here ℝ3 is three-dimensional Euclidean space, SO(3) is 
the group of rotations (i.e. 3  ×  3 orthogonal matrices with 
positive determinant, thereby excluding reflections), and 
SE(3) is the full group of rigid-body motions (which is a 
six-dimensional Lie group). Of course, the pose sought in 
MR is not unique because both the symmetry mates within 
a unit cell and translates in all of the other unit cells are 
equivalent to this pose. This equivalence is described by 
them being members of the same right coset Γg where 
Γ  <  SE(3) is the Sohncke space group of the crystal. The 
group element g ∈ SE(3) appears on the right because it 
is rigid motion relative to the motions described by the 
globally defined motions describing the crystal symmetry. 
Therefore, one does not need to search the full space SE(3) 
in MR. Rather, choosing one representative element of 
SE(3) from each of the right cosets in the right coset space 
Γ\SE(3) will describe all nonredundant ways to situate a 
model molecule. We collect all such g’s into a connected 
and bounded six-dimensional subset of SE(3) denoted as 
ℱΓ\SE(3). (In general such a set of coset representatives is 
called a fundamental domain.) We then take the closure 
of this set, which adds some redundancy in the same 
way that choosing a closed interval with boundary points 
identified is slightly redundant as a fundamental domain 
for a the circle group ℝ/(2πℤ). We denote this closure of 
the fundamental domain as ℱ̅Γ\SE(3) ⊂ SE(3).

Explicit choices for ℱΓ̅\SE(3) are described in [2]. For 
example if
	 : ,P TΓ = �P � (5)

then we can choose

3\ (3) \ ( 3 )\P SE SOTΓ
= ×F F FPR

[where here  ×  is the Cartesian product, rather than direct 
product, and ℱ ̅P\SO(3) ⊂ SO(3)]. This makes sense because 
P  <  SO(3). Alternatively we can always make the choice for 
any Sohncke space group Γ

3\ ( 3 ) \
( 3).SE SO

Γ Γ
= ×

R
F F

Since the choice of fundamental domain can be made in a 
number of ways based on properties of Γ, this motivates us 

3 The combination of which is called “pose” for brevity.
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to investigate the structure of Γ. For example, if Γ  =  ΓB  S 
where S  <  P, then we can make the additional choice

3\ ( 3 ) \ ( 3 )\
.

B
SE SOΓ Γ

= ×F F FSR

This is potentially interesting because the space ΓB\ℝ3 is 
an “orientable flat manifold” and the coset space S\SO(3) 
can be identified with a “spherical space form,” which is 
also orientable.

Though the non-Sohncke case is not relevant to 
macromolecular crystals, one can ask analogous ques-
tions about how the fundamental domains corresponding 
to Γ\E(3) can be defined where

3(3): (3)E O= �R

is the full Euclidean group (as opposed to the “Special” 
Euclidean group), including reflections and glides. But in 
the current paper we focus only on the case of Sohncke 
groups.

Literature review
In recent years there appears to be a renaissance in the 
field of mathematical crystallography, as described in 
[6–8].

Mathematical and computational crystallography has 
many facets including algebraic structure theory of space 
groups [9–13], geometric approaches [13–24] and topologi-
cal approaches [12, 25]. And the representation theory of 
space groups has long been known to play an important 
role in solid state physics and therefore has been studied 
intensively [26–29].

Many excellent general introductions to mathematical 
crystallography are available including [29–35] as well as 
introductions to group theory [36, 37] and books on solid-
state physics and phase transitions [38–40] that have 
detailed mathematical introductions to crystallography. 
Of course, the most complete source for knowledge about 
mathematical properties of space groups is the Interna-
tional Tables, and particularly Vols A and A1 [41, 42].

The space-group decompositions derived here origi-
nated in our study of the molecular replacement problem 
in protein crystallography, as described in [1–3]. In partic-
ular, in that problem the quotient space in which copies 
of proteins are packed is Γ\ℝ3. When Γ  =  ΓB (a Bieberbach 
group), it acts properly discontinuously and freely on ℝ3 
and so ΓB\ℝ3 is a flat manifold [14, 24, 43] which is ori-
entable if and only if ΓB is Sohncke . More generally, the 
space Γ\ℝ3 is a Euclidean orbifold [22, 44]. Regardless of 

whether Γ is Bieberbach or not, the fundamental domain 
3

3
\Γ

⊂F
R

R  can be identified with the crystallographic 
asymmetric unit. When faces of 3\Γ

F
R

 are glued appropri-
ately, the result is Γ\ℝ3. For this reason, the modern geo-
metric approaches to crystallography have relevance to 
structural biology. Moreover, if E(3) denotes the noncom-
pact noncommutative six-dimensional Lie group of all 
Euclidean motions and Γ is any space group drawn from 
the 230 types, then each Γ\E(3) is a compact six-dimen-
sional manifold. These manifolds (and their generaliza-
tions in higher dimensions) were mentioned by Hilbert in 
the formulation of his “18th problem,” but other than the 
fact that they are known to be compact, they appear not 
to have been studied since. In the Sohncke case, Γ\SE(3) 
is the configuration space of a rigid-protein molecule 
moving in Γ\ℝ3. The decompositions presented in this 
paper allow us to better understand the structure of this 
configuration space to address the molecular replacement 
problem with new computational tools.

In our work, we use two theorems given later in the 
paper in combination with functions that we use in the 
Bilbao Crystallographic Server [45–47] (particularly the 
COSET, MAXSUB, SUBGROUPGRAPH, IDENTIFY GROUP, 
and HERMANN functions). We have made extensive use 
of this valuable community tool to both refine our theory 
and to do computations.

Definitions and core theorems
We begin with a few basic definitions in order to establish 
notation, under the assumption that the reader is already 
familiar with the basic concepts of group theory.

The most basic definitions

Let G denote a group. If G is finite, then |G| denotes the 
number of elements in it. The product of two elements g, 
h ∈ G is denoted by simply writing the elements next to 
each other, gh. In general gh ≠ hg. The identity element is 
denoted as e ∈ G, and the inverse of an element g ∈ G is 
denoted as g−1 ∈ G.

Given a group G, two elements a and b are called con-
jugate if there exists an element g such that

	 1: .ga gag b−= = � (6)

The notation H  <  G indicates that H is a proper sub-
group, i.e. a subgroup for which H ≠ G. In contrast, the 
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notation H   ≤   G indicates that H is a subgroup, leaving 
open the possibility that H  =  G.

Two subgroups H, K  <  G are called conjugate if there 
exists an element g ∈ G such that

	 1: .gH gHg K−= = � (7)

If in the above expression Hg  =  H for all g ∈ G, then H  <  G is 
called a normal subgroup of G and we write H  G.

Given a subgroup H  <  G, and any element g ∈ G, the 
left coset gH is defined as

: { | }.gH gh h H= ∈

Similarly, the right coset Hg is defined as

: { | }.Hg hg h H= ∈

A group is divided into cosets (left or right) all of the same 
size. And the set of all cosets is called a coset space. The 
left coset space

/ : { | }G H gH g G= ∈

and the right coset space

\ : { | }H G Hg g G= ∈

are generally different from each other. But when H  G, 
then gH  =  Hg for all g ∈ G and G/H  =  H\G. In this special 
case we can denote both as ,G

H
 and this space forms a 

group under the operation (g1H)(g2H)  =  (g1g2)H.
Given a left coset decomposition, it is possible to 

define (in a non-unique way) a fundamental domain

/G H G⊂F

consisting of exactly one element per left coset:4

/| | 1G H gH∩ =F

for every g ∈ G. (And similarly for right-coset decomposi-
tions.) Since a group is partitioned into disjoint cosets,

/

.
G Hg

gH G
∈

=∪
F

In the case when H  G, this fundamendamental domain 
is a group with respect to the original group operation 
mod H. And this group is isomorphic with G/H. The utility 
of this concept is that we can use it to perform set-theo-
retic calculations inside of G.

When G is a Lie group such as SE(3) and H is a discrete 
subgroup, the fundamental domain FG/H will have the 
same dimensionality as G. But when G is a space group 

and H is a space subgroup, the fundamental domain FG/H 
will be a finite set.

Space groups

In our study, we are interested in space groups, denoted 
as Γ, acting on three-dimensional Euclidean space. These 
discrete groups are subgroups of E(3), the group consist-
ing of the continuum of all possible rigid-body motions of 
three-dimensional Euclidean space. In turn, E(3)  <  Aff(3), 
the group of affine transformations. All three groups 
Γ  <  E(3)  <  Aff(3) can be thought of as consisting of ele-
ments that are pairs of the form (A, a) where A ∈ GL(3, 
ℝ) (the general linear group consisting of 3  ×  3 invertible 
matrices with real entries) and a ∈ ℝ3. And the group oper-
ation is5

	 1 1 2 2 1 2 1 2 1( , )( , ) ( , ).A A A A A= +a a a a � (8)

This is equivalent to expressing group elements as 4  ×  4 
homogeneous transformation matrices of the form

( , )
1t

A
A

 
=  

 

a
a

0
H

(where 0t is the transpose of the 3-dimensional zero 
vector), and describing the group operation as matrix 
multiplication.

The relationship between (A, a) and H(A, a) is an 
example of an isomorphism. That is, there is a bijective 
correspondence between the set of all pairs of the form (A, 
a) and of all matrices of the form H(A, a), and the group 
operation is preserved by this correspondence in the 
sense that

1 1 2 2 1 1 2 2(( , )( , )) ( , ) ( , ).A A A A=a a a aH H H

When two groups G and G′ are related by an isomorphism 
they are called isomorphic, and this is written symboli-
cally as G ≅ G′.

Throughout this paper we describe three-dimensional 
crystallographic group operations by their actions on an 
arbitrary point x ∈ ℝ3. That is, instead of writing γ ∈ Γ 
explicitly as a pair of the form (A, a) or as a matrix H(A, a) 
we will often write the row vector (γ · x)t. This is consistent 
with the way space group operations are reported in the 
crystallography literature. Explicitly,

( , ( ))R R
γ γ γ

γ = +t v

4 For any finite set, X, the number of elements in X is denoted as |X|.
5 Various other notations for (A, a) include (A|a), {A|a} and versions 
of these with A and a written in reverse order.
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and

( ).R R
γ γ γ

γ⋅ = + +x x t v

Here R
γ
 ∈ P (the point group), t

γ
 ∈ L (the lattice) and 

v:P → ℝn is a translation by a fraction of a lattice motion 
such as those that can appear in screw or glide motions, 
and the mapping v observes the co-cycle condition

	
1 2 1 2 1

( ) ( ) ( )  mod .R R R R R T
γ γ γ γ γ

= +v v v � (9)

The “mod T” effectively removes any component in the 
sum that is in T, in analogy with the way 3 + 4  =  2 mod 5 in 
modulo 5 arithmetic. If there exists a point p ∈ ℝ3 such that 
γ · p  =  p for some γ ∈ Γ other than the identity element, 
then γ is called a torsion element of Γ. If it is possible to 
choose a coordinate system in ℝ3 with p as the origin such 
that v(R

γ
)  =  0 for all γ ∈ Γ, then Γ can be decomposed as 

a product of translations and torsion elements (rotations, 
reflections, and roto-translations). That is, Γ  =  T · P where 
all of the elements of

	 : { }P = 0 �P � (10)

preserve the location of the origin. The distinction between 
P and P is that P  <  Γ whereas P is not. Γ  =  T · P is the sym-
morphic case in which the group is decomposed into a 
product of translations and point-preserving transforma-
tions, P. Of the 230 types of 3D space groups, 73 can be 
decomposed in this way. These are the symmorphic space 
groups. Some space groups have no torsion elements. 
These are the Bieberbach groups. For them it is not pos-
sible to define an origin such that v(R

γ
)  =  0 for any γ ∈ Γ 

other than the identity element.
In the theory of space groups, perhaps the most well-

known isomorphism originates from the fact that the 
translation group of the primitive lattice is always normal, 
T  Γ, and

	
.

T
Γ ≅ P

�
(11)

�Isomorphism vs. equality of fundamental 
domains

Though the concept of isomorphism is critically impor-
tant in group theory, we stress the difference between 
isomorphism and true equality by considering fundamen-
tal domains of the form ℱΓ/T constructed by choosing one 
element per coset in Γ/T. In the case when coset repre-
sentatives are chosen with minimal translational part, a 
stronger version of (11) can be written by defining

	 / : {( , ( )) | }T p p pR R R
Γ

= ∈vF P � (12)

where v(Rp) is a translation by a fraction of the unit-cell 
dimensions corresponding to a screw displacement or 
glide. The ≅ notation hides v(Rp) from view, and therefore 
should not be misinterpreted as equality.

When v(Rp) ≠ 0 for at least one Rp ∈ P, then ℱΓ/T is not 
a group under the original operation of Γ. However, it does 
become a group under the rule

1 1 2 2 1 2 1 2
( , ( ))( , ( )): ( , ( ))p p p p p p p pR R R R R R R R=v v v

where (9) is used to evaluate 
1 2

( ).p pR Rv
But since the group operation of ℱΓ/T is not that of Γ, it 

follows that ℱΓ/T cannot be a subgroup of Γ in the nonsym-
morphic case.

With the above defined group operation, the follow-
ing isomorphism holds

	
/T TΓ

Γ≅F
�

(13)

and this is somewhat more descriptive of Γ than is (11) 
because the set ℱΓ/T can be used to reconstruct Γ as

	 /TT
Γ

Γ = ⋅F � (14)

where the product in the above expression simply means 
that every γ ∈ Γ can be decomposed as

( , ( )) ( , )( , ( )).R R R R
γ γ γ γ γ γ

+ =t v t vI

Note that even in the symmorphic case where v(Rp)  =  0 
for all Rp ∈ P, (13)–(14) and (11) are not the same in the 
strictest possible sense. But at least in this case / :

P T P
Γ

=F  
is a subgroup of ΓP . Here we have used the definitions in 
(5) and (10).

To illustrate further the difference between isomor-
phism and equality, consider the following. If H  G and 
K  <  G such that H ∩ K  =  {e}, and HK  =  G then G  =  H  K. 
Corresponding to the coset space G/H  =  H\G is the fun-
damental domain constructed from one representative 
element of G per coset: .G

H

G⊂F  There is no unique way to 

construct this fundamental domain, but a natural choice 
is

: ,G
H

K=F

which is consistent with the isomorphism ,G K
H

≅  but 

is stronger than isomorphism in the sense that it is an 
equality.

If in addition there is a supergroup A  >  G, then for any 
α ∈ A we can write

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 12/3/15 7:49 PM



724      G.S. Chirikjian et al.: Decomposition of Sohncke space groups into Bieberbach and symmorphic parts

1 1 1( )( )G H Kα α α α α α− − −=

in which case we can choose

1

1

1: .
G
H

K
α α

α α

α α−

−

−=F

In the context of symmorphic space groups G:  =  ΓP , if 
H:  =  T and K:  =  {0}  P and if A  =  Aff(3), then it is possible 
to find α ∈ A such that Σ  =  αTα−1 is the translation group 
of a sublattice. Moreover, it can be the case that αKα−1  =  K 
when α ≠ e. For example, if

1 0 0 0
0 1 0 0
0 0 0
0 0 0 1

a
α

 
 
 =
 
 
 

and

1 1

2 2

0
0

0 0 1
0 0 0 1

c s v x w y
s c v x w y

z

θ θ

θ θ
γ

 − +
 + =
 
 
 

where θ takes discrete values consistent with the 2D 
lattice spanned by v  =  [v1, v2]t and w  =  [w1, w2]t and x, y, 
z ∈ ℤ, and a ∈ ℤ > 0, then

1 1

1 2 2

0
0

.
0 0 1
0 0 0 1

c s v x w y
s c v x w y

az

θ θ

θ θ
αγα−

 − +
 + =
 
 
 

If P denotes the point group and P denotes the subgroup 
of Γ defined in (10) consisting of all transformations of 
the form of γ given above when x  =  y  =  z  =  0, then for the 
present example it is clear that

1 .P Pα α− =

Therefore, similar to how for any natural number, n, 
nℤ can be both a subgroup of ℤ and isomorphic with it, 
both of the following statements can be true simultane-
ously: αGα−1 ≅ G and αGα−1  <  G (which is an example illus-
trating how isomorphism is weaker than equality). In the 
case of symmorphic space groups it can be the case that

1

1

GG
HH

K
α α

α α−

= =F F

if K is normal in A. And when K is not normal in A,

1

1

1.GG
HH

α α

α α

α α−

−

−=F F

But either way,
1

1 .G G
HH

α α

α α

−

−
≅

Classification of space groups

A space group is called Sohncke if det R
γ
  =  +1 for all γ ∈ Γ. 

In the table below we classify space group types. Since 
the translation group T is both Bieberbach and sym-
morphic (with trivial point group) it can be classified as 
both symmorphic and Bieberbach. We include T with the 
symmorphic space groups and call the remainder of the 
Bieberbach groups “nontrivial.”

  Symmorphic  Nontrivial 
Bieberbach

  NonSymmorphic +  
nonBieberbach

  Total

Sohncke   24  8 (5)   33 (25)   65 (54)
Non-
Sohncke

  49  4   112   165

Total   73  12 (9)   145 (137)   230 (219)

The number in parenthesis is for types classified 
according to equivanence under conjugation by general 
affine (rather than proper affine) transformations. That 
is, when counting the space group types in parenthesis, 
the following enantiomorphic pairs are each considered 
as being of the same type: (P31, P32), (P41, P43), (P61, P65), 
(P62, P64), (P3112, P3212), (P3121, P3221), (P4122, P4322), 
(P41212, P43212), (P4132, P4332), (P6122, P6522), (P6222, P6422). 
Note that this distinction is only important in the case of 
Sohncke space groups.

�Theory behind the decomposability 
of space groups
The main goal of this paper is to determine which space 
groups can be decomposed as

	  where BS S PΓ Γ= < � (15)

with ΓB  Γ. It follows from the third isomorphism theorem 
of group theory that a necessary condition for (15) to hold 
is

	 [ : ] | | .B SΓ Γ = � (16)

Moreover, using the theorems presented below together 
with Lagrange’s theorem, it is possible to show that given 
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a lattice translation subgroup Σ  <  ΓB such that Σ  Γ and 
ΓS  =  ΣS  <  Γ, then another necessary condition for (15) to 
hold is

	 [ : ] [ : ] | | .B SΓ Σ Γ Σ= ⋅ � (17)

The conditions (16) and (17) impose constraints on the 
search for compatible ΓB and ΓS. Moreover, in the spirit 
of simplicity, if Γ admits multiple decompositions of the 
form (15) (due to the existence of multiple Σ’s), we retain 
only the solution for which [Γ:Σ] is minimal.

We note also that if [G:H]  =  2 then H is simultaneously 
maximal, minimal index, and normal in G. And this facili-
tates our search, since many Bieberbach subgroups have 
index two in their supergroup.

In the remainder of this section a combination of 
known definitions and properties are reviewed and a new 
theorem is presented to assist in the computation of these 
decompositions.

Definitions involving internal products

Suppose G is a group with identity element e and H and K 
are two normal subgroups of G. If

–– G  =  HK
–– H ∩ K  =  {e}

then, G is called the (internal) direct product of H by K and 
is denoted by G  =  H  ×  K, and this product is symmetrical in 
the sense that we can also write G  =  K  ×  H.

Suppose G is a group and H is a normal subgroup of G 
but K need not be. If

–– G  =  HK
–– H ∩ K  =  {e}

then, G is called the (internal) semidirect product of H by 
K and is denoted by G  =  H  K. Here H is normal in G and 
K ≅ G/H is called the complement of H in G. In a semidirect 
product, H  K, the complement K acts by conjugation on 
H. By definition of  this can also be written as G  =  K  H. 
In general the order matters here, with the triangular part 
of  or  pointing toward the normal subgroup. Note that

.G H K H K G H K= = ⇔ = ×� �

And so a direct product is always also a semi-direct product, 
but not vice versa. In the case of a direct product, then for 
every h ∈ H and every k ∈ K, hk  =  kh, whereas this is not true 
in the case of semi-direct products. As a result, for a direct 
product the conjugation action of K on H is the trivial action.

In contrast to internal (semi-)direct products, it is pos-
sible to define external products. For example, Aff(n) can 

be viewed as the internal semi-direct product of the con-
tinuous translation subgroup T (n):  =  {(I, a)|a ∈ ℝn} and 
the subgroup G(n):  =  {(A, 0)|A ∈ GL(n)} as

	 ( ) ( ) ( ) ( ) ( ).Aff n n n T n n= =T G �G � (18)

Alternatively, we can write

	 ( ) ( ).nAff n GL n= �R � (19)

The distinction is that whereas T (n), G(n)  <  Aff(n), in the 
strictest sense the groups ℝn and GL(n) are not subgroups 
of Aff(n). Rather, they are groups isomorphic to T (n) and 
G(n), respectively. And so the symbol  means different 
things in (18) and (19). Equipped with the isomorphisms 
T (n) ↔ ℝn and G(n) ↔ GL(n) this difference between 
internal and external direct products is small enough to 
justify the double use of this symbol. And yet, without this 
understanding, logical problems can arise.

For example, in mathematical crystallography we say 
that a symmorphic space group, ΓP , with point group P 
can be written as (5). When doing so, this is the external 
product in (19). If so then P is not a subgroup of ΓP . Rather, 
from the definition in (10)

{ } {( , ) | }p p PP R R Γ= = ∈ <0 0�P P

and we can write

/ .
P T P

Γ
=F

In contrast to (11), this is an equality. Moreover, P  Γ but 
P  <  ΓP . And so, for example, while it is possible to form an 
external direct product of T and P to yield ΓP  =  T  P, it is 
possible to construct the same thing as an internal direct 
product by simply multiplying T and P to yield ΓP  =  TP.

We note that with the exception of P1, symmorphic 
groups are never direct products of T and P because

( , )( , )( , ) ( , ( ) ).R R R
γ γ γ γ γ γ

− = −t 0 t tI I I

And since for nontrivial point group (I − R
γ
)t

γ
 cannot be 

equal to the zero translation for every possible R
γ
 in the 

point group and t
γ
 in the lattice, the subgroup P  <  ΓP is not 

closed under conjugation, and hence is not normal.
Since in the context of space groups the subgroups 

involved in every internal product can be identified with 
simpler groups (by for example replacing group elements 
(A, 0) with A or (I, a) with a), it is often convenient to write 
decompositions in terms of external products. However, 
when doing so we must be careful to convert these exter-
nal products to their equivalent internal description 
before applying statements such as those at the beginning 
of this section.
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We say the group G is decomposable if G is the direct 
product of two normal subgroups, and semi-decompos-
able if it is the semidirect product of a normal and non-
normal subgroup.

Identifying ΓB and S subgroups

For a Sohncke group, there are only three possibilities for 
the non-identity elements: They can be pure rotations, 
pure translations, or (nondegenerate) screw motions. That 
is, every rigid-body transformation can be decomposed as

( , ) ( , ( ) )R R I R d= − +t p n

where n is the unit vector defining the axis of rotation of 
R, therefore satisfying Rn  =  n, p is a point on the screw 
axis, and d is the amount of translation along the screw 
axis. Without loss of generality, we can always enforce the 
orthogonality condition p · n  =  0. When d  =  0, the motion 
is a pure rotation, though it will only be a rotation around 
the origin when in addition (I − R)p  =  0. When R  =  I, the 
motion is a pure translation, and we can take n  =  t/‖t‖.

In the general case, simply by taking the dot product 
of (I − R)p + dn  =  v(R) with n then gives

	 ( ) .R d⋅ =v n � (20)

And so, evaluating (20) is a quick tool to identify what 
kinds of transformations populate fundamental domains 
of finite coset spaces.

If ℱΓ/Σ can be decomposed as a product of B and S 
subgroups as in (2), then some of those transformations 
that are identified as screw will populate B and some of 
those identified as rotations will populate S. We must first 
identify which combination of elements exhibit closure 
with respect to the group operation of the original group, 
modulo Σ.

Main theorems used in computations

Throughout this paper, we use the following results to do 
computations.

Theorem 1: If N  H and N  Γ then

	
.HH

N N
Γ

Γ ⇔� �
�

(21)

Proof: See [48]. □
By definition, given a group G with K  <  G, a funda-

mental domain FK\G ⊂ G is a set consisting of exactly one 

representative from each right coset. As G is partitioned 
into right cosets,

	 \

\
K G

K G
g F

G Kg K
∈

= =∪ F
�

(22)

and the analogous statement is true for left cosets:

\

/ .
G K

G K
g F

G gK K
∈

= =∪ F

If N  G, then

	 G G
N N

G N N= =F F � (23)

where the product of two subsets (not necessarily sub-
groups) A, B ⊂ G is defined as

{ | , }.AB ab a A b B= ∈ ∈

The product of subsets in a group inherits the associativity 
of the group. That is, given A, B, C ⊂ G, then (AB)C  =  A(BC).

Lemma 2.1: Let Σ  Γ be a lattice-translation subgroup 
(i.e. Σ   ≤   T), and let Σ  <  ΓB, ΓS  <  Γ where ΓB is Bieberbach, 
ΓS  =  ΣS  =  Σ  S, and S:  =  {0}  S with S  <  P (the point 
group of Γ). Then the conditions

	
 mod 

B
S

Γ Γ

Σ Σ

Σ=F F

�
(24)

	
B
S

Γ

Σ

Γ Σ= F

�
(25)

	 BSΓ Γ= � (26)

and

	
.BΓΓ

Σ Σ
= S

�
(27)

are equivalent.

Proof: By definition, A  =  B mod Σ means that ΣA  =  ΣB and 
the equality in (25) results from applying (23). Applying 
(23) again to (25) gives (26).

Also using condition (24), by an appropriate choice 
of ℱΓ/Σ every g ∈ ℱΓ/Σ can be decomposed as g  =  bs where 

/B
b F

Γ Σ
∈  and s ∈ S. Therefore, using the associativity of 

products of subsets in a group, every coset Σg  =  gΣ can be 
written as (Σb)s, which is the same as (27). □

Lemma 2.2: Let ΓB be a Bieberbach space group contain-
ing lattice translation group Σ and let ΓS  =  ΣS  =  Σ  S be a 
symmorphic space group where S  =  {0}  S with S denot-
ing the point group of ΓS. Then
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	 B SΓ Γ Σ∩ = � (28)

and

	
{ }.BΓ

Σ
Σ

∩ =S
�

(29)

where e  =  (I, 0).

Proof: (28) follows from the fact that elements of a 
Bieberbach group always have v(R) ≠ 0 except for v(I)  =  0 
whereas by an appropriate choice of origin, v(R)  =  0 
always. Therefore they can only share the subgroup Σ. 
Using the modular law for intersections of subgroups, and 
rewriting (28) as

( ) ( ) ,B BS SΓ Σ Σ Γ Σ∩ = ∩ =

and observing that ΓB ∩ S is a group that intersects Σ only 
at e gives

{ }.B S eΓ ∩ =

Then since S ∩ Σ  =  {e}, for any choice of BΓ

Σ

F  containing 
e we get

{ },
B

S e
Γ

Σ

∩ =F

which is equivalent to (29). □

Theorem 2: Let Σ  Γ, and Σ  <  ΓB, ΓS  <  Γ satisfy the condi-
tions in Lemma 2.1. Moreover, if

	
 mod 

B
S

Γ Γ

Σ Σ

Σ=F F
�

(30)

then the following conditions are equivalent:

	
1  mod 

B B
s s F s S

Γ Γ

Σ Σ

Σ− = ∀ ∈F
�

(31)

	 BΓ Γ� � (32)

	 BΓ Γ= �S � (33)

and

	 .BΓΓ

Σ Σ
= �S � (34)

Proof: Σ  ΓB and Σ  ΓS because normality of Σ in sub-
groups of Γ containing Σ is inherited. Using condition (31) 
and the normality of Σ,

1 1 1 1( )

.

B B

B

B

B

s s s s s s s s
Γ Γ

Σ Σ

Γ

Σ

Γ Σ Σ

Σ Γ

− − − −  = =
      

= =

F F

F

But from Lemma 2.1, (30) gives Γ  =  ΓBS which together 
with Lemma 2.2 implies ΓB  Γ. Then, since ΓB ∩ S  =  {e}, it 
must be that Γ  =  ΓB  S. Moreover, starting with this result 
and working backwards, all of the steps are reversible.

Using (27) and recognizing that (31) is equivalent to

BΓ Γ

Σ Σ
�

(a result that could also be obtained using Theorem 1 and 
ΓB  Γ) together with (29) gives (34). Working in reverse 
and evaluating (27) as a product of fundamental domains 
mod T takes us back to (30). □

Sample calculations

Consider the nonsymmorphic space group Γ  =  P21212 and 
its maximal lattice translation group T  =  P1. Then, by the 
COSET function in the Bilbao Crystallographic server, 
elements 

T
Γ

γ ∈F  can be visualized by their action on 

x  =  [x, y, z]t ∈ ℝ3 as

{ ( , , );  ( , , );  ( 1/ 2, 1/ 2, );  
( 1/ 2, 1/ 2, ) }.

x y z x y z x y z
x y z

γ ⋅ ∈ − − − + + −
+ − + −
x

The elements {(x, y, z); (−x, −y, z)} are a conjugated 
version of those in the fundamental domain of P2/P1, and 
those in {(x, y, z); (−x + 1/2, y + 1/2, −z)} are a conjugated 
version of those in P21/P1. Moreover, each of these sub-
groups has index 2, and so both are normal. And so we 
can conclude that

1 1 12 2 2 2 2
1 1 1

P P P
P P P

= ×

and so from Theorem 2,

1 1 1
22 2 2 2
1

PP P
P

= �

where we have used the fact that a direct product is also 
semi-direct (hence the conditions of the theorem are met); 
but a direct product in the quotient group does not carry 
over to the parent group.

As a second example, consider Γ  =  P42 and T  =  P1. 
Then elements of 

T
Γ

γ ∈F  are defined by

{ ( , , );( , , );( , , 1/ 2);  
( , , 1/ 2) }.

x y z x y z y x z
y x z

γ ⋅ ∈ − − − +
− +

x

Here again it is easy to see that a conjugated version 
of ℱP2/P1 is present, but the interpretation of the rest is 
not so clear. However, if we conjugate by α of the form 
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in the section “Isomorphism vs. equality of fundamental 
domains” with a  =  2, then the fundamental domain Γ

Σ

F   
 
for the resulting sublattice translation group Σ  =  αTα−1 is 
defined as

( , , );  ( , , );( , , 1/ 4);  
( , , 1/ 4); ( , , 1/ 2);  .
( , , 1/ 2);  ( , , 3 / 4); ( , , 3 / 4)

x y z x y z y x z
y x z x y z

x y z y x z y x z

 − − − +
 − + + 
 − − + − + − + 

This result is the same as doubling the basis vector 
along the c-axis (as is given in the International Tables).

Within this P2/P1 is still visible, but now it becomes 
easier to see that P41/P1 is also present. And this has an 
index of 2, indicating normality, and so we can write the 
external semi-direct product

2 1
24 4 .
1

PP P
P

= �

�Outline of decomposition 
algorithms for Sohncke groups
We have approached the problem of semi-decomposition 
of space groups from two different directions. These are 
called “top-down” and “bottom-up” as described below.

Top-down procedure
Space groups have an infinite number of elements. To 
reduce to finite computations, in the top-down proce-
dure we perform all calculations in a quotient of the form 

: / \Γ
Γ Σ Σ Γ

Σ
= =  where Σ   ≤   T and Σ  Γ, and we seek finite 

subgroups B, S  <  Γ/Σ that respectively have coset repre-
sentatives with no torsion and with only torsion such that 
representatives of each coset in Γ/Σ can be written as a 
product of representatives of cosets in B and S. Then using 
the presented theorems, it becomes possible to make 
statements about the decomposition of Γ itself. Below is 
our procedure for finding Σ and identifying B and S. This 
procedure, which we have done mostly manually, is out-
lined as an algorithm.
1.	 Set n  =  1 and read off [Γ:T]  =  |P| from the International 

Tables or the Bilbao Server;
2.	 Compute all subgroup paths from Γ to P1 of index 

n · [Γ:T]. (For example, this can be done with the 
Bilbao Server SUBGROUPGRAPH function, which 
returns the affine transformation α for each path). 
Retain only those for which P1  Γα. If n  >  1 and no 
subgroup paths exists with P1  Γα, skip to 8;

3.	 Use the information from Step 2 to compute ℱΓ/ Σ . This 
is equivalent in terms of affine conjugated fundamen-
tal domains to 

/ 1
.

PαΓ
F  This can be computed using 

the Bilbao Server function COSETS. (It does not mat-
ter whether left or right cosets are computed because 
they are equivalent modulo P1, which must be normal 
from the previous step);

4.	 Evaluate the elements of ℱΓ/Σ to determine whether 
they are pure rotations or screw displacements using 
(20). Screw displacements and pure rotations are held 
as candidate elements of B and S, respectively.

5.	 Construct all possible B and S subgroups and retain 
those pairs for which |B| · |S|  =  |Γ/Σ|;

6.	 For those that satisfy 5, check if BS  =  Γ/Σ (or equiva-
lently / /  mod 

B
S

Γ Σ Γ Σ
Σ=F F ), and keep all of these;

7.	 Check whether B  Γ/Σ or S  Γ/Σ. If B  Γ/Σ, then go 
to Step 9. Otherwise record and continue;

8.	 If no (B, S) pairs survive and if [Γ:Σ]/[ΓB:Σ]  <  [Γ:T] then 
increase n by 1 and go to Step 2. Otherwise continue;

9.	 Having stored all B, S pairs, find the names of ΓB and 
ΓS that gave rise to them. This can be achieved by 
comparing the number and nature of these elements 
(e.g. the value of d and rotation angle θ) against those 
parameters for the 8 nontrivial Bieberbach Sohncke 
group types and 23 nontrivial symmorphic Sohncke 
group types. Alternatively, the information about 
these groups can be used by the Bilbao Server func-
tion IDENTIFY GROUP to find their names. After 
names are identified in this way, end.

We note that for all P groups except those with names start-
ing P42 we have found through trial and error that it is pos-
sible to take Σ  =  T  =  P1. That is, only a single loop through 
the above procedure with n  =  1 will suffice. Indeed, this is 
how our manual search for such decompositions began. 
Coset representatives with respect to subgroup T com-
puted using the Bilbao Server function COSETS are easily 
classified as torsion elements or torsion-free by evaluating 
(20). Those that are torsion free have d ≠ 0 and are kept 
as candidates to populate B and those that have torsion 
have d  =  0 and are kept as candidates for S. We could visu-
ally inspect these candidates to identify different possi-
ble B and S subgroups. Since these will not necessarily 
appear as they do in their standard form, we computed 
screw parameters and rotation angles and axes to identify 
their type. This can all be done for relatively small [Γ:T] 
by hand.

In cases such as P42 and several other groups with 
name “42” in it, it was not possible to identify B using the 
approach described in the previous paragraph, which led 
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us to use a coarser lattice Σ  <  T and to do the above com-
putations with Γ/Σ instead of Γ/T. Here an affine transfor-
mation must be identified that can be used to conjugate 
P1, simultaneously preserving S and coarsening the trans-
lational sublattice. Using this coarser lattice, as in the 
case of P42, will unveil B. In particular, we used the affine 
transformation with linear part diag[1, 1, 2] in conjunction 
with the Bilbao Server COSET function.

A similar approach is pursued for C, I, and F type 
groups. In some cases such as C2221, it is possible to take 
Σ  =  T. But in most cases we have found that valid B and 
S subgroups can be identified when using Σ  =  P1  <  T . We 
call this approach “top down” because we start with the 
finest translation lattice shared by both ΓB and ΓS. When 
the search successfully concludes with Σ  =  T, then S and 
the B obtained in this way are both the largest ones pos-
sible in their respective categories in the sense of having 
the minimal indices in Γ/Σ.

The “bottom up” procedure described below is an 
alternative that seems to lend itself more easily to auto-
mation, and hence is useful for more difficult cases where 
[Γ:Σ] is large.

Bottom-up procedure
When the top-down procedure described above becomes 
too laborious, an entirely different approach can be taken. 
If ΓB, ΓS  <  Γ share the same normal lattice translation sub-
group, i.e. Σ  =  T ∩ ΓB  =  T ∩ ΓS, then

/ /B BB SS S
Γ Σ Γ Σ

Γ Σ Γ Γ= = =F F

and

[ : ] | | and [ : ] [ : ] | | .B S BSΓ Γ Γ Γ Γ Σ= = = B

And if [Γ, Σ]  =  |B| · |S| we will have that

	 | | | | [ : ] [ : ].S BΓ Γ Γ Γ⋅ = ⋅B S � (35)

These statements hold regardless of whether or not ΓB  Γ, 
and can be used to assess potential compatibility of ΓB and 
S in the sense of (3), as outlined below.
1.	 Search for all subgroup paths from Γ to ΓB and from 

Γ to ΓS until [Γ:ΓB]   ≤   |Smax| and [Γ:ΓS]   ≤   6. Here |Smax| 
is the order of the point group of the maximal sym-
morphic subgroup of Γ. If none exists use [Γ:T] in 
place of |Smax|, since there is no way for a proper sub-
group of the point group to have order greater than 
this. The number 6 is used for limiting the search for 
ΓS because this is the largest possible value for |B|. 
(We use the SUBGROUPGRAPH function in the Bilbao 
server to identify candidate Bieberbach and symmor-
phic subgroups);

2.	 Whereas in the “top down” approach, T (or Σ) are 
guaranteed a priori to be common to both ΓS and ΓB, 
there is no guarantee that this will be the case here. 
That is, it is possible for

: : ,B B S ST TΣ Γ Σ Γ= ∩ ≠ = ∩

in which case (35) will not hold. If ΓS  =  ΣS  S and ΣB  <  ΓB 
and ΣS, ΣB  <  T with ΣB  <  ΣS, then they are not compatible 
for use in a semi-decomposition because then ΓB ∩ ΓS ≠ ΣS. 
But if ΣS  =  ΣB:  =  Σ, then we check all pairs for which 
|B| · |S|  =  [Γ:Σ] and keep these as candidates.
3.	 The coset representatives for the remaining compat-

ible candidate pairs obtained in the previous step 
are then multiplied. If they reproduce ℱΓ/Σ , then they 
represent a valid decomposition, and the procedure 
terminates here once all such decompositions are 
found.

Note that if a B or S group appears in the top node of 
the maximal subgroup graph then it will naturally have 
minimal index within its type. That is, this copy will have 
smaller index in the parent group than a copy found 
further down in the maximal subgroup tree. If in addi-
tion it is normal (which we determine in the usual way 
by conjugating elements of the subgroup by all elements 
of the group and determining if the conjugates reside in 
the subgroup), then this is a good candidate for a semi-
decomposition. If not, then working down the tree will 
yield all minimal-index groups of a particular Bieberbach 
or symmorphic type.

When decompositions cannot be found using the 
above algorithms
In very few cases, the above procedures do not return 
results because there is no Σ   Γ common to both ΓB and 
ΓS. In these rare cases (208, 214) we apply specialized 
methods as described in the Appendix. Assessing whether 
or not Σ is normal in Γ is easy. Given σ  =  (I, t

σ
) ∈ Σ, then 

define the lattice Λ:  =  {t
σ
|σ ∈ Σ}. Then Σ  Γ if and only if 

R
γ
 · Λ  =  Λ for all R

γ
 ∈ P.

�Table of semi-decomposable non-
symmorphic Sohncke space groups
Of the 230 space group types that are inequivalent under 
conjugation by Aff+(3), 13 types are Bieberbach groups. 
Included in this 13 is the group of pure lattice translations 
of the primitive lattice, T  =  (P1)α. Since this translation 
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group is both Bieberbach and symmorphic and contains 
no rotations, reflections, screws, or glides, we refer to it as 
both a “trivially Bieberbach” and “trivially symmorphic” 
space group.

�Nontrivial Sohncke and non-Sohncke 
Bieberbach types

The table below excludes T and indicates which of the 
remaining Bieberbach groups are also Sohncke.

Intl.   Γ   Sohncke?  [ ΓB:T ]

4   P21   Y   2
7   Pc   N   2
9   Cc   N   2
19   P212121   Y   4
29   Pca21   N   4
33   Pna21   N   4
76   P41   Y   4
78   P43   Y   4
144   P31   Y   3
145   P32   Y   3
169   P61   Y   6
170   P65   Y   6

The quotient groups P212121/P1, Pca21/P1, and Pna21/P1 
can, respectively, be written as direct products of the 
form (P21)α/P1  ×  (P21)β/P1, (Pc)α/P1  ×  (P21)β/P1, and (Pc)α/ 
P1  ×  (P21)β/P1 for different conjugations α and β.

Note that in mathematics books, 10 space group types 
are given including the trivial one consisting of only lattice 
translations. This is because they do not distinguish between 
the enantiomorphic pairs (P31, P32), (P41, P43), (P61, P65).

As there are 230 isomorphism classes of space groups, 
showing all of the explicit calculations to decompose 
them would require hundreds of pages of text. Instead 
here we only summarize the results for the Sohncke 
groups, giving enough information to retrace our calcula-
tions using routines in the Bilbao Crystallographic Server 
[45–47].

�Most Sohncke groups are semi- 
decomposable

Of the 230 space group types, 65 are Sohncke. Of these 65, 
24 are symmorphic (including T) and eight are nontrivial 
Bieberbach. Of the remaining 33 nonsymmorphic non-
Bieberbach Sohncke space groups, 29 are semi-decom-
posable, which corresponds to a ‘Y’ in the B  Γ/Σ column 

below and no |Ξ|  >  1.6 Groups that we are not able to semi-
decompose are 90, 208, 210, 214, and these are explained 
in greater detail in the Appendix. In the case of 90 and 
210 it is possible to write Γ  =  ΓBS with ΓB not normal in Γ. 
In all cases it is possible to write Γ  =  ΓB′ΓS where multiple 
choices exist for ΓB′ . In such cases, it is possible to find a 
Σ  <  Γ such that7

	 \ and \B S
Σ Γ

Ξ Σ Γ= =′ ′B XSF � (36)

where B′ is a fundamental domain of B

B T
Γ

Γ
′

′ ∩
 in Γ, Ξ is a 

set of translations such that ΣΞ   ≤   T, and S is as before. X is 
the group with elements that are cosets of the form ξΣ  =  Σξ 
with ξ ∈ Ξ. When |Ξ|  =  1, Γ is decomposed into a product 
(semi-direct or otherwise) of ΓB and S.

Decompositions of the form in (36) are generally not 
unique, and unlike the case when |Ξ|  =  1, there is no clear 
criteria for stopping the search. Therefore, when |Ξ| ≠ 1 we 
list examples to show that (36) is possible rather than to 
attempt an exhaustive enumeration.

Using the frequencies of occurrence tabulated in [3], 
altogether these groups that are not semi-decomposable 
are only represented in the PDB less than one percent of 
the time.

In constructing the table below, we seek ΓB  Γ and 
ΓS  <  Γ that enable the sorts of decompositions described 
earlier. We start our search with small values of the 
product of indices

: [ : ] [ : ].B SΠ Γ Γ Γ Γ= ⋅

When two combinations of ΓB and ΓS have the same 
minimal value of Π we list both next to each other in the 
table to the left of the | symbol, and those with larger 
values of Π are listed to the right of the | symbol. In all but 
one case, the complementing S is the same for decompo-
sitions corresponding to minimal-value of Π (which we 
call an “efficient” decomposition) and for those with 
larger value of Π. In the one case when this happens, 
C2221, another ΓS′ is listed such that S′ is the complement 
of the less efficient ΓB′ . When the answer to the normal-
ity question about S is different for the efficient and inef-
ficient decompositions, it is listed to the right of | in the 
normality column. This only happens for one Sohncke 
group, P6322.

6 Here Ξ consists of all pure translation elements of ℱΣ\Γ and when 

, ,ΓΣ Γ =
Σ

� BXS  where .ΣΞ Γ= <
Σ Σ

X

7 Note that even if Σ is not normal in Γ, if Σ  ΓB′ and ΣΞS = ΓS then 
multiplying (36) on the left by Σ and using (22) gives Γ = ΓB′ΓS .
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If we cannot find a ΓB  Γ such that [Γ:ΓB]   ≤   |S|, where 
S is the point group of the the symmorphic subgroup 
ΓS  <  Γ with minimal [Γ:ΓS], then we terminate the search. 
This strategy ensures that the calculation is finite.

In the table that follows, we identify elements of a 
Bieberbach or symmorphic subgroup with the name given 
if we can find Γ′, Γ″ and affine transformations α, β such 
that

1

B

B
T

Γ Γ

Σ

α α−
′
′

=F F

and
1.

S

S
T

Γ Γ

Σ

β β−
′′
′′

=F F

In this case ΓB inherits the name of Γ′ and ΓS inherits the 
name of Γ″.

Intl.   Γ   ΓB   ΓS   |Ξ|   B, S    Σ\Γ?  Σ  =  T?

17   P2221   P21   P2   1   Y, Y   Y
18   P21212  P21|P212121   P2   1   Y, Y   Y
20   C2221   P21|P212121   C2|P2   1   Y, Y   Y
24   I212121  P212121   P2   1   Y, N   N
77   P42   P41, P43   P2   1   Y, N   N
80   I41   P41, P43   P2   1   Y, N   N
90   P4212   P21   C222, P4   1   N, Y   Y
91   P4122   P41   P2   1   Y, N   Y
92   P41212  P212121, P41   C2   1   Y, N   Y
93   P4122   P41, P43   P222   1   Y, N   N
94   P42212  P212121, P41, P43  C222   1   Y, N   N
95   P4322   P43   P2   1   Y, N   Y
96   P43212  P212121, P43   C2   1   Y, N   Y
98   I4122   P212121, P41, P43  C222   1   Y, N   N
151   P3112   P31   C2   1   Y, Y   Y
152   P3121   P31   C2   1   Y, Y   Y
153   P3212   P32   C2   1   Y, N   Y
154   P3221   P32   C2   1   Y, N   Y
171   P62   P32|P61   P2   1   Y, Y   Y
172   P64   P31|P65   P2   1   Y, Y   Y
173   P63   P21|P61, P65   P3   1   Y, Y   Y
178   P6122   P61   C2   1   Y, N   Y
179   P6522   P65   C2   1   Y, N   Y
180   P6222   P32|P61   C222   1   Y, N   Y
181   P6422   P31|P65   C222   1   Y, N   Y
182   P6322   P21|P61, P65   P321, P312  1   Y, Y |N   Y
198   P213   P212121   R3   1   Y, N   Y
199   I213   P212121   R3   1   Y, N   N
208   P4232   P21   P23   4   N/A, N/A   N
210   F4132   P212121, P41, P43  F23   1   N, Y   N
212   P4332   P212121   R32   1   Y, N   Y
213   P4132   P212121   R32   1   Y, N   Y
214   I4132   P212121   R32   2   Y, N   N

In the instance where |Ξ|  >  1 and N appears in this table 
in the S column, the largest normal Bieberbach group (i.e. 

the one with smallest possible index [Γ:ΓB]) has a / BΓ Γ
F  

that consists of not only point transformations, but pure 
fractional translations. This happens when the largest 
lattice translation subgroup of ΓB is smaller than that for 
ΓS, i.e. ΣB  <  ΣS. And similarly, when there exists ΓS  Γ and 

/ SΓ Γ
F  contains Bieberbach group elements for a coarser 
lattice than ΣS we write |Ξ|  >  1 and N in the B column. In 
cases when Σ  =  T ∩ ΓB is not normal in Γ, then Σ\Γ is not a 
group and it does not make sense to evaluate normality of 
B and S, and so ‘N/A’ is listed in the table. Since these cases 
do not fit the semi-decomposition paradigm, this leads us 
to state and prove the following theorem so as to include 
these cases in a decomposition that is more general than 
Γ  =  ΓBS (but not as useful for our application).

Theorem 3: Every Sohncke space group can be written as 
a product of the form

.B SΓ Γ Γ=

Proof: There are several cases in the above table:
(1), Σ  Γ and B  Γ/Σ with S  <  Γ/Σ;
(2), Σ  Γ and S  Γ/Σ with B  Γ/Σ;
(3), Σ  Γ and B, S   Γ/Σ;
(4), Σ  Γ and B  Γ/Σ with / .

B
S

Γ Γ
≠ F

(5), Σ  Γ and S  Γ/Σ with / / .
B B SΓ Σ Γ Γ

≠F F

(6), �Σ is not normal in Γ and Σ\Γ  =  BXS with Σ  ΓB and 
ΓS  =  ΣΞS.

In Cases 1, 2, and 3, .S
Γ

Σ

Γ Σ= F  But since Σ  =  ΣΣ, and Σ  Γ, 

in all of these cases we can write

/

/( )( ) .
B

B B S

S
S

Γ Σ

Γ Σ

Γ ΣΣ

Σ Σ Γ Γ

=

= =

F

F

The only difference between the cases is which of the sub-
groups ΓB or ΓS are normal. In fact, as per Lemma 2.1 these 
calculations do not require either of them to be normal. 
But when it does exist, normality will be inherited from 
the quotient groups according to the fifth column in the 
table.

Case 4 is slightly different. In this case ΓB  Γ but ΣB  <  ΣS. 
And so

/ / .
B B S BB Γ Σ Γ Σ

Γ Σ= F F

But again using the fact that ΣB  =  ΣBΣB and ΣB  Γ, we get

/ /( )( ) ,
B B S BB B B SΓ Σ Γ Σ

Γ Σ Σ Γ Γ= =F F

which follows from Lemma 2.1. Case 5 follows in the same 
way with the roles of B and S reversed.
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Case 6 follows because

	
\

( )( ) .B S

B S
B S B S

Σ Γ
Γ Σ Σ Ξ

ΣΣ Ξ Σ ΣΞ Γ Γ

= =
= = =

F �
□

Discussion
From the table, we see that 29 of the 33 nonsymmorphic 
Sohncke space groups can be decomposed into semi-
direct products of Bieberbach subgroups and point sub-
groups. We also mention that in several cases in addition 
to being able to write Γ/Σ  =  B  S it is also the case that 
Γ/Σ  =  B  S, and so Γ/Σ  =  B  ×  S. This is true for groups 
with the following international numbers: 17, 18, 20, 151, 
152, 171, 172, 173, 182.

We note also that amongst the space groups that 
cannot be semi-decomposed, there is at least some product 
structure in the quotient group. For example space group 
90 only has a normal copy of Bieberbach group P21 with 
index 8, and so [Γ:ΓB] ≠ |S| where |S|  =  4 for the largest 
subgroup of the point group, S, which has an associated 
symmorphic subgroup of Γ.

The reason why the quotient in the case of 214 does 
not decompose into two factors is that the only normal 
Bieberbach group with [Γ:ΓB]  <  [Γ:T] is ΓB  =  P212121 with 
[Γ:ΓB]  =  12. But the largest symmorphic subgroup of 214 is 
R32 which has |S|  =  [R32:TR]  =  6. And so there is no way to 
make [Γ:ΓB]  =  |S|. And it is not reverse semi-decomposable 
because R32 is not a normal subgroup. Nevertheless, 
Theorem 3 applies and provides a simple tool to write I4132 
as a product of affine-conjugated versions of P212121 and 
R32 even in this case.

It should be noted that these four cases of 90, 208, 
210, and 214 that do not semi-decompose, respectively, 
represent 0.43, 0.03, 0.08, and 0.10 percent of all protein 
crystal structures in the PDB [3]. In other words, more 
than 99 percent of protein crystals occur in space groups 
that are either Bieberbach, symmorphic, or a semidirect 
product of a Bieberbach subgroup and a point subgroup.

Conclusions
In this paper we introduced the idea that space groups 
lie along a spectrum with Bieberbach groups at one 
extreme and symmorphic groups at the other. Moreover, 
we observe that 29 of the 33 nonsymmorphic Sohncke 
space groups can be decomposed into semi-direct prod-
ucts of Bieberbach subgroups and point subgroups, and 

all Sohncke space groups can be written as products of 
Bieberbach and symmorphic subgroups.

We focus on the Sohncke case because that is what 
arises in the application that motivated us to study this 
subject. Moreover, the frequency of occurrence of Sohncke 
space groups populated by macromolecular crystals are 
predominantly those that admit such decompositions. 
The approach outlined for obtaining these decomposi-
tions can be applied to a number of non-Sohncke space 
groups as well, and we will pursue this in future work.

Acknowledgments: The authors would like to thank Prof. 
Bernard Shiffman and the anonymous reviewers for their 
very constructive feedback.

A  �Additional examples of the 
decomposition procedure

Here additional examples of decompositions are provided. 
First, we show an example where decomposing Γ/T does 
not work, but Γ/Σ does. Next we show a case when no 
semi-decomposition is possible. Finally, we show a case 
where an additional (less efficient) semi-decomposition is 
possible.

A.1  24, I212121

As another example, consider Γ  =  I212121. To determine T, 
we use the Bilbao function HERMANN which gives

1/ 2 1/ 2 0 0
1/ 2 1/ 2 1 1/ 4
1/ 2 1/ 2 0 0

α

 − −
 = − − 
 − 

(where the perfunctory bottom row in the affine transfor-
mation as a 4  ×  4 matrix has been removed to save space.)

The coset representatives in the decomposition of Γ 
with respect to T (in the basis of T) are given below:

/ {( , , );  ( , , );
( 1/ 2, 1/ 2, 1/ 2);

( 1/ 2, 1/ 2, 1/ 2)}.

T x y z y x z
x y x y z
y x x y z

Γ
= − − −

− + − + − − + +
+ + + − +

F

Here S  =  {(x, y, z); (−y, −x, −z)} is identical with 2 / ,
CC TF  

which is consistent with the fact that MAXSUB gives 
[I212121:C2]  =  2. If ℱΓ/T can be semi-decomposed, then it 
should be possible to find a Bieberbach subgroup with 
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[ΓB:P1]  =  2. But the only Bieberbach group that could 
satisfy this is P21, and MAXSUB does not list P21 as a 
maximal subgroup. Therefore, there is no need to investi-
gate the case when [I212121:TI]  =  4 further, and so we inves-
tigate [I212121:Σ]  =  8, which is the next smallest candidate.

When Σ  =  P1  <  T the Bilbao COSET function (left and 
right are the same so Σ  Γ) gives

1 1 12 2 2 / 1 {( , , );  ( 1/ 2, , 1/ 2);
( , 1/ 2, 1/ 2);  ( 1/ 2, 1/ 2, );
( 1/ 2, 1/ 2, 1/ 2);  ( , 1/ 2, );
( 1/ 2, , );  ( , , 1/ 2)}

I P x y z x y z
x y z x y z

x y z x y z
x y z x y z

= − + − +

− + − + + − + −
+ + + − − +

− + − − − +

F

Here (x + 1/2, y + 1/2, z + 1/2) is a pure translation. Such will 
only occur when Σ  <  T. In contrast, (–x + 1/2, –y, z + 1/2); 
(–x, y + 1/2, –z+ 1/2); (x + 1/2, –y + 1/2, –z) are all screw 
motions with d  =  1/2, and all of the rotation axes are mutu-
ally orthogonal with an angle of rotation of π. So this is a 
clue that it may be related to P212121/P1. We verify this by 
using the Bilbao COSET function to give

1 1 12 2 2 / 1 {( , , );  ( 1/ 2, , 1/ 2);
( , 1/ 2, 1/ 2);  ( 1/ 2, 1/ 2, )}

P P x y z x y z
x y z x y z

= − + − +

− + − + + − + −

F

This matches with four entries in 
1 1 12 2 2 / 1.I PF  In more 

complicated cases we might need to search for an affine 
transformation to relate a subgroup of ℱΓ/Σ with a candi-
date Bieberbach group quotient by an appropriate trans-
lation group.

In contrast, looking at the elements (–x, –y + 1/2, z); 
(–x + 1/2, y, –z); (x, –y, –z + 1/2), we observe that they are 
all rotations because d  =  0. But if we seek B and S such 
that their product reproduces 

1 1 12 2 2 / 1 ,I PF  then both cannot 

have order 4. And because B  =  212121/P1 is of order 2 in 

1 1 12 2 2 / 1I PF  when evaluated modulo P1, it is normal, and so 

we do not need to check that the conjugation action of Si 
on 

1 1 12 2 2 / 1.I PF
We see that we can define a two-element point group 

(which fixes a point other than the origin) from the iden-
tity and any one of (–x, –y + 1/2, z); (–x + 1/2, y, –z); (x, –y, 
–z + 1/2). For example,

1

2

3

: {( , , );  ( , 1/ 2, )},
: {( , , );  ( 1/ 2, , )},
: {( , , );  ( , , 1/ 2)}.

x y z x y z
x y z x y z
x y z x y z

= − − +
= − + −
= − − +

S
S
S

Abstractly, every two-element group is isomorphic, and 
so candidates for these are P2/P1 or C2/TC. But concretely, 
we can only find affine transformations such that 

1
2 / 1 .i P P i iα α− =F S  Again examining left and right COSETS 

using Bilbao (or doing finite calculations in the factor 
group) we find that

1 1 1 1 1 12 2 2 / 1 ( 2 2 2 / 1) ( 2 / 1).I P P P P P= �

There is no guarantee that this decomposition is unique.
Using the bottom-up approach employing the Bilbao 

MAXSUB function, we see that [I212121:P212121]  =  2. and as 
[P212121:P1]  =  4 and [P2:P1]  =  2 we conclude that it is not 
possible to find a decomposition with smaller values than 
this, and so our search terminates.

A.2  90, P4212

Consider group no. 90, and use Γ  =  P4212 and T  =  P1. When 
using the identity transformation, the Bilbao COSET func-
tion gives

142 2 / 1 {( , , );  ( , , );
( 1/ 2, 1/ 2, );  ( 1/ 2, 1/ 2, );
( 1/ 2, 1/ 2, );  ( 1/ 2, 1/ 2, );
( , , );  ( , , )}

P P x y z x y z
y x z y x z
x y z x y z

y x z y x z

= − −

− + + + − +
− + + − + − + −

− − − −

F

This is convenient because we can immediately identify

1 : {( , , );  ( , , );  ( , , );  ( , , )}x y z x y z y x z y x z= − − − − − −S

with a point group of order 4 (and index 2 in Γ). Therefore 
it is normal. Searching for every symmorphic space group 
with point group of order 4, we find that this corresponds 
to C222/TC. The complementing subgroup can be chosen 
as

: {( , , );  ( 1/ 2, 1/ 2, )}.x y z x y z= − + + −B

(In fact, there are four possible choices, but they all act in 
the same way as described below.) It is easy to check that 
this is a group.

For the nontrivial transformation in this group, R is a 
rotation around n  =  e2 by π. And v(R)  =  [1/2, 1/2, 0]t. And so 
v · n  =  1/2. We conclude that B is isomorphic with P21/P1. 
To find affine transformations that will make the relation-
ship between B and P21/P1, we solve the equation αg  =  g′α 
where g and g′ are respectively representatives taken from 
B and P21/P1.

Clearly 
142 2/ 1 1 .P P =F S B  Next we ask if B is normal. To 

do this, we use the Bilbao COSET function with the infor-
mation about α that has been computed. We find that left 
and right cosets do not match modulo P1, and B is not 
normal, and

142 2 / 1 1 .P P =F �S B
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The benefit of this top-down approach is that we need 
not worry about whether the two components correspond 
to space subgroups with a common lattice, since that is 
guaranteed a priori. But this does not provide a complete 
list of all possible decompositions. We therefore go to the 
Bilbao MAXSUB function, and look for other low-index 
symmorphic and Bieberbach subgroups. We find that 
[P4212:P4]  =  2. Hence P4  P4212. The same subroutine 
provides a transformation, and we find (after moding out 
extraneous 1’s returned by Bilbao) that

1
1( 42 2 )/ 1

{( , , ); ( , , ); ( , , ); ( , , );

( 1/ 2, 1/ 2, ); ( 1/ 2, 1/ 2, );
( 1/ 2, 1/ 2, ); ( 1/ 2, 1/ 2, )}.

P P
x y z x y z y x z y x z

x y z x y z
y x z y x z

α α− = − − − −

− + + − + − − −
+ − − − − − − −

F

Here we see that the first four elements correspond to 
S2:  =  P4/P1, and with (–x + 1/2, y + 1/2, –z) clearly visible, 
we can define the complement B as before. And it is not 
normal here either. Therefore, we conclude that

1
1

2( 42 2 ) / 1
.

P Pα α− =F �S B

Though the quotient is “reverse-semi-decomposable” 
the Bieberbach subgroup is not normal (and no other 
Bieberbach subgroup with [Γ:ΓB]  <  [Γ:T] is normal either.

There is a copy of P212121 that has index 4, which we 
can identify using the HERMANN subroutine in the Bilbao 
server, and gradually increasing the index of candidate 
Bieberbach subgroups. But left and right cosets do not 
match, and hence it is not normal.

Another route to index-4 P212121 is by observing that 
none of the coset representatives in 1

1( 42 2 ) / 1P Pα α−F  given 
above have translations in the z component. Then, using 
the affine transformation α with linear part diag[1, 1, 2] 
and zero translation in the COSET function in Bilbao 
can double the size of the quotient group, giving enough 
room to fit both a copy of a conjugated 

1 1 12 2 2 / 1P PF  and 
the same S as before, which is left unaffected by this 
affine conjugation. Moreover, S is normal in the resulting 
16-element quotient group as well. And so we can write 
Γ/Σ  =  (C222/TC)  (P212121/P1). But P212121 is not normal in 
P4212, and because this quotient group has 16 elements 
as opposed to the 8 of the original, we do not include this 
in the table.

There is an affine-conjugated copy of P21 with 
α  =  diag[1, 1, 2] that is normal in P4212 with index 8, but 
this index does not match the order of the largest point 
subgroup, and so the compatibility conditions fail, and so 
it cannot be used in a semi-decomposition.

We therefore conclude that 90 cannot be efficiently 
semi-decomposed, but the quotient group can be 

“reverse-semi-decomposed” in multiple ways, each with 
the pure rotation part being normal rather than the Bie-
berbach part. As a consequence of this, and of Theorem 3, 
it is possible to write

1 1 142 2 2 4 2 222P P P P C= =

where it is understood that in the above different copies 
of P21 are used. Moroever, from Lemma 2.1, this is a case 
where even though ΓB is not normal, it is nevertheless pos-
sible to perform decompositions of the form Γ  =  ΓBS.

A.3  93, P4222

Using the Bilbao COSET function, and taking the top-
down approach, [P4222:P1]  =  8 and

24 22 / 1 {( , , );  ( , , );
( , , 1/ 2);  ( , , 1/ 2);
( , , );  ( , , );
( , , 1/ 2);  ( , , 1/ 2)}.

P P x y z x y z
y x z y x z
x y z x y z

y x z y x z

= − −

− + − +
− − − −

− + − − − +

F

Of these,

222 / 1

{( , , );  ( , , );
( , , );  ( , , )} P P

x y z x y z
x y z x y z

= − −
− − − − = F

S

is a subgroup with [P4222:P222]  =  2 and hence it is normal. 
But there is no way to construct a two-element subgroup 
from the remaining elements, which appear to be P41 or 
P43 transformations. And so we look for ways to conjugate 
so that all elements of these subgroups are present as 
representatives in the coset decomposition.

Using HERMANN routine in Bilbao with G  =  93 and 
H  =  76 with index 4, we find that with

1
2( 4 22 ) / 1

1 0 0 0
0 1 0 0
0 0 2 1/ 2

{( , , );  ( , , );

( , , 1/ 4);  ( , , 1/ 4);
( , , 1/ 2);  ( , , 1/ 2);
( , , 1/ 4);  ( , , 1/ 4);
( , , 1/ 2);  ( , , 1/ 2);
( , 

P P
x y z x y z

y x z y x z
x y z x y z

y x z y x z
x y z x y z

y x

α α

α

−

 
 =  
  

= − −

− + − +
− − − − − −

− − − − − −
+ − − +

−

F

, 3 / 4);  ( , , 3 / 4);
( , , );  ( , , );
( , , 3 / 4);  ( , , 3 / 4)}.

z y x z
x y z x y z

y x z y x z

+ − +
− − − −

− − − − − −

Several subgroups can be visually identified:
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1

1

222 / 1

1

4 / 1

2

4 /

{( , , );  ( , , );
( , , );  ( , , )} ,

{( , , );  ( , , 1/ 4);
( , , 1/ 2);  ( , , 3 / 4)} ,

{( , , );  ( , , 1/ 4);
( , , 1/ 2);  ( , , 3 / 4)}

P P

P P

P

x y z x y z
x y z x y z

x y z y x z
x y z y x z

x y z y x z
x y z y x z

= − −
− − − − =

= − +
− − + − + =

= − +
− − + − + =

F

F

F

S

B

B

1.P

We find that B1S  =  B2S  =  FP222/P1 mod P1. And by conjugat-
ing each element of B1 by all elements of S and evaluat-
ing mod P1, we see that B1 is closed under conjugation. 
The same is true for B2. Hence, we find that B1 and B2 are 
normal in 

24 22 / 1 ,P PF  and so

2 14 22 4 ( 222 / 1)P P P P= �

and

2 34 22 4 ( 222 / 1)P P P P= �

A.4  94, P42212

[P42212, P1]  =  8. When computing 
2 14 2 2 / 1P PF  using the 

Bilbao COSET function, we find four coset reps that are 
pure rotations.

But also present are elements such as (–x + 1/2, y + 1/2, 
–z + 1/2) and (x + 1/2, –y + 1/2, –z + 1/2), each of which are 
conjugated versions of elements of P21. But, comput-
ing all right coset reps for P42212/P21 in HERMANN, and 
computing the corresponding left cosets in COSET, we 
see that the P21 elements corresponding to this are not 
normal.

In contrast, (–y + 1/2, x + 1/2, z + 1/2) and (y + 1/2, 
–x + 1/2, z + 1/2) which are in P41, and neither of which 
forms a 2-element group mod P1 with the identity. But 
when using

1 0 0 0
0 1 0 0
0 0 2 0

α

 
 =  
  

in Bilbao, [(P42212)α, P1]  =  16.
P41  (P42212)α; [(P42212)α, P41]  =  4 and [(P42212)α, 

C222]  =  4.
In particular,

2 1( 4 2 2) / 1
{( , , ); ( , , ); ( , , ); ( , , );

( 1/ 2, 1/ 2, 1/ 4); ( 1/ 2, 1/ 2, 1/ 4);
( 1/ 2, 1/ 2, 1/ 4);( 1/ 2, 1/ 2, 1/ 4);
( , , 1/ 2); ( , , 1/ 2);
( 1/ 2, 

P P
x y z x y z y x z y x z

y x z y x z
x y z x y z

x y z x y z
y x

α = − − − − − −

− + + + + − + +
− + + − + + − + − +

+ − − +
− +

F

1/ 2, 3/ 4); ( 1/ 2, 1/ 2, 3/ 4);
( 1/ 2, 1/ 2, 1/ 4); ( 1/ 2, 1/ 2, 1/ 4);
( , , 1/ 2); ( , , 1/ 2)}

z y x z
x y z x y z

y x z y x z

+ + + − + +
− + + − − + − + − −

− − − − − −

2 1( 4 2 2) / 1
{( , , ); ( , , ); ( , , ); ( , , );

( 1/ 2, 1/ 2, 1/ 4); ( 1/ 2, 1/ 2, 1/ 4);
( 1/ 2, 1/ 2, 1/ 4);( 1/ 2, 1/ 2, 1/ 4);
( , , 1/ 2); ( , , 1/ 2);
( 1/ 2, 

P P
x y z x y z y x z y x z

y x z y x z
x y z x y z

x y z x y z
y x

α = − − − − − −

− + + + + − + +
− + + − + + − + − +

+ − − +
− +

F

1/ 2, 3/ 4); ( 1/ 2, 1/ 2, 3/ 4);
( 1/ 2, 1/ 2, 1/ 4); ( 1/ 2, 1/ 2, 1/ 4);
( , , 1/ 2); ( , , 1/ 2)}

z y x z
x y z x y z

y x z y x z

+ + + − + +
− + + − − + − + − −

− − − − − −

And

{( , , );  ( , , );  ( , , );  ( , , )}x y z x y z y x z y x z= − − − − − −S

looks like 222 / CC TF

Of the remainder of elements, we can construct

: {( , , );  ( 1/ 2, 1/ 2, 1/ 4);
( , , 1/ 2);  ( 1/ 2, 1/ 2, 3 / 4)}.

x y z y x z
x y z y x z
= − + + +

− − + + − + +
B

B is normal in 
2 1( 4 2 2) / 1

,
P PαF  and so

2 1 14 2 2 4 ( 222 / )CP P C T= �

And the same is true for P43:

2 1 34 2 2 4 ( 222 / )CP P C T= �

We note also that there are normal affine-conju-
gated copies of P222 and P212121 inside of P42212 with 
[(P42212)α:P222]  =  [(P42212)β:P212121]  =  4. The difficulty with 
P222 is that it has a different lattice than the Bieberbach 
subgroups with compatible orders, and so it cannot be 
used to semi-decompose. P212121 does have a complement 
that is C222/TC (about a point that is not the origin when 
expressed in the basis of P212121 in the standard setting) 
giving

2 1 1 1 14 2 2 2 2 2 ( 222 / ).CP P C T= �

A.5  98, I4122

P41 with index 4 is normal. [I4122:P1]  =  16 in standard 
setting. Subgroup of pure rotations is order 4. So should 
be decomposable.

14 22 / 1

{( , , );  ( 1/ 2, 1/ 2, 1/ 2);

( , 1/ 2, 1/ 4);  ( 1/ 2, , 3 / 4);

( 1/ 2, , 3 / 4);  ( , 1/ 2, 1/ 4);

( 1/ 2, 1/ 2, 1/ 2);  ( , , );

( 1/ 2, 1/ 2, 1/ 2);  ( , , );

(

I P

x y z x y z

y x z y x z

x y z x y z

y x z y x z

x y z x y z

=

− + − + +

− + + + − +

− + − + − + − +

+ + − + − − −

+ + + − −

−

F

1/ 2, , 3 / 4);  ( , 1/ 2, 1/ 4);

( , 1/ 2, 1/ 4);  ( 1/ 2, , 3 / 4);

( , , );  ( 1/ 2, 1/ 2, 1/ 2)}

y x z y x z

x y z x y z

y x z y x z

+ + − + +

− + − + + − − +

− − + − + − +
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Of these,

{( , , );  ( , , );  ( , , );  ( , , );x y z y x z x y z y x z= − − − − − −S

This is a conjugated version of 222 / .
CC TF

{( , , );  ( , 1/ 2, 1/ 4);
( 1/ 2, 1/ 2, 1/ 2);  ( 1/ 2, , 3 / 4)}

x y z y x z
x y z y x z
= − + +

− + − + + − + +
B

This is of the form 
1

1
4 / 1P Pα α−F  where α ∈ SE(3), and B is 

normal in 
14 22 / 1 ,I PF  and so

1 14 22 4 ( 222 / ).CI P C T= �

Similarly, by choosing different coset representatives to 
define B we find

1 34 22 4 ( 222 / ).CI P C T= �

It is also possible to identify elements of P212121 in 
14 22 / 1I PF  

and to write

1 1 1 14 22 2 2 2 ( 222 / ).CI P C T= �

A.6  �171 P62 – A case that can be alternatively 
decomposed with larger [Γ:Σ]

It is obvious from examining 26
1

P
P

F  that it is possible to write 

P62  =  P32  (P2/P1), and in this case [Γ:ΓB]  =  [P62:P32]  =  2 
and [ΓB:T]  =  [P32:P1]  =  3.

Here we show that it is possible to find other decom-
positions where [Γ:ΓB′] is the same but [ΓB′:Σ] is larger. In 
particular, [P62:P61]  =  2 and [P61:P1]  =  6 with

1 0 0 0
0 1 0 0 .
0 0 2 0

α

 
 =  
  

The coset representatives from the two cosets are

{( , , );  ( , , 1/ 3);
( , , 2 / 3);  ( , , 1/ 2);
( , , 5 / 6);  ( , , 1/ 6)}

x y z y x y z
x y x z x y z

y x y z x y x z

− − +
− + − + − − +

− + + − +

and

{( , , 1/ 6);  ( , , 1/ 2);
( , , 5 / 6);  ( , , 2 / 3);
( , , );  ( , , 1/ 3)}.

x y x z x y z
y x y z x y x z
x y z y x y z

− + − + +
− − + − +
− − − + +

From these we can construct

2 16 / 6 {( , , );  ( , , )},P P x y z x y z= − −F

which is a pure rotation group.
This is a case where we could decompose Γ/Σ (which 

has 12 elements)

/Γ Σ = �B S

where B  =  P61/Σ and

: {( , , );  ( , , )} 2 / 1.x y z x y z P P= − − =S

Similar less-efficient decompositions are possible for 
P2221, C2221, P63, P64, P6222, P6422, P6322. These are listed 
in the table after the | symbol. In most cases they have the 
same type of complementing S as the ΓB in the more effi-
cient decomposition of the same group, and the answer to 
the question of whether S is normal in Σ\Γ is the same as 
well. When the answers differ, the answer for the less effi-
cient decomposition is written to the right of the | symbol.

A.7  208 and 210

These two groups each have large symmorphic sub-
groups of index 2, indicating normality of ΓS. Since in a 
semi-decomposition all of the torsion must reside in S, if 
a compatible Bieberbach subgroup exists it must be the 
case that [Γ:ΓB]  =  |S|. Each of the groups 208 and 210 have 
a symmorphic subgroup with point group of order 12 (195 
in 208, and 196 in 210). Moreover, in each of these two 
groups are Bieberbach groups of index 12 (76 and 78 in 
208, and 76, 78 and 19 in 210). Checking these (e.g. by con-
jugating generators of each candidate ΓB by all generators 
of Γ) none of these Bieberbach subgroups are normal. In 
some cases there is a faster way to rule out ΓB’s that are not 
normal, based on the discussion at the end of Section 6, 
which leads to the following theorem.

Theorem 4: If Σ  =  ΓB ∩ T  ΓB  <  Γ and Σ is not normal in 
Γ, then ΓB is not normal in Γ.

Proof: Every element of ΓB can be written as γB  =  σb for 
some σ ∈ Σ and .

B
b

Γ

Σ

∈F  By construction, { }
B

T e
Γ

Σ

∩ =F  

where T is the minimal-index translation subgroup of Γ. 
Conjugating by an arbitrary γ ∈ Γ gives

1 1 1 1( )( ).B b bγγ γ γσ γ γσγ γ γ− − − −= =

Conjugation does not change the nature of a rigid-body 
displacement, i.e. pure translations remain pure trans-
lations, pure rotations remain pure rotations, and screw 
displacements remain screw displacements with the same 
θ and d. Therefore, γσγ–1 must be a translation, but since 
Σ is not normal in Γ it must be that γσγ–1 ∉ Σ for at least 
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one γ ∈ Γ. Therefore, γγBγ–1 cannot be decomposed as σ′b′. 
But since every element of ΓB can be decomposed in this 
way, it must be that γγBγ–1 ∉ ΓB and therefore ΓB cannot be 
normal in Γ. □

Note that whereas the proof of this theorem is specific 
to space groups, it can be viewed as an example of the 
contrapositive of the statement

, B BΣ Γ Γ Σ Γ Γ⇒ ∩� �

which is true in more general (abstract) settings. That is, 
the intersection of normal subgroups is also normal.

As a consequence of this theorem, if Σ  =  ΓB ∩ T is the 
primitive translation group for ΓB, and ΓB  <  Γ, then if Σ is 
not normal in Γ we need not even check if ΓB is normal, 
because it is guaranteed not to be. Therefore, in such 
cases it cannot be the case that Γ  =  ΓB  S.

Moreover, even if there were normal Bieberbach sub-
groups further down the subgroup tree, these would be 
irrelevant for such decompositions because there would 
be no way to match [Γ:ΓB] and |S|. In searching for ΓB 
and S such that Γ  =  ΓBS, the indices and orders of coset 
spaces must match even if ΓB is not normal in Γ because 
ΓB ∩ S  =  e. The above mentioned groups have compatible 
indices and orders for this, and these are explored in the 
subsections that follow.

A.7.1  Details of 208

There are no normal Bieberbach subgroups in this group 
of an index compatible with the condition [Γ:ΓB]  =  |S|. The 
largest symmorphic subgroup has

23
1

{( , , );  ( , , );  ( , , );
( , , );  ( , , );  ( , , );
( , , );  ( , , );  ( , , );
( , , );  ( , , );  ( , , )} P

P

S x y z x y z x y z
x y z z x y z x y

z x y z x y y z x
y z x y z x y z x

= − − − −
− − − −

− − − −
− − − − − − = F

It has index 2, and hence it is normal and the quotient is 
a group of order 2. The only Bieberbach group with |B|  =  2 
is ΓB  =  P21. But none of the elements of P4232 are elements 
of P21 with the same lattice. For example, {(x, y, z); (y + 1/2, 
x + 1/2, –z + 1/2)} is a 2-element subgroup of 

24 32 / 1P PF  that 
is not in S. Though it is isomorphic with P21/P1, it is not 
equal to 

12 / 1.P PF  Rather, it is an element of C2 sharing the 
same lattice as P4232 and so we can write

2
24 32 23 23 2.
C

CP P P C
T

 
= =  

�

But our goal was not to decompose space groups into prod-
ucts of symmorphic subgroups, and so we look further 

down the tree. To do this, we double the unit cell as before 
by choosing α  =  diag[1, 1, 2]. This results in 48-element 
coset spaces

2 2( 4 32) / 1 1\( 4 32) .P P P Pα α≠

In other words, this is a case where Σ is not normal in Γ. 
Nevertheless, within 

21\( 4 32)P P αF  we can identify groups

1

3

1

( 4 )
1

2

( 4 )
1

{( , , );  ( 1/ 2, 1/ 2, 1/ 4);
( , , 1/ 2);  ( 1/ 2, 1/ 2, 3 / 4)}

{( , , );  ( 1/ 2, 1/ 2, 1/ 4);
( , , 1/ 2);  ( 1/ 2, 1/ 2, 3 / 4)}

P
P

P
P

B x y z y x z
x y z y x z

B x y z y x z
x y z y x z

α

α

= − + + +
− − + + − + + =

= + − + +
− − + − + + + =

F

F

and
1

23
1

{( , , );  ( , , );  ( , , );
( , , );  (2 , , 1/ 2 );  ( 2 , , 1/ 2 );
( 2 , , 1/ 2 );  (2 , , 1/ 2 );  ( , 2 , 1/ 2 );
( , 2 , 1/ 2 );  ( , 2 , 1/ 2 );  ( , 2 , 1/ 2 )}

P
P

S

x y z x y z x y z
x y z z x y z x y

z x y z x y y z x
y z x y z x y z x

α α−= =

− − − −
− − − −
− − − −

− − − − − −

F

Unfortunately,

.
ii BB S SΓ Σ Γ≠ =

And no other α was found that would enable such a 
decomposition. Searching further down the subgroup 
graph cannot result in a ΓBS decomposition. We therefore 
search for products of the form ΓBΓS.

Choosing α  =  diag[1, 2, 1] we can identify inside of 

21\( 4 32)P P αF  (which is not a group) three groups B, Ξ, S:

1
23
1

{( , , );  ( , , );  ( , , );
( , , );  ( , 1/ 2 , 2 );  ( , 1/ 2 , 2 );
( , 1/ 2 , 2 );  ( , 1/ 2 , 2 );  (2 , 1/ 2 , );
( 2 , 1/ 2 , );  (2 , 1/ 2 , );  ( 2 , 1/ 2 , )}

{( , 

P
P

S

x y z x y z x y z
x y z z x y z x y
z x y z x y y z x

y z x y z x y z x
x y

α α

Ξ

−= =

− − − −
− − − −
− − − −
− − − − − −
=

F

( 1)
1

, );  ( , 1/ 2, )}
P
P

z x y z α+ = F

and

12
1

{( , , );  ( , 1/ 2, )} .P
P

B x y z x y z= − + − = F

But the product of these three does not reproduce 

21\( 4 32)P P αF  because even though B ∩ Ξ  =  Ξ ∩ S  =  B ∩ S  =  {e} 
we find that (ΞS) ∩ B ≠ {e}.

Therefore we search deeper down the subgroup graph 
(i.e. for larger [Γ:Σ]) and find that there are multiple affine 
transformations with linear part
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1 1 0
1 1 0

0 0 2
A

 
 = − 
  

or a similarity-transformed version of this correspond-
ing to permutations of coordinate axis names. We there-
fore express Γα in the basis of Σ  =  P1 with α  =  (A, 0) (since 
translations are irrelevant to identifying Bieberbach sub-
groups in the top-down procedure, and making the trans-
lation zero retains the origin allows us to easily identify 
point rotations.) This makes it easy to identify the largest 
S (corresponding to P23) as

{( , , )( , , )( , , )( , , );
( 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
(1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
(1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
( 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/

S x y z x y z y x z y x z
x y z x y z x y

x y z x y z x y
x y z x y z x y

x y z x y z x

= − − − − − −
− − + + + − +

+ + − − + −
+ − − − − − +

− − − + − − 2 );
( 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
(1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
( 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
(1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 )}.

y
x y z x y z x y

x y z x y z x y
x y z x y z x y

x y z x y z x y

− + − − + + +
− − − + − −

− + + − + − − −
− + − − +

We also identify

1 {( , , );  ( 1/ 2, , 1/ 4)}B x y z x y z= + − − +

(which is a conjugated version of 
12 / 1P PF ),

1 {( , , );  ( 1/ 2, 1/ 2, );
( , , 1/ 2);  ( 1/ 2, 1/ 2, 1/ 2)}

x y z x y z
x y z x y z

Ξ = + +
+ + + +

and

2 {( , , );  ( 1/ 2, 1/ 2, 1/ 2);
( , 1/ 2, 3 / 4);  ( 1/ 2, , 1/ 4)}
B x y z x y z

x y z x y z
= − + − + +

− + − + + − − +

(which is a conjugated version of 
1 1 12 2 2 / 1P PF )

2 {( , , );  ( , , 1/ 2)}.x y z x y zΞ = +

In this case8

\ i iB SαΣ Γ
Ξ=F

for i  =  1, 2. Whereas ΓS  =  ΣΞ1S, we find that ΓS  =  ΣΞ1S and 
so it cannot be used. But changing the order we find 

8 Even though 
\ αΣ Γ

F  is not a group, equality is still assessed by eval-
uating the translational part modulo Z3 since multiplication on the 
left by (I, z) ∈ Σ = P1 only has the effect of changing the coset repre-
sentatives used to define 

\ αΣ Γ
F  by adding an arbitrary translation.

1 1 \
,SB αΣ Γ

Ξ = F  since a necessary condition for the product 
of subgroups to be a group is permutability. This results in 

1 1
.B S S BΓ Γ Γ Γ Γ= =

A.7.2  Details of 210

Using SUBGROUPGRAPH provides a number of transfor-
mations to generate ℱΣ\Γ of order 48. We choose this order 
because that is what is required to match |B| · |S|. The 
linear parts of all of the transformations are all equivalent 
under relabeling of axes, and the translational part is set 
to zero so that it is easier to identify point transformations. 
Therefore, we choose

1/ 2 1/ 2 0 0
1/ 2 1/ 2 0 0 .
0 0 1 0

α

 
 = − 
  

Then the resulting

1
\ 1\( 4 32)P F αΣ Γ

=F F

has the following subsets

1

2

3

{( , , );  ( 1/ 2, 1/ 2, 1/ 2);
( , 1/ 2, 1/ 4);  ( 1/ 2, , 3 / 4)}
{( , , );  ( , 1/ 2, 1/ 4);

( 1/ 2, 1/ 2, 1/ 2);  ( 1/ 2, , 3 / 4)}
{( , , );  ( , 1/ 2, 1/ 4);

( 1/ 2,

B x y z x y z
x y z x y z

B x y z y x z
x y z y x z

B x y z y x z
x

= − + − + +
− + − + + − − +

= − + +
− + − + + + − +

= − + +
− +  1/ 2, 1/ 2);  ( 1/ 2, , 3 / 4)}y z y x z− + + − + +

and

{( , , );  ( , , );  ( , , );  ( , , );
( 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
( 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
( 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
(1/ 2 1/ 2 , 1/ 2 1/ 2 , 1

S x y z x y z y x z y x z
x y z x y z x y
x y z x y z x y
x y z x y z x y

x y z x y z

= − − − − − −
− − + + + − +
− − − + − −
− + − − + + +

− − − + − / 2 1/ 2 );
(1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
(1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
( 1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );
(1/ 2 1/ 2 , 1/ 2 1/ 2 , 1/ 2 1/ 2 );

x y
x y z x y z x y
x y z x y z x y

x y z x y z x y
x y z x y z x y

−
+ + − − + −
+ − − − − − +

− + + − + − − −
− + − − +

These respectively correspond to P212121, P41, P43, and F23. 
It can be shown that

\ iB S
Σ Γ

=F

for i  =  1, 2, 3 and so we could write
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ii BB S SΓ Σ Γ= =

even though none of the 
iBΓ ’s are normal with index 12.

A.8  213, P4132 and 212, P4332

Taking the top-down approach, we use COSET to compute 
representatives of the cosets in P4132/P1. The result is 
[P4132:P1]  =  24. Of these, we identify four elements to 
construct 

1 1 12 2 2 / 1 ,P PF  and we find that this is normal in 

14 32 / 1.P PF

We also find three representatives (x, y, z); (z, x, y); 
(y, z, x) that are clearly rotations that preserve the origin. 
However, these rotations all have the axis of rotation 

[1, 1, 1] / 3,t =n  and so any point on the line passing 
through the origin with this direction will be preserved by 
them. Since the goal is to clearly separate point and Bie-
berbach transformations, we seek the translation to the 
point along this line that maximizes the number of entries 
that have v  =  0. In particular, we find that when using

1 0 0 3 / 8
0 1 0 3 / 8
0 0 1 3 / 8

α

 
 =  
  

in the Bilbao COSET function, 1
1( 4 32 ) / 1P P

BS
α α− =F  where

{( , , );  ( , , );  ( , , );
( , , );  ( , , );  ( , , )}
S x y z z x y y z x

y x z x z y z y x
=

− − − − − − − − −

and

1 1 1

1
2 2 2 / 1

{( , , );  ( 1/ 4, 3 / 4, 1/ 2);
( 3 / 4, 1/ 2, 1/ 4);  
( 1/ 2, 1/ 4, 3 / 4)} .P P

B x y z x y z
x y z

x y z α α−

= − − − − +
− − + − −

+ − − − − = F

We note also that 1
1( 4 32 ) / 1P P

B S
α α− = ′F  where

{( , , );  ( 1/ 2, 3 / 4, 1/ 4);
( 1/ 4, 3 / 4, 1/ 2);  
( 1/ 4, 1/ 2, 3 / 4)}

B x y z y x z
x y z

y x z

= − − + +′
− − − − +

+ − − +

and ΓB′ can be identified with P41. Using the Bilbao Server 
function IDENTIFY GROUP finds that ΓS  =  R32.

Alternatively, using the bottom-up approach we 
search for Bieberbach and symmorphic subgrouos 
respectively of order 4 and 6 (index 6 and 4) with SUB-
GROUPGRAPH. This shows that R32 is the only symmor-
phic subgroup of P4132 with these properties, and so we 
identify it with

1
32 / .

RR Tβ β−= FS

SUBGROUPGRAPH can also be used to identify P41 and 
P212121 as subgroups of P4132 with the correct index with 
fundamental domains /B TΓ

F  of the correct order. Of these 
only P212121 is normal.

We note that using any α given by SUBGROUPGRAPH 
for P4132 and P41 with index 6 gives

/ / / .
B BT TΓ Γ Γ Γ′ ′

=F F F

For example, when α is a translation by [1/4, 0, 1/2]t,

/ {( , , );  ( , , 1/ 2);
( , , 1/ 4);  ( , , 3 / 4)}

B T x y z x y z
y x z y x z

Γ ′
= − − +

− + − +

F

and we choose

/ {( , , );  ( 3 / 4, 3 / 4, );
( 3 / 4, , 3 / 4);  ( 1/ 4, 1/ 4, 1/ 4);
( 1/ 2, 1/ 4, 1/ 2);  ( 1/ 2, 1/ 2, 1/ 4)}

B
x y z z x y

y z x x z y
z y x y x z

Γ Γ ′
= − + − +

− + − + − + − + − +
+ − + + + + − +

F

which IDENTIFY GROUP identifies with R32/TR. And so, 
even though this ΓB′ is not normal, we can write Γ  =  ΓB′S 
by conjugating / BΓ Γ ′

F  to make it a set of rotations around 
the origin, and calling this S. Even so, we do not list P41 in 
the table because it is not normal, and is P212121 is normal, 
and hence the most useful for our application.

From the above it is clear that the top-down and 
bottom-up approaches provide the same results. And the 
final result is

1 1 1 1 1
324 32 2 2 2 4 32.
R

RP P P R
T

 
= =  

�

Group 212, P4332 follows in a similar way, but with 
α → α–1 (corresponding to a translation by –[3/8, 3/8, 3/8]t 
instead of [3/8, 3/8, 3/8]t). P43 and P212121 as subgroups of 
P4332 with the correct index with fundamental domains 
to decompose, but again only P212121 is normal, leading to

3 1 1 1 3
324 32 2 2 2 4 32.
R

RP P P R
T

 
= =  

�

A.9  214, I4132

[Γ:T]  =  24 with minimal index symmorphic subgroup 155 
(which has index 4 and point group of order 6). Bieberbach 
subgroups with the compatible value of |B|  =  4 are groups 
19, 76, 78. However, these all have index 12 in group 214. 
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Therefore, Γ/T cannot be decomposed into the form BS 
because [Γ:ΓB]  >  |S| and no /B TΓ

F  for these ΓB’s exists in 
ℱΓ/T.

The next finest lattice Σ is the lattice in the conven-
tional setting, with [Γ:Σ]  =  48. Σ is normal in Γ. As with 
213, translating the origin by [3/8, 3/8, 3/8]t relative to that 
in the standard centering allows us to write

B S
B S

Γ Γ Γ

Σ Σ Σ

Ξ= =F F F

where in the case of 214,

{( , , );  ( 1/ 4, 3 / 4, 1/ 2);

( 3 / 4, 1/ 2, 1/ 4);  
( 1/ 2, 1/ 4, 3 / 4)}

B
B x y z x y z

x y z
x y z

Γ

Σ

= = − − − − +

− − + − −
+ − − − −

F

and

{( , , );  ( , , );  ( , , );
( , , );  ( , , );  ( , , )}
S x y z z x y y z x

y x z x z y z y x
=

− − − − − − − − −

and

{( , , );  ( 1/ 2, 1/ 2, 1/ 2)}x y z x y zΞ = + + +

where ΓB  =  P212121 and ΓS  =  R32.
As can be seen by the translation subgroup {(x, y, z); 

(x + 1/2, y + 1/2, z + 1/2)}, the fundamental domain 
SΓ

Σ

F  is 

not a valid S. As mentioned earlier, attempting to use a 
finer lattice to remove this translation also prevents any 
normal Bieberbach groups from existing. And seeking a 
coarser Σ will only worsen the problem by resulting in 
more translational elements in .

SΓ

Σ

F  Therefore, a semi-

decomposition is not possible for group 214. Neverthe-
less by the reasoning in Theorem 3, it is the case from the 
above that

1 1 1 14 32 2 2 2 32.I P R=
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