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Abstract— In the field of robotics, it is now standard to
describe the motion of robots relative to a fixed world frame.
For example, the position and orientation of the distal link (or
robot hand) is described as a rigid-body motion relative to the
robot base. However, when it comes to the description of relative
rigid-body position and orientation between individual robots
in a multi-robot system (e.g., a group of humanoids performing
specific tasks), assessing preferred relative rigid-body position
and orientation of a robot relative to another would be more
appropriate. Furthermore, it would be beneficial to have a
“symmetrical” parameterization in which the corresponding
parameters for a pair of robots in a group are calculated in
the same way for the motion and its inverse. In this paper, we
discuss the possible forms of this symmetrical parameterization
for the rotations and rigid body motions. This extends and
updates our previously presented work. We also present the
properties of the symmetrical parameterizations in terms of
product formulas. Due to its “symmetrical” property, this type
of the parameterization has various potential benefits in the
study of humanoid robots.

I. INTRODUCTION

The description of relative orientations and positions of
robotic systems is fundamentally important in the field of
robotics. For classical treatments of kinematics and compre-
hensive reviews of rotation parameterizations, see [1]–[6].
One of the recent trends in the robotics community includes
multi-robot systems. Examples include self-reconfigurable
modular robots [7], [8], collaborative multi-robot systems
that can perform the repair of themselves [9], [10], and
humanoid robots that can perform human activities such as
soccer [11]. In particular, the well-known humanoid soccer
challenge RoboCup [12], [13] aims to create a humanoid
soccer team that could one day compete against a real
FIFA World Cup champion. Furthermore, interactions of
humanoids with humans such as communication, coopera-
tion, and tutelage become important issues for humanoids
to achieve complex tasks [14], [15]. One notable feature is
that these robotic systems often consist of identical copies of
unit robots to form a team or a complex assembly structure.
This feature is particularly crucial in smart robots, such as
a group of humanoids interacting with their environments or
humans. In these cases, symmetrical description of relative
position and orientation between each unit robot would be
beneficial. By symmetrical description, we mean that the
inversion formula in terms of the corresponding parameters
involves simple symmetric mathematical operations.
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For that purpose, this paper introduces possible sym-
metrical parameterizations on the group of 3D rotations,
SO(3), and rigid body motions, SE(3). The main goal of
the symmetrical parameterization is to parameterize rotations
and rigid body motions in a “symmetrical” way, i.e., given a
rotation or a rigid body motion, the corresponding inverse
form looks the same way. Mathematically, given a 3× 3
rotation matrix R(q) or a 4×4 homogeneous matrix H(q′), a
symmetrical parameterization allows us to write [R(q1)]

T =
R(q2) and [H(q′1)]

−1 = H(q′2) where the corresponding rela-
tionship between q1 and q2 and between q′1 and q′2 involve
simple symmetric mathematical operations.

This work builds upon the previously presented work for
a symmetrical parameterization which was developed mainly
for biomolecular docking application in computational struc-
tural biology [16], [17]. Once a set of parameters is obtained
given a rigid body motion by using a symmetrical parameter-
ization, there is no need to re-evaluate the parameters for its
inverse motion, which facilitates the description of relative
motions between unit robots. To illustrate this concept,
suppose we have a group of humanoid robots to perform
the activity. Relative positions and orientations between each
pair should be constantly updated during the performance. A
symmetrical parameterization will enhance the evaluation of
relative rigid body motions because it enables each pair of
humanoids to look the same way regardless of which robot
is chosen as a base frame. Hence this new parameterization
method has a high potential in robotics community, in
particular humanoid community.

The organization of this paper is as follows. In Section
II, we discuss possible forms of the symmetrical param-
eterizations on 3D rotations SO(3) and the corresponding
product formula. In the beginning, we present a brief review
on the symmetrical parameterization in our earlier work,
then we discuss associated and extended forms of possible
symmetrical parameterizations. Furthermore, we derive the
product formula of the symmetrical parameterization for
SO(3). Next, we move on to the discussion on the symmetri-
cal parameterizations on the rigid body motions in the plane
and in 3D space, i.e., SE(2) and SE(3), and the possible
forms of the product formula in Section III. In order to stress
the advantage of using the symmetrical parameterization, we
compare the results of calculating relative motions obtained
by conventional representations and the symmetrical param-
eterization in Section IV. Finally we conclude in Section V.



II. SYMMETRICAL PARAMETERIZATIONS ON THE
ROTATION

As is well known, 3D rotations can be described by 3×3
real matrices that satisfy the following conditions

RRT = RT R = I3 and detR =+1

where I3 denotes the 3×3 identity matrix, the superscript T
denotes the transpose, and “det” means the determinant of a
3×3 matrix.

A. Euler-Angles Parameterizations for Comparison

In order to better understand the concept of the “sym-
metrical” parameterization, let us consider one of classical
parameterizations on the 3D rotation SO(3), Euler-angles
parameterization. The most popular choices of Euler angles
are the ZXZ and ZY Z angles, which are defined as

RZXZ(α,β ,γ) = Rz(α)Rx(β )Rz(γ); (1)
RZY Z(α,β ,γ) = Rz(α)Ry(β )Rz(γ) (2)

where Rx,y,z(θ) denotes the counterclockwise rotations about
the x, y, and z axes of a given coordinate system by the angle
θ , respectively. The ranges of Euler angles for these param-
eterizations are 0 ≤ α ≤ 2π , 0 ≤ β ≤ π , and 0 ≤ γ ≤ 2π .
Now let us investigate the inverse operation. Obviously, one
can obtain the inverse formula as (α,β ,γ)→ (−γ,−β ,−α)
because

(RZXZ(α,β ,γ))T = Rz(−γ)Rx(−β )Rz(−α).

From this, one might think that the ZXZ Euler angles are
symmetrical. However, one can readily find that the resulting
angles are no longer in the correct ranges as mentioned
earlier. Regarding α and γ , the situations are corrected by
changing −γ → 2π − γ and −α → 2π − α to match the
corresponding ranges. However, it is not clear how to put
−β back into the correct range. Similar issue exists in the
ZY Z Euler angles parameterization. Therefore, it is clear
that the Euler angles parameterizations are not “symmetrical”
in regard to the corresponding inverse operation, which we
seek.

B. Review on the Symmetrical Parameterization

Now, we present symmetrical parameterizations for 3D ro-
tation. We start with a symmetrical parameterization that has
been presented in engineering community [16], [17]. Before
we present the forms of symmetrical parameterization, let
us review an important special form of the rotation, which
we call the transference rotation matrix R(a,b), which is
explicitly defined as [6]

R(a,b) .
= exp

(
θab ·

â×b
‖a×b‖

)
(3)

= I3 + â×b +
(1−a ·b)
‖a×b‖2

(
â×b

)2
(4)
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Fig. 1. Symmetrical parameterization for a 3D rotation between two
humanoids

where a,b ∈ S2 (i.e., the unit sphere in 3D space). Here
exp(·) represents the matrix exponential. Note that θab should
be defined as the unique angle in the range [0,π] such that

sinθab = ‖a×b‖ and cosθab = a ·b.

This matrix transfers a to b such that R(a,b)a = b.
Some properties of this matrix R(a,b) can be found as [17]

(R(a,b))−1 = R(b,a) = R(−b,−a) (5)

and
R(a,−b) = R(−a,b) (6)

which can be shown from (4) and the elementary properties
of the cross product. Another important property is

AR(a,b)AT = R(Aa,Ab) (7)

where A ∈ SO(3) is an arbitrary rotation, and a,b ∈ S2 are
arbitrary unit vectors. This can be shown by applying (4)
and the classical kinematic equality

R(a×b) = (Ra)× (Rb).

Finally, it has been proven that the following transference
property holds [17]

R(a,b) rot(a,θ) = rot(b,θ)R(a,b) (8)

where rot(a,θ) denotes the rotation about the direction
determined by the unit vector a by an angle θ . In fact, this
rotation is equivalent to the matrix exponential exp(θ â). Here
â denotes the 3×3 skew-symmetric matrix corresponding to
a 3D vector a. The reverse operation is defined as (â)∨ = a,
all of which are the well known notations in the kinematics
community.

Now the explicit form of a symmetrical parameterization
introduced in [16], [17] is expressed as

R12(u1,u2,ν)
.
= rot(u1,ν/2)R(u1,u2)rot(u2,−ν/2). (9)



As depicted in Fig. 1, u1 and u2 can be any unit vectors in
S2. Note that u1 and u2 are respectively described from each
reference frame (frame 1 and 2), hence they should be treated
as 3×1 arrays of numbers with which we can perform cross
products.

Now let us consider the inverse of R12 as

R−1
12 = [rot(u2,−ν/2)]−1[R(u1,u2)]

−1[rot(u1,ν/2)]−1

= rot(u2,ν/2)R(u2,u1)rot(u1,−ν/2)
= R21.

(10)

In other words, inversion operation is simply written as

(u1,u2,ν)→ (u2,u1,ν),

or
(θ1,φ1,θ2,φ2,ν)→ (θ2,φ2,θ1,φ1,ν)

in its component form, which shows that the parameterization
is indeed symmetrical.

C. Possible Forms of the Symmetrical Parameterization

Note that (9) is not the only form of the symmetrical
parameterization on the rotation. In this section, we list up
possible forms of the symmetrical parameterization. One can
find that the following forms of the parameterizations for
R(u1,u2,ν) are also symmetrical:

rot(u1,−ν/2)R(u1,u2)rot(u2,ν/2) (11)
rot(u1,ν/2)R(u1,−u2)rot(u2,−ν/2) (12)
rot(u1,−ν/2)R(u1,−u2)rot(u2,ν/2) (13)
rot(u1,ν/2)R(−u1,u2)rot(u2,−ν/2) (14)
rot(u1,−ν/2)R(−u1,u2)rot(u2,ν/2) (15)

and

rot(u1,−ν/2)R(u2,u1)rot(u2,ν/2) (16)
rot(u1,ν/2)R(u2,−u1)rot(u2,−ν/2) (17)
rot(u1,−ν/2)R(u2,−u1)rot(u2,ν/2) (18)
rot(u1,ν/2)R(−u2,u1)rot(u2,−ν/2) (19)
rot(u1,−ν/2)R(−u2,u1)rot(u2,ν/2). (20)

Also another possible list is obtained by switching u1 and
u2 at the first and the third terms as

rot(u2,−ν/2)R(u1,u2)rot(u1,ν/2) (21)
rot(u2,ν/2)R(u1,−u2)rot(u1,−ν/2) (22)
rot(u2,−ν/2)R(u1,−u2)rot(u1,ν/2) (23)
rot(u2,ν/2)R(−u1,u2)rot(u1,−ν/2) (24)
rot(u2,−ν/2)R(−u1,u2)rot(u1,ν/2) (25)

and

rot(u2,−ν/2)R(u2,u1)rot(u1,ν/2) (26)
rot(u2,ν/2)R(u2,−u1)rot(u1,−ν/2) (27)
rot(u2,−ν/2)R(u2,−u1)rot(u1,ν/2) (28)
rot(u2,ν/2)R(−u2,u1)rot(u1,−ν/2) (29)
rot(u2,−ν/2)R(−u2,u1)rot(u1,ν/2). (30)

Note that (11) to (20) and (21) to (30) are mutually inverse,
which again shows that the list is indeed a set of the
symmetrical parameterization. The above list contains two
unit vectors and one angular parameter. Specifically, each
contains five parameters: θ1 and φ1 from u1, θ2 and φ2 from
u2, and ν . Considering that many of classical parameteriza-
tions on the rotation involve 3 parameters, we can always
fix one unit vector, say u1 = e1 (e1 = [1 0 0]T ), and then
describe the rotation with the remaining three parameters.
If one wants to move forward to include a non-fixed u1,
transference properties such as (7) and (8) can be used for
that matter.

On the other hand, one can also define

R12
.
= R(u1,u2,α,β )

= rot(u1,−α)R(u2,u1)rot(u2,β ).
(31)

When we consider its inverse, then it follows that

RT
12 = [R(u1,u2,α,β )]T

= [rot(u2,β )]
T [R(u2,u1)]

T [rot(u1,−α)]T

= rot(u2,−β )R(u1,u2)rot(u1,α)

= R(u2,u1,β ,α).

(32)

This shows that (31) is also a symmetrical parameterization
because the inversion formula is written as (u1,u2,α,β )→
(u2,u1,β ,α) which involves simple symmetric operation
(i.e., switching the parameters). This particular form of the
parameterization is useful in the product formula, which will
be discussed shortly.

Again, (31) is not the only symmetrical parameterization
form. By switching the role between u1 and u2 and between
α and β , including sign changes, we can obtain an extensive
list of possible forms. To list some of them, first by switching
α and β with signs, we can see that

rot(u1,α)R(u2,u1)rot(u2,−β ) (33)
rot(u1,−β )R(u2,u1)rot(u2,α) (34)
rot(u1,β )R(u2,u1)rot(u2,−α) (35)

are all symmetrical parameterizations on 3D rotations. Also
by switching the roles of u1 and u2, the additional list of
possible symmetrical parameterizations are obtained such as:

rot(u1,−α)R(u1,u2)rot(u2,β ) (36)
rot(u1,−β )R(u1,u2)rot(u2,α) (37)
rot(u1,β )R(u1,u2)rot(u2,−α) (38)
rot(u2,−α)R(u1,u2)rot(u1,β ) (39)
rot(u2,−β )R(u1,u2)rot(u1,α) (40)
rot(u2,β )R(u1,u2)rot(u1,−α). (41)

D. Product Formula

With the definitions of the symmetrical parameterization,
let us consider the product formula. In other words, we seek
to find the corresponding symmetrical parameters q3 given
two sets of symmetrical parameters, q1 and q2, as

R(q1)R(q2) = R(q3). (42)
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Fig. 2. A Schematic 3D rotations among three humanoids

Fig. 2 illustrates this situation. To that end, we can consider
forms such as (9) or such as (31). Since (31) is general to
include (9) as a special case, let us consider the following
form

R(a,b,α,β )R(b,c,β ,γ) = R(u,v,ϑ ,ϕ) (43)

and seek to find u,v,ϑ ,ϕ . Specifically, the left hand side of
(43) is written as

rot(a,−α)R(b,a)rot(b,β ) rot(b,−β )R(c,b)rot(c,γ)
= rot(a,−α)R(b,a)R(c,b)rot(c,γ)

One might think that R(b,a)R(c,b) = R(c,a), but this is
not true. In general this can be expressed as

R(b,a)R(c,b) = rot(a,θ1)R(c,a)rot(c,θ2) (44)

where θ1 and θ2 are functions of a, b, and c.
Now when we apply (8), then we obtain

R(c,a)rot(c,θ2) = rot(a,θ2)R(c,a) (45)

and
rot(a,θ1)R(c,a) = R(c,a)rot(c,θ1). (46)

Then (44) can be written as the forms

R(b,a)R(c,b) = rot(a,(θ1 +θ2))R(c,a) (47)

and
R(b,a)R(c,b) = R(c,a)rot(c,(θ1 +θ2)). (48)

Since we do not need to distinctively use θ1 and θ2, let
us define θ

.
= θ1 + θ2. Then we have the following simple

form
R(b,a)R(c,b) = rot(a,θ)R(c,a) (49)

which, in this case, θ can be obtained numerically by basic
matrix operations. The result of θ is

θ = ‖log∨
(
R(b,a)R(c,b)RT (c,a)

)
‖ (50)

where ∨ operation is defined previously, and log of a rotation
matrix is well defined [6].
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Fig. 3. Symmetrical parameterization of a planar rigid body motion
between two humanoids

After evaluating the value of θ , the expression of the
product formula can finally be obtained as

(43) = rot(a,−α)R(b,a)rot(b,β )rot(b,−β )R(c,b)rot(c,γ)
= rot(a,−α)R(b,a)R(c,b)rot(c,γ)
= rot(a,−α)rot(a,θ)R(c,a)rot(c,γ)
= rot(a,−(α−θ))R(c,a)rot(c,γ)
= R(a,c,α−θ ,γ),

(51)

thus, u = a, v = c, ϑ = α−θ , ϕ = γ .

III. SYMMETRICAL PARAMETERIZATION ON RIGID
BODY MOTIONS

In this section, we discuss a symmetrical parameterization
on rigid body motions, in the plane SE(2) and in 3D space
SE(3).

A. Symmetrical Parameterization on SE(2)

A symmetrical parameterization of planar rigid body mo-
tions was presented in [16], [17]. Here we present a brief
review on the definition.

Suppose there are two Humanoids in the plane (see Fig. 3).
The homogeneous transformation matrix for a planar rigid
body motion with the symmetrical parameterization is

H(φ1,φ2,r) = −cos(φ1−φ2) sin(φ1−φ2) r cosφ1
−sin(φ1−φ2) −cos(φ1−φ2) r sinφ1

0 0 1

 . (52)

Each parameter has the following interpretation. First, r is the
radial distance between the origins of two reference frames.
And φi (i = 1,2) denotes the polar-coordinate angle in each
coordinate system. Note that the relative orientation of frame
2 relative to frame 1 is computed as θ = π +φ1−φ2. This
renders θ to not appear in H(φ1,φ2,r).



When we compute the inverse of H(φ1,φ2,r), then first
one can see that the rotation part becomes(

−cos(φ1−φ2) −sin(φ1−φ2)
sin(φ1−φ2) −cos(φ1−φ2)

)
=

(
−cos(φ2−φ1) sin(φ2−φ1)
−sin(φ2−φ1) −cos(φ2−φ1)

)
,

and the translation part is computed as

− r cosφ1(−cos(φ1−φ2))− r sinφ1(−sin(φ1−φ2)) = r cosφ2

− r cosφ1(sin(φ1−φ2))− r sinφ1(−cos(φ1−φ2)) = r sinφ2

hence

[H(φ1,φ2,r)]−1 = −cos(φ2−φ1) sin(φ2−φ1) r cosφ2
−sin(φ2−φ1) −cos(φ2−φ1) r sinφ2

0 0 1


= H(φ2,φ1,r)

which proves that this parameterization is indeed symmetri-
cal.

B. Symmetrical Parameterization on SE(3)

Let us consider two reference frames attached to each
head of the humanoids in the similar situation as in Fig. 1.
The position and orientation of the second humanoid (frame
2) viewed from the first one (frame 1) is written as g12 =
(R12,r12u1)∈ SE(3), which can be expressed by the homoge-
nous transformation matrix as

H(g12) = H(R12,r12u1) =

(
R12 r12u1
0T 1

)
where the translation vector connecting the origins is de-
scribed by the spherical coordinates (i.e., r= ru with r∈R≥0
and u ∈ S2).

First, we seek a symmetrical parameterization of the form

H(u1,u2,ν ,r12) = H(θ1,φ1,θ2,φ2,ν ,r12)

=

(
R(u(θ1,φ1),u(θ2,φ2),ν) r12u(θ1,φ1)

0T 1

)
(53)

where ui = u(θi,φi) (i = 1,2). In other words, a spherical-
coordinate parameterization is used for the unit vectors.
Compared with SO(3) case, we need only one additional
parameter r12 which is the distance between the origins of
frame 1 and 2, because the information on the direction of
the translation is encoded in u1 and u2.

On the other hand, the position and orientation of frame
1 (the first humanoid) in the frame 2 attached to the second
humanoid becomes g21 =(R21,r12u2). Then by using the fact
that g12 ◦g21 = g21 ◦g12 = e, it follows that

g21 = g−1
12 = (RT

12,−r12RT
12u1).

Note that the vectors ui (i = 1,2) lie on the same line
connecting the origins of frame 1 and 2, although they
are defined in their respective reference frames and their
directions are opposite. In other words, the unit vector u1
is no longer an arbitrary fixed vector, unlike as in the case
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Fig. 4. Planar rigid body motions among three humanoids

of 3D rotation. Due to this fact, not all the symmetrical
parameterizations listed in the previous section hold for (53).
Specifically we choose

R(u1,u2,ν)
.
= rot(u1,±ν/2)R(u2,−u1)rot(u2,∓ν/2). (54)

Then by using (5) and (10), we obtain

−rRT
12u1 =−r rot(u2,±ν/2)R(u1,−u2)rot(u1,∓ν/2)u1

=−r rot(u2,±ν/2)R(u1,−u2)u1

=−r rot(u2,±ν/2)(−u2)

= r u2.
(55)

Hence the inversion formula for these parameters is written
as

(u1,u2,ν ,r12)→ (u2,u1,ν ,r12), (56)

or in the component form,

(θ1,φ1,θ2,φ2,ν ,r12)→ (θ2,φ2,θ1,φ1,ν ,r12).

Also when we choose

R(u1,u2,α,β )
.
= rot(u1,±α)R(u2,−u1)rot(u2,∓β ) (57)

then we have

−rRT
12u1 =−r rot(u2,±β )R(u1,−u2)rot(u1,∓α)u1

=−r rot(u2,±β )R(u1,−u2)u1

=−r rot(u2, ±β )(−u2)

= r u2.

(58)

Hence in this case, a symmetrical parameterization takes the
form as

H(u1,u2,α,β ,r12) = H(θ1,φ1,θ2,φ2,α,β ,r12)

=

(
R(u(θ1,φ1),u(θ2,φ2),α,β ) r12u(θ1,φ1)

0T 1

)
.

(59)

In total, symmetrical parameterizations such as (53) or (59)
are indeed symmetrical for the rigid body motions.



C. Product Formula for SE(2)
Given

H(φ13,φ31,r13) = H(φ12,φ21,r12)H(φ23,φ32,r23),

we want to obtain the corresponding symmetrical parameters
(see Fig. 4). First the left-hand side is written as

H(φ13,φ31,r13) = −cos(φ13−φ31) sin(φ13−φ31) r13 cosφ13
−sin(φ13−φ31) −cos(φ13−φ31) r13 sinφ13

0 0 1

 .

On the other hand, the right-hand side is computed as
follows. First the corresponding rotation part is computed
as(

cos(φ12−φ21 +φ23−φ32) −sin(φ12−φ21 +φ23−φ32)
sin(φ12−φ21 +φ23−φ32) cos(φ12−φ21 +φ23−φ32)

)
and the translation part is as(

r12 cosφ12− r23 cos(φ12 +φ23−φ21)
r12 sinφ12− r23 sin(φ12 +φ23−φ21)

)
.

From considering the magnitude of the translational part, we
obtain the following radial parameter as

r13 =
√

r2
12 + r2

23−2r12r23 cos(φ21−φ23). (60)

Also, from considering

r13 cosφ13 = r12 cosφ12− r23 cos(φ12 +φ23−φ21);
r13 sinφ13 = r12 sinφ12− r23 sin(φ12 +φ23−φ21),

we can obtain φ13 as

φ13 = Atan2(x13,y13) (61)

where
x13 = r12 cosφ12− r23 cos(φ12 +φ23−φ21)

y13 = r12 sinφ12− r23 sin(φ12 +φ23−φ21).

Finally by solving

cos(π +φ13−φ31) = cos(φ12−φ21 +φ23−φ32)

sin(π +φ13−φ31) = sin(φ12−φ21 +φ23−φ32)

we obtain

φ31 = π +φ13− (φ12−φ21 +φ23−φ32). (62)

In other words, (60), (61), and (62) constitute the product
formula for SE(2).

Note that, unlike SE(2), we do not have a simple form
of the product formula for SE(3) corresponding to (54) and
(57). One can resort to the inverse kinematics procedure as
in [17] instead.

IV. COMPARISONS BETWEEN CONVENTIONAL AND
SYMMETRICAL PARAMETERIZATION

The benefits of the symmetrical parameterization lie on
its “symmetry” properties in conducting inverse operations
and simple expressions in calculations. In this section, we
briefly compare the proposed symmetrical parameterization
with conventional one for rigid body motions, in particular,
by deriving product formulas in both SO(3) and SE(2) cases.

A. Comparison of Product Formulas on SO(3)

We first calculate the product formula for pure rotations
using Euler angle conventions. Let us consider three relative
frames A, B and C with fixed origins and calculate the relative
rotations using the ZY Z Euler angles. Let (α1,β1,γ1) and
(α2,β2,γ2) be the Euler angles describing rotations between
frames A and B and frames B and C respectively. Then, their
relative rotations become

RAB(α1,β1,γ1) = Rz(α1)Ry(β1)Rz(γ1)

RBC(α2,β2,γ2) = Rz(α2)Ry(β2)Rz(γ2)

Applying matrix product, we get the relative rotation between
frames A and C, which can be shown as

RAC(α,β ,γ) = Rz(α1)Ry(β1)Rz(γ1)Rz(α2)Ry(β2)Rz(γ2)
(63)

To get the the corresponding (α,β ,γ) set that describes
the relative rotation between frames A and C, we have
to figure out the explicit matrix expression for (63), and
extract the angles from it, which takes effort to do. Another
inconvenience for this procedure is that, for different Euler
angles representations, there are different expressions to
extract angles from the matrix. However, the symmetrical
parameterization saves us from extracting angles from the
complicated matrix, instead, gives a much simpler result
directly related to the input parameters.

Let (a,b,α,β ) and (b,c,β ,γ) be parameters that describe
relative rotations between frames A and B, and frames B
and C respectively. From (51), the relative rotations between
frames A and C can be parameterized as (a,c,α − θ ,γ),
where θ = ‖log∨

(
R(b,a)R(c,b)RT (c,a)

)
‖, which can be

computed efficiently.
Table I illustrates the comparisons of product formulas

between conventional and symmetrical parameterizations.

TABLE I
COMPARISONS OF PRODUCT FORMULAS BETWEEN CONVENTIONAL

AND SYMMETRICAL PARAMETERIZATIONS ON SO(3)

Method Symmetrical Conventional
(ZY Z Euler angles)

Parameters a,b,c,α,β ,γ α1,β1,γ1,α2,β2,γ2
Product Formula R(u,v,ϑ ,ϕ) R(α,β ,γ)Representations

Results

u = a; α = Atan2(r13,r23)
v = c; β = cos−1(r33)

ϑ = α−θ γ = Atan2(−r31,r32)
ϕ = γ

Note: θ = ‖log∨
(
R(b,a)R(c,b)RT (c,a)

)
‖,

and ri j is the i,j-th element in the resulting rotation matrix.

B. Comparison of Product Formulas on SE(2)

We now compare the product formulas on SE(2) by
first applying the conventional method. In polar coordinates,
let (θ12,φ12,r12) and (θ23,φ23,r23) denote the relative rigid
body motions between frames A and B, and frames B and
C respectively, where (ri j,θi j) pair describes the relative
position and φi j represents the relative rotation between the



two frames. Written in homogeneous matrix, the product can
be calculated as

H(θ13,φ13,r13) = H(θ12,φ12,r12)H(θ23,φ23,r23)

=

 cosφ13 −sinφ13 x13
sinφ13 cosφ13 y13

0 0 1


where,

x13 = r23 cosθ23 cosφ12− r23 sinθ23 sinφ12 + r12 cosθ12

y13 = r23 cosθ23 sinφ12 + r23 sinθ23 cosφ12 + r12 sinθ12

φ13 = φ12 +φ23
(64)

Considering the magnitude of the translation part, the
radial parameter can be shown as

r13 =
√

x2
13 + y2

13 (65)

Also, the angle for polar coordinates θ13 can be obtained
as

θ13 = Atan2(x13,y13) (66)

Equations (64), (65) and (66) constitute the product for-
mula by the conventional representation. Compared with
these, product formulas (60), (61) and (62), obtained by
symmetrical parameterization, give simpler expressions in
calculation.

Moreover, symmetrical parameterization has more advan-
tage in inverse expressions, that is, the relative motions of
frame A with respect to frame C. In conventional form,
although r31 and φ31 are easy to get, for θ31, we have to
calculate the matrix inverse of H(θ13,φ13,r13), where

H(θ31,φ31,r31) = H−1(θ13,φ13,r13)

=

(
R(φ13) t

0T 1

)−1

=

(
RT (φ13) −RT (φ13)t

0T 1

)
then, extract θ31 from the translation part.

However, by applying the symmetrical parameterization,
the only operation we need to do is to swap the posi-
tions of φ13 and φ31, and get the corresponding inverse
H(φ31,φ13,r31), since φ13 and φ31 are already defined as
viewed in frame A and frame C respectively, and r13 = r31
is just the distance between the two frame origins.

V. CONCLUSIONS

We presented and extended the concept of the symmetrical
parametrization introduced earlier for biomolecular docking,
where parameters are presented in a symmetrical manner
under the inversion. In particular, we investigated possible
forms of the symmetrical parameterizations on SO(3). We
derived the product formula for these symmetrical parame-
terizations on the rotation, which is important in describing
mutual relations among rigid bodies. We also investigated
the possible forms of the symmetrical parameterization on
the rigid body motions in the plane and 3D space, and

the product formula for planar rigid body motions. In the
end, we compared the expressions of product formulas using
conventional and symmetrical parameterization, showing that
the results are much simpler and more convenient to get by
symmetrical parameterization. Due to the symmetrical prop-
erty, this type of parameterization will greatly facilitate the
description of relative motions between robots that together
perform complex tasks, which emphasizes a high potential
in the application of humanoid robots.
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