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Partial Bi-Invariance
of SE(3) Metrics1

In a flurry of articles in the mid to late 1990s, various metrics for the group of rigid-body
motions, SE(3), were introduced for measuring distance between any two reference
frames or rigid-body motions. During this time, it was shown that one can choose a
smooth distance function that is invariant under either all left shifts or all right shifts, but
not both. For example, if one defines the distance between two reference frames to be an
appropriately weighted Frobenius norm of the difference of the corresponding homoge-
neous transformation matrices, this will be invariant under left shifts by arbitrary rigid-
body motions. However, this is not the full picture—other invariance properties exist.
Though the Frobenius norm is not invariant under right shifts by arbitrary rigid-body
motions, for an appropriate weighting it is invariant under right shifts by pure rotations.
This is also true for metrics based on the Lie-theoretic logarithm. This paper goes further
to investigate the full invariance properties of distance functions on SE(3), clarifying the
full subsets of motions under which both left and right invariance is possible.
[DOI: 10.1115/1.4028941]

Introduction

The concept of distance between rigid-body motions (or poses)
arises in a variety of applications ranging from robotics, to com-
puter graphics, and Computer-Aided Design/Computer-Aided
Manufacturing (CAD/CAM). These application include partition-
ing rigid-body trajectories evenly, interpolating motions, and
defining cost functions in rigid-body motion based on metrics to
tackle problems in attitude estimation and sensor calibration.

Given homogeneous (rigid-body) transformations of the form2

Hi ¼ HðRi; tiÞ ¼
Ri ti

0T 1

� �
2 SEð3Þ

a bona fide distance function, d : SEð3Þ � SEð3Þ ! R�0 is one
that satisfies the properties

dðH1;H2Þ ¼ 0, H1 ¼ H2 (1)

dðH1;H2Þ ¼ dðH2;H1Þ (2)

dðH1;H2Þ þ dðH2;H3Þ � dðH1;H3Þ (3)

This is the general definition of a metric function, which can be
defined for any space, not only SE(3). Since SE(3) is known to be a
Lie group, it is desirable to consider metrics that possess additional
invariance properties under simultaneous shifts of their arguments.

A number of papers over the past twenty years have introduced
various metrics to define appropriate invariant concepts of distan-
ces. The study of distance functions for SE(3) originated in the
mechanisms community and includes approaches based on Frobe-
nius norms of differences of homogeneous transformations [1–4],
Lie-theoretic logarithms of relative motions [5], stereographic
projection into the four-sphere [6] akin to (and derived independ-
ently from) Ref. [7], metrics based on kinematic mappings [8],
metrics based on convolution [4], and infinitesimal differential-
geometric approaches [9,10]. Some time after this, computer

scientists became interested in the problem of defining (or redefin-
ing) such metrics for robot motion planning [11,12]. Interest in
the topic has persisted and other new approaches, such as using
the polar and singular value decompositions have been presented
rather recently [13]. For more comprehensive reviews, see Refs.
[14] and [15], and for a review of metrics for the pure rotation
case (where full bi-invariance is possible), see Ref. [16].

For example, many metrics that will be reviewed below are left
invariant, meaning that3

dlðH3H1;H3H2Þ ¼ dlðH1;H2Þ (4)

for every H1, H2, H3 2 SE(3). Alternatively, it is possible to define
right-invariant metrics that satisfy the condition

drðH1H3;H2H3Þ ¼ drðH1;H2Þ (5)

A simple trick can be used to create a right- or left-invariant met-
ric from a metric without any invariance as follows. Let drðH1;
H2Þ ¼

:
dðI4;H2H�1

1 Þ and dlðH1;H2Þ ¼
:

dðI4;H
�1
1 H2Þ, where d(�,�)

is a metric without invariance properties, and I4 is the 4� 4
identity matrix that serves as the group identity for SE(3).

Curiously, in general it is not possible to satisfy both invarian-
ces simultaneously for arbitary H1, H2, H3 2 SE(3). However, for
pure rotations, the situation is quite different. In this case, it is
possible to define measures of distance that are invariant under
both left and right shifts. That is, for arbitrary R1, R2, R3 2 SO(3),
it is possible to define bona fide continuous “bi-invariant” distance
functions db : SOð3Þ � SOð3Þ ! R�0 that do satisfy

dbðR1R3;R2R3Þ ¼ dbðR3R1;R3R2Þ ¼ dbðR1;R2Þ (6)

As a side note, it is worth mentioning that the word “continuous”
is critical here because without it, a discontinuous trivial metric
on any group, G, can be defined as

dtrivialðg1; g2Þ ¼:
0 if g1 ¼ g2

1 if g1 6¼ g2

8<:
and this is bi-invariant. But when G is not compact and not com-
mutative, and is not the direct product of compact and

1This paper was originally presented at the ASME 2014 International Design
Engineering Technical Conferences as Paper No. DETC2014-DETC2014-34276.

2Here, Ri is a 3� 3 rotation matrix and ti is a three-dimensional translation
vector.
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commutative groups, continuous bi-invariant metrics do not exist
in general. And since SE(3) is a semidirect (rather than direct)
product, there is no reason to believe that bi-invariant metrics
should exist.

However, this is not the end of the story. Though it has been
shown that it is not possible to define continuous distance func-
tions for SE(3) that are bi-invariant, it is nevertheless possible to
observe the following two facts:

(1) There exist left-invariant metrics for SE(3) for which

dlðH1K;H2KÞ ¼ dlðH1;H2Þ

for any H1, H2 2 SE(3) and K¼H(R3, 0) for any R3

2 SO(3); and
(2) Given any H3 2 SE(3), there exist special combinations of

(not-necessarily commuting) motions H1 and H2 (which
depend on H3) for which the equality

dlðH1H3;H2H3Þ ¼ dlðH1;H2Þ

holds.
The combination of these two observations form the core of

this paper, which is organized as follows. First, a detailed review
of various metrics from the literature is presented. Then the partial
bi-invariance properties of SE(3) metrics are derived. And finally,
some ramifications of these invariances are presented.

A Survey of Metrics

This section begins with metrics for SO(3) and then moves to
the SE(3) case.

The SO(3) Case. The group SO(3) is a compact connected
three-dimensional matrix Lie group defined by the conditions

SOð3Þ ¼ fR 2 R3�3jRRT ¼ I3; det R ¼ þ1g

Metrics for SO(3) can be defined from any matrix norm as

dNðR1;R2Þ ¼: k R1 � R2 kN

where N indicates that it is defined relative to a particular norm,
k � kN : For example, if the Frobenius norm is used, then

dFðR1;R2Þ ¼k R1 � R2 kF¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððR1 � R2ÞðR1 � R2ÞTÞ

q
and from the fact that the trace is invariant under similarity trans-
formation, it is easy to see that

dFðR3R1;R3R2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðR3ðR1 � R2ÞðR1 � R2ÞTRT

3 Þ
q

¼ dFðR1;R2Þ

And on the other side

dFðR1R3;R2R3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððR1 � R2ÞR3RT

3 ðR1 � R2ÞTÞ
q

¼ dFðR1;R2Þ

This demonstrates the existence of bi-invariant metrics for SO(3),
which is a property that would also hold if the induced-2-norm
k � k2 had been used in place of k � kF. But this does not imply
that every distance function on SO(3) is bi-invariant (or even
invariant to shifts on one side).

For example, if instead of the usual Frobenius norm, a weighted
Frobenius norm of the form

dWðR1;R2Þ ¼k R1 � R2 kW¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trððR1 � R2ÞWðR1 � R2ÞTÞ

q
is used, where W¼WT is positive definite but without addi-
tional structure, then the result will still be a valid distance

function. But the right invariance that existed with the
identity-weighted Frobenius norm will no longer hold for arbi-
trary right shifts (though it may for special values of R3 if W
has special structure). Right-invariant metrics for SO(3) that
lack left invariance can be constructed just as easily. And an
example of a metric that is neither left- nor right invariant,
consider d1ðR1;R2Þ ¼k R1 � R2 k1.

However, since SO(3) is a compact Lie group, it has a unique
bi-invariant integration measure which can be used to average
metrics that are not invariant, to produce ones that are invariant.
Given a continuous function f : SOð3Þ ! R, there is essentially
only one “correct” (bi-invariant) way to compute the integral of
that function. Explicitly, if R is expressed in ZXZ Euler angles
a, b, c, this isð

SOð3Þ
f ðRÞdR ¼

ð2p

0

ðp

0

ð2p

0

f ðRða;b; cÞÞ sin bdadbdc

(Sometimes a normalizing factor of 1/8p2 is introduced so that

d0R ¼ ð1=8p2Þ sin bdadbdc and
Ð

SOð3Þ 1d0R ¼ 1, but this is only a

matter of convention and not an independent choice of integration
measure.)

The bi-invariance of this integration measure means thatð
SOð3Þ

f ðRÞdR ¼
ð

SOð3Þ
f ðQRÞdR ¼

ð
SOð3Þ

f ðRQÞdR

for arbitrary fixed Q 2 SO(3). And so, given a continuous left-
invariant metric, it is always possible to define

dbðR1;R2Þ ¼
ð

SOð3Þ
dlðR1Q0;R2Q0ÞdQ0 (7)

This averaging on the right together with existing invariance of
integration under left shifts gives a new metric that is invariant
under both left and right shifts. (Averaging a metric without any
invariance properties by shifting on the left and on the right, and
integrating over two copies of SO(3) can also be done to create a
bi-invariant metric.) The construct in Eq. (7) works because all
values of dl are finite (since SO(3) is compact and dl is taken to be
continuous) and the volume of SO(3) is finite (again from its com-
pactness). But this argument will not work for integrating over
SE(3), which is not compact.

From Euler’s theorem, it is known that any rotation matrix can
be written as

Rðh; nÞ ¼ I3 þ sin hN þ ð1� cos hÞN2 ¼ expðhNÞ (8)

where h is the angle of rotation, and N ¼ n̂ is the unique
skew-symmetric matrix corresponding to the unit vector defin-

ing the axis of rotation, n ¼ ½n1; n2; n3�T such that Nx ¼ n� x

for all x 2 R3. The angle can be obtained from a given R by
either taking the log and then computing the Frobenius norm
of the result, or by directly manipulating the above axis-angle
formula to isolate h when it is in the range (0, p). The result
is the same.

Given two rotations, the angle of the relative rotation between
them is a measure of distance. That is,

dlogðR1;R2Þ ¼
:

hðRT
1 R2Þ ¼

1

2
k logðRT

1 R2Þ kF (9)

is a valid distance function [5] which is naturally left invariant.
Moreover, since logðQRQTÞ ¼ Qðlog RÞQT, this metric is
bi-invariant.

Metrics defined using norms applied directly to the difference
of two rotation matrices are sometimes referred to as being
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“extrinsic” and those using the log of the relative rotation are
called “intrinsic.”

The SE(3) Case. Several complications present themselves in
the case of full rigid-body motions consisting of both rotations
and translations. The first is that there are no continuous metric
functions that are invariant under arbitrary left and right shifts.
The second is that since rotations are measured in one kind of
units (radians, degrees, etc.), and translations are measured in
units of length (inches, meters, etc.), combining both into one
number must be done with caution.

Whereas the former is something that cannot be changed, the
latter was addressed in a satisfactory way in several papers [1–4].
The argument goes as follows. Since there is no problem
measuring distance between points in Euclidean space by simply
computing the Euclidean norm of their difference, dðx1; x2Þ
¼k x1 � x2 k , and since by definition this is left invariant under
Euclidean motions

dðH � x1;H � x2Þ ¼ dðx1; x2Þ

where H � x1 ¼ Rx1 þ t, then

dlðH1;H2Þ ¼
:
ð

Rn
k H1 � x� H2 � x k2qðxÞdx

� �1=2

(10)

will inherit this left invariance. Here, q(x) is a density function
that decays rapidly to zero away from the origin. For example,
this could be the mass density of a finite body that takes a value of
1 on the body and zero outside of it.

The reason for squaring the norm inside the integral in Eq. (10)
is that the result can be integrated in closed form. But this by itself
kills the triangle inequality. Taking the square-root outside recov-
ers the triangle inequality [4].

It has been shown that when
Ð

Rn xqðxÞdx ¼ 0, Eq. (10) is com-
pletely equivalent to the weighted Frobenius norm [1–4]

dlðH1;H2Þ ¼ k H1 � H2 kW

where

W ¼ J 0

0T m

� �
(11)

where m ¼
Ð

Rn qðxÞdx and J ¼
Ð

Rn xxTqðxÞdx are, respectively,
mass and inertia matrices. Note that J is related to the usual
moment of inertia matrix, I, through the expression

I ¼ trðJÞI3 � J

The combination of m and J naturally weights translations and
rotations according to the properties of the body being moved with-
out the need to artificially introduce a length parameter. A body that
is very concentrated will have small J, and one that is very spread
out will have large J. For example, for a point mass, J will be zero,
and for a long rod J will be large, while m will be the same in both
cases. This reflects that for a long rod, the “cost” of rotation should
be large, whereas rotation of a point mass around itself has no cost.
In general, the metric in Eq. (10) is not right invariant.

Invariance of Existing SE(3) Metrics Under Left–Right

SE(3) 3 SO(3) Actions

Note that when the body being moved is isotropic, so that for
some a 2 R>0 that reflects how concentrated the density q is, and
some characteristic length scale of the body, r, the inertia matrix
will be of the form J ¼ amr2 � I3.

In the case of an isotropic body, the metric in Eq. (10) also has
the property that when letting K ¼ HðR; 0Þ

dlðH1K;H2KÞ ¼ dlðH1;H2Þ

for any R 2 SO(3) and any H1, H2 2 SE(3). Other metrics for
SE(3) that share this property of full left invariance and partial
right invariance include

d
ð1Þ
SOð3Þ;rðH1;H2Þ ¼

:
r � dlogðR1;R2Þþ k t1 � t2 k

and

d
ð2Þ
SOð3Þ;rðH1;H2Þ ¼:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � d2

logðR1;R2Þþ k t1 � t2 k2

q
and

dSEð3Þ;rðH1;H2Þ ¼
: k logðH�1

1 H2Þ kW

where W is as in Eq. (11) but for the special case of an isotropic
body.

Another class of metrics is defined by shifting a unimodal prob-
ability density function of motion, f : SEð3Þ ! R�0, and integrat-
ing. For example,

dfðH1;H2Þ ¼
:

ð
SEð3Þ
jf ðH�1

1 HÞ � f ðH�1
2 HÞj2dH

 !1=2

The integration measure for SE(3) is bi-invariant, as is the SO(3)
integration measure. And so letting H0 ¼ H�1

3 H

dfðH3H1;H3H2Þ ¼:
ð

SEð3Þ
jf ðH�1

1 H0Þ � f ðH�1
2 H0Þj2dH0

 !1=2

¼ dfðH1;H2Þ

It is often a point of confusion in the kinematics literature that
SE(3) can have a bi-invariant integration measure but not a bi-
invariant metric. The bi-invariant integration measure for
H¼H(R, t) is simply dH¼ dRd t, where dR is the bi-invariant
integration measure for SO(3) described earlier, and dt¼ dt1 dt2
dt3. The proof that this is bi-invariant is given in Ref. [14]. Maybe
the simplest way to say it is that conditions for the metric tensor
G(R, t) to be bi-invariant are more stringent than for the integra-
tion measure, which is more akin to j det GðR; tÞj. The former can
be viewed as a 6� 6 matrix function with 21 independent entries
whereas the latter is a single scalar function which is invariant
under shifts by unimodular matrices and arbitrary similarity
transformations.

The metrics df (H1, H2) do not appear to have the right invari-
ance under SO(3). But given a left-invariant metric on SE(3) that
does not satisfy this condition of partial right invariance, it is pos-
sible to average over rotations on the right as in Eq. (7) to form a
new metric with right invariance under SO(3) actions. It is not
possible to average over all of SE(3) because it is not compact,
and the result will not be finite.

Analysis of Full Invariance

In this section, two questions are addressed in the context of
SE(3) metrics that are simultaneously left invariant under SE(3)
and right invariant under SO(3). Given the discussion above, there
is no loss of generality in assuming this. Both questions query spe-
cial cases when dl(H1 H3, H2 H3) ¼ dl(H1, H2) where H3 2 SE(3)
is not a pure rotation. Namely,
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(1) For a pair of arbitrary homogeneous transformations, (H1,
H2), what is the largest subset of SE(3) from which right
shifts H3 can be drawn and applied such that the value of
the metric is unchanged?

(2) For a given right shift by an arbitrary rigid-body motion,
H3, what is the largest set of pairs (H1, H2) for which the
value of the metric is unchanged?

The answers to both of these questions are addressed below.

Answer to Question 1. Addressing question 1 first, for given
(H1, H2), consider under what conditions (H1 H3, H2 H3) can be
written in the form ðH03H1K;H03H2KÞ where K¼H(R, 0). Since
from the discussion in the previous section, SE(3) metrics can be
assumed to have left–right SE(3)� SO(3) invariance,
dðH03H1K;H03H2KÞ ¼ dðH1;H2Þ. And from the symmetry of a
metric, this is also equal to d(H2, H1). Therefore, consider the two
subquestions:

(1a) Under what conditions on H3 is it possible to find H03 and
K for which the following equations will hold simultane-
ously for given (H1, H2)?

H03H1K ¼ H1H3 and H03H2K ¼ H2H3 (12)

(1b) Under what conditions on H3 is it possible to find H003 and
K0 for which the following equations will hold simultane-
ously for given (H1, H2)?

H003 H1K0 ¼ H2H3 and H003 H2K0 ¼ H1H3 (13)

Computing the solution spaces for both problems will
each provide branches of possible solutions, the union of
which will describe the full space of H3’s for which right
invariance will hold.

Rewriting Eq. (12) so as to isolate H3 in both equations, the
condition

H�1
1 H03H1K ¼ H3 ¼ H�1

2 H03H2K

emerges, giving the condition H�1
1 H03H1 ¼ H�1

2 H03H2. In other
words, K plays no role in constraining H03. The result can further
be written as

ðH2H�1
1 ÞH03 ¼ H03ðH2H�1

1 Þ

This is a single instance of what is known as the “AX¼XB sensor
calibration problem” [17–20] where here X ¼ H03, and in this case

A ¼ B ¼ H2H�1
1

Depending on the specifics of A and B, the solution space for X
can either be empty or it can be two-, four-, or six-dimensional.
When A¼B, solutions always exist, and when A ¼ B ¼ I4 then
obviously X can take any value in SE(3), which is six-
dimensional. The precise conditions distinguishing the remaining
two cases are most easily stated by writing A (and hence B) in
terms of their screw-theoretic decomposition. Let

screwðn; p; h; dÞ ¼:
ehN ðI3 � ehNÞpþ dn

0T 1

0@ 1A (14)

where N¼�NT is the skew-symmetric matrix such that N
x¼ n� x for every x 2 R3 and I3 is the 3� 3 identity matrix. n is
the direction of the axis of rotation of ehN and p is the position of

any point on the screw axis (i.e., not necessarily the usual Pl€ucker
coordinates). Then

screwðn;p; h; dÞ ¼ screwðn;pþ tn; h; dÞ

for all t 2 R. Moreover, let

A ¼ screwðnA;pA; hA; dAÞ

and similarly for B. Then let X¼ (RX, tX) 2 SE(3). Multiplying ho-
mogenous transformations gives

X�1screwðn;p; h; dÞX ¼ screwðRXn;RXpþ tX; h; dÞ (15)

where X � ðn; pÞ ¼: ðRXn;RXpþ tXÞ defines the action of SE(3) on
a line defined by (n, p). (If p had been chosen as in Pl€ucker coor-
dinates, then the action X � (n, p) would necessarily be more com-
plicated to ensure that the constraint n � p¼ 0 is preserved after
the action by X.) In the problem at hand, the line of interest is a
screw axis of another rigid motion. Note that in Eq. (15) h and d
remain unchanged under conjugation. This is a statement of the
well-known fact that these are SE(3) invariants [21,22]. This indi-
cates that if A and B are related as AX¼XB, then they must have
the same invariants

hA ¼ hB and dA ¼ dB (16)

This condition can be called the “compatibility of A and B.”
The question then becomes, if Eq. (16) holds for given A and B,

what is the space of all possible X’s for which A¼XBX�1? The
search for an appropriate X can begin by taking the SE(3) loga-
rithm of this equation, which can be rewritten as [14,15]

log_ðAÞ ¼ AdðXÞ log_ðBÞ (17)

where for a general homogeneous transformation, H 2 SE(3), the
adjoint matrix is

AdðHðR; tÞÞ ¼ R O

t̂R R

� �
In the case of general compatible A and B, i.e., not degenerate

cases in which the rotation angle4 is outside of the range (0, p),
the solution space of all possible X’s that satisfy this equation is
known to be two-dimensional. This can be seen by defining

log_ðAÞ ¼ hAnA

vA

� �
(18)

Then Eq. (17) can be broken up into rotational and translational
parts as

nA ¼ RXnB and (19)

vA ¼ hB btXRXnB þ RXvB (20)

The first of these equations has a one-dimensional solution space
of the form RX ¼ RðnB; nAÞRðnB;/Þ, where / 2 ½0; 2pÞ is free
and RðnB;nAÞ is any rotation matrix that rotates the vector nB into
nA. In particular, choose

RðnB;nAÞ ¼ IþbnB � nA þ
ð1� nB � nAÞ
k nB � nA k2

ðbnB � nAÞ2 (21)

The rotation RðnB;/Þ is given by Euler’s formula

4This angle is computed from the Frobenius norm hA ¼k ð1=2Þ log RA

k¼k ð1=2Þ log RB k¼ hB.
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RðnB;/Þ ¼ Iþ sin / cnB þ ð1� cos /Þ cnBð Þ2

Substituting RX¼R(nB, nA) R(nB, /) into Eq. (20) and rearranging
terms

RðnB; nAÞRðnB;/ÞvB � vA

hB
¼ cnAtX (22)

The skew-symmetric matrix cnA is rank 2, so a free translational
degree of freedom exists in tX along the nA direction. tX can thus
be described as

tX ¼ tðsÞ ¼ snA þ amA þ bmA � nA (23)

where s 2 R is a second free parameter, and mA and mA� nA are
defined to be orthogonal to nA by construction. If nA¼ [n1, n2,
n3]T and n1, n2 are not simultaneously zero, then it is possible to
define5

mA ¼:
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
1 þ n2

2

p �n2

n1

0

0@ 1A
The coefficients a and b are then computed by substituting Eq.
(23) into Eq. (22) and using the fact that fnA;mA; nA �mAg is an
orthonormal basis for R3. Explicitly

a ¼ � RðnB; nAÞRðnB;/ÞvB � vA

hB

� �
� mA � nAð Þ and

b ¼ RðnB;nAÞRðnB;/ÞvB � vA

hB

� �
�mA

This means that the feasible solutions can be completely parame-
terized as

Xð/; sÞ ¼ HðRðnB;nAÞRðnB;/Þ; tðsÞÞ (24)

where ð/; sÞ 2 ½0; 2pÞ �R and HðR; tÞ 2 SEð3Þ.
Let us call X(/, s) the 2D “cylinder” of X’s that solve the prob-

lem for a single pair (A, B) with hA¼ hB 2 (0, p). In contrast,
when hA ¼ hB 2 f0;pg the concept of logarithm used in Eq. (18)
breaks down, and other methods must be used. It suffices to say
that, in this case, the space of allowable X’s grows to be four-
dimensional.

From this, it is clear that in the context of the present discussion
there is always a solution, and for all but very special choices of
H1 and H2, there will be two degrees of freedom in H03.

Then, the full set of values of H3 for which a left-invariant
SE(3) metric will be right invariant can be parameterized as

H3 ¼ H�1
1 H03H1K

Since K played no role in computing the freedom in H03, the
dimensions add. In other words, K has the three dimensions of
freedom of SO(3), and if H03 has two additional independent
degrees of freedom, then there is a whole five-dimensional sub-
space of SE(3) from which H3 can be chosen for which the left-
invariant metric will also be right invariant. In the degenerate
case, when hA ¼ hB 2 f0;pg then the space of possible H3’s for
which right invariance holds becomes six-dimensional, meaning
that for these special values of H1 and H2, the metric is fully
bi-invariant.

Considering question 1b, and isolating H3 in Eq. (13), the con-
ditions for the existence of a right shift that will not change the
value of the metric are

H�1
2 H003 H1K0 ¼ H3 ¼ H�1

1 H003 H2K0

Like in case 1a, K0 can be canceled to give H�1
2 H003 H1 ¼ H�1

1 H003 H2

and the resulting constraint equation on H003 is

ðH1H�1
2 ÞH003 ¼ H003 ðH2H�1

1 Þ
Here

A ¼ H1H�1
2 and B ¼ A�1

and since the screw parameters h and d for a motion and inverse
motion are the same, which can be observed from

½screwðn; p; h; dÞ��1 ¼ screwð�n;p; h; dÞ

the necessary conditions for existence of solutions are satisfied.
And a different cylinder of solutions for H03 is obtained. From
here, the second branch of the full 5D solution space for H3 is
obtained as

H3 ¼ H�1
2 H003 H1K0

The final question that can be asked in regard to question 1 is
whether these two branches of solutions are distinct, or if they
have some intersection. And if they intersect, what is that space of
intersection?

The two solutions will intersect if for fixed H1, H2, H03, K, it is
possible to find H003 in the 2D subspace of SE(3) and K0 ¼ HðR; 0Þ
with R 2 SOð3Þ such that

H�1
1 H03H1K ¼ H�1

2 H003 H1K0 (25)

has a solution. And if every such instance of this constraint has a
solution, then branch 2 contains branch 1. And if the roles of
ðH03;KÞ and ðH003 ;K0Þ are reversed and it is shown that branch 1
also contains branch 2, then this would imply that both branches
are the same.

Obviously, from Eq. (13) it is possible to rewrite Eq. (25) as

H�1
1 H03H1K ¼ H�1

1 H003 H2K0

Canceling H�1
1 on the left and choosing K¼K0 on the right

H03H1 ¼ H003 H2

Therefore, given H003 it is always possible to find H03, and vice
versa. And so cases 1a and 1b produce exactly the same solution
spaces, and do not represent different branches.

Answer to Question 2. The statement of question 2 uses many
of the same equations, but with different variables held fixed. The
question is stated as: For given arbitrary right shift H3 what is the
space of all H1, H2, for which the left-invariant metric remains
unchanged? In analogy with question 1, this can be broken up into
two subquestions:

(2a) For given H3, what are all possible H1 and H2 such that H03
and K can be found for which the following equations will
hold simultaneously?

H03H1K ¼ H1H3 and H03H2K ¼ H2H3

(2b) For given H3, what are all possible H1, H2, such that H003
and K0 can be found for which the following equations
will hold simultaneously?

5The special case when they are simultaneously zero is a set of measure zero, and
hence is a rare event. Nevertheless, it is easy to handle, since in this case RA is
necessarily a rotation around e3.
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H003 H1K0 ¼ H2H3 and H003 H2K0 ¼ H1H3 (26)

Starting with 2a, the equations can be written as

H03H1 ¼ H1ðH3K�1Þ and H03H2 ¼ H2ðH3K�1Þ

Each of these is an example of AX¼XB. In the first case X¼H1,
and in the second X¼H2. The necessary conditions for solutions
to exist are

hðH03Þ ¼ hðH3K�1Þ and dðH03Þ ¼ dðH3K�1Þ

And for each pair ðH03;KÞ when h 2 ð0; pÞ, a two-dimensional cyl-
inder of solutions will exist, and when h 2{0, p} the dimension of
the solution space increases as discussed earlier. Since H03 has six
degrees of freedom, K has three degrees of freedom, and two
constraints are imposed, it follows that starting with any initial pair
ðH01;H02Þ for which dlðH01H3;H

0
2H3Þ ¼ dlðH01;H02Þ, a whole

6þ 3� 2 ¼ 7 dimensional subspace of other pairs in
SE(3)�SE(3) will also have this property. Moreover, if H3

¼ screwðn;p; h; dÞ, then H01 ¼ screwðn;p; h01; d01Þ and H02 ¼ screw
ðn;p; h02; d02Þ will commute with H3. The four free parameters
h01; d

0
1; h
0
2; d
0
2 used to define initial starting points for ðH01;H02Þ

together with the seven degrees of freedom that can be constructed
for each of these pairs indicates an 11-dimensional space inside of
the 12-dimensional space SE(3)� SE(3) that is invariant under
right shifts by general H3 2 SE(3). Of course, for special values of
H3, such as H3¼H(R, 0), full 12-dimensional invariance is possi-
ble. But the problem addressed here is the general case.

As for question 2b, if in Eq. (26) H2 is isolated from each equa-
tion and the results are set equal to each other, another kind of
AX¼XB equation with X¼H1 results

½ðH003 Þ
2�H1 ¼ H1½H3ðK0Þ�1H3ðK0Þ�1�

But in general AX ¼ XB, A2X ¼ XB2 and so

H003 H1 ¼ H1½H3ðK0Þ�1� (27)

Similarly, it is possible to isolate H1 from both equations in Eq.
(26) and write

½ðH003 Þ
�2�H2 ¼ H2½K0H�1

3 K0H�1
3 � ) ðH003 Þ

�1H2 ¼ H2½K0H�1
3 �

And since in general AX ¼ XB, A�1X ¼ XB�1, this can be writ-
ten as

H003 H2 ¼ H2½H3ðK0Þ�1�

which means that the conditions on H2 are the same as those on
H1 in Eq. (27).

The conditions for existence of solutions for this case are
expressed as

hðH003 Þ ¼ hðH3ðK0Þ�1Þ and dðH003 Þ ¼ dðH3ðK0Þ�1Þ

and the same argument as in case 2a indicates that this is an 11-
dimensional space.

Conclusions

It has been known for twenty years that metrics on the group of
rigid-body motions can be chosen to be left invariant under arbi-
trary rigid-body motions. However, the fact that additional invari-
ance exists for special motions applied on the right appears not to
have been studied previously. This paper fills this gap in the litera-
ture by characterizing the full set of invariances of SE(3) metrics.

It is shown that a five-dimensional subspace of right shifts can be
applied to an arbitrary pair of motions that will leave left-
invariant metrics unchanged. In addition, the space of special
pairs of motions for which arbitrary left and right shifts can be
applied for which distance is preserved is analyzed and is found to
be 11-dimensional in the general case.
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Nomenclature

k A kF ¼ the Frobenius norm of a matrix
A 2 Rn�n; k A k2

F ¼
:

trðAATÞ
k A kN ¼ an arbitrary matrix norm
k A kW ¼ the weighted Frobenius norm with W ¼ WT 2 Rn�n

positive definite, k A k2
W ¼
:

trðAWATÞ
k A k2 ¼ the induced 2-norm of a matrix
dð�; �Þ ¼ a metric/distance function

det ¼ the determinant of a square matrix
In ¼ the n� n identity matrix

Rn ¼ n-dimensional Euclidean space
Rn�n ¼ the space of n� n matrices with real entries
SE(n) ¼ the special Euclidean group of n-dimensional space
SO(n) ¼ the group of rotations in n-dimensional Euclidean space
trðAÞ ¼ the trace of a square matrix

References
[1] Kazerounian, K., and Rastegar, J., 1992, “Object Norms: A Class of Coordinate

and Metric Independent Norms for Displacement,” Flexible Mechanisms, Dy-
namics and Analysis, ASME DE 47, pp. 271–275.

[2] Martinez, J. M. R., and Duffy, J., 1995, “On the Metrics of Rigid Body
Displacement for Infinite and Finite Bodies,” ASME J. Mech. Des., 117(1),
pp. 41–47.

[3] Fanghella, P., and Galletti, C., 1995, “Metric Relations and Displacement
Groups in Mechanism and Robot Kinematic,” ASME J. Mech. Des., 117(3),
pp. 470–478.

[4] Chirikjian, G. S., and Zhou, S., 1998, “Metrics on Motion and Deformation of
Solid Models,” ASME J. Mech. Des., 120(2), pp. 252–261.

[5] Park, F. C., 1995, “Distance Metrics on the Rigid-Body Motions With Applica-
tions to Mechanism Design,” ASME J. Mech. Des., 117(1), pp. 48–54.

[6] Etzel, K. R., and McCarthy, J. M., 1996, “Spatial Motion Interpolation in an
Image Space of SO(4),” Proceedings of 1996 ASME Design Engineering Tech-
nical Conference and Computers in Engineering Conference, Irvine, CA, Aug.
18–22.

[7] Inonu, E., and Wigner, E. P., 1953, “On the Contraction of Groups and Their
Representations,” Proc. Natl. Acad. Sci., 39(6), pp. 510–524.

[8] Ravani, B., and Roth, B., 1984, “Mappings of Spatial Kinematics,” ASME J.
Mech. Des., 106(3), pp. 341–347.

[9] �Zefran, M., Kumar, V., and Croke, C., 1999, “Metrics and Connections for
Rigid-Body Kinematics,” Int. J. Rob. Res., 18(2), pp. 243–258.

[10] Lin, Q., and Burdick, J. W., 2000, “Objective and Frame-Invariant Kinematic
Metric Functions for Rigid Bodies,” Int. J. Rob. Res., 19(6), pp. 612–625.

[11] Kuffner, J. J., 2004, “Effective Sampling and Distance Metrics for 3D Rigid
Body Path Planning,” Proceedings of the 2004 IEEE International Conference
on Robotics and Automation, ICRA’04, New Orleans, LA, April, Vol. 4, pp.
3993–3998.

[12] Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and Vallejo, D., 1998,
“Choosing Good Distance Metrics and Local Planners for Probabilistic Road-
map Methods,” Proceedings of the 1998 IEEE International Conference on
Robotics and Automation, ICRA’98, Leuven, Belgium, May, Vol. 1, pp.
630–637.

[13] Larochelle, P. M., Murray, A. P., and Angeles, J., 2007, “A Distance Metric for
Finite Sets of Rigid-Body Displacements via the Polar Decomposition,” ASME
J. Mech. Des., 129(8), pp. 883–886.

[14] Chirikjian, G. S., and Kyatkin, A. B., 2001, Engineering Applications of Non-
commutative Harmonic Analysis, CRC Press, Boca Raton, FL.

[15] Chirikjian, G. S., 2009/2012, Stochastic Models, Information Theory, and Lie
Groups: Volumes Iþ II, Birkh€auser, Boston, MA.

[16] Huynh, D. Q., 2009, “Metrics for 3D Rotations: Comparisons and Analysis,”
J. Math. Imaging Vision, 35(2), pp. 155–164.

[17] Shiu, Y. C., and Ahmad, S., 1989, “Calibration of Wrist-Mounted Robotic Sen-
sors by Solving Homogeneous Transform Equations of the Form AX¼XB,”
IEEE Trans. Rob. Autom., 5(1), pp. 16–29.

011008-6 / Vol. 15, MARCH 2015 Transactions of the ASME

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 08/28/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1115/1.2826115
http://dx.doi.org/10.1115/1.2826702
http://dx.doi.org/10.1115/1.2826966
http://dx.doi.org/10.1115/1.2826116
http://dx.doi.org/10.1073/pnas.39.6.510
http://dx.doi.org/10.1115/1.3267417
http://dx.doi.org/10.1115/1.3267417
http://dx.doi.org/10.1177/02783649922066187
http://dx.doi.org/10.1177/027836490001900605
http://dx.doi.org/10.1115/1.2735640
http://dx.doi.org/10.1115/1.2735640
http://dx.doi.org/10.1007/s10851-009-0161-2
http://dx.doi.org/10.1109/70.88014


[18] Chou, J. C. K., and Kamel, M., 1991, “Finding the Position and Orientation of a Sensor
on a Robot Manipulator Using Quaternions,” Int. J. Rob. Res., 10(3), pp. 240–254.

[19] Park, F. C., and Martin, B. J., 1994, “Robot Sensor Calibration: Solving
AX¼XB on the Euclidean Group,” IEEE Trans. Rob. Autom., 10(5),
pp. 717–721.

[20] Ackerman, M. K., and Chirikjian, G. S., 2013, “A Probabilistic Solution to the
AX¼XB Problem: Sensor Calibration Without Correspondence,” Geometric
Science of Information, Paris, France, Aug. 28–31.

[21] Chen, H. H., 1991, “A Screw Motion Approach to Uniqueness Analysis of
Head-Eye Geometry,” IEEE Conference on Computer Vision and Pattern Rec-
ognition, Maui, HI, pp. 145–151.

[22] Ackerman, M. K., Cheng, A., Shiffman, B., Boctor, E., and Chirikjian, G. S.,
2013, “Sensor Calibration With Unknown Correspondence: Solving AX¼XB
Using Euclidean-Group Invariants,” 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’13), Tokyo, Japan, Nov. 3–8,
pp. 1308–1313.

Journal of Computing and Information Science in Engineering MARCH 2015, Vol. 15 / 011008-7

Downloaded From: http://computingengineering.asmedigitalcollection.asme.org/ on 08/28/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1177/027836499101000305
http://dx.doi.org/10.1109/70.326576

	UE1
	E1
	E2
	E3
	E4
	E5
	E6
	UE2
	cor1
	cor2
	l
	FN2
	UE3
	UE4
	UE5
	UE6
	UE7
	UE8
	UE9
	UE10
	UE11
	UE12
	E7
	E8
	E9
	UE13
	E10
	UE14
	E11
	UE15
	UE16
	UE17
	UE18
	UE19
	UE20
	UE21
	E12
	E13
	UE22
	UE23
	UE24
	E14
	UE25
	UE26
	E15
	E16
	E17
	UE27
	E18
	E19
	E20
	E21
	UE28
	FN3
	E22
	E23
	UE29
	UE30
	E24
	UE31
	UE32
	UE33
	UE34
	UE35
	UE36
	E25
	UE37
	UE38
	UE39
	E26
	FN4
	UE40
	UE41
	UE42
	E27
	UE43
	UE44
	UE45
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22

