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Abstract Interest in multi-robot systems has grown rapidly in recent years. This is
due in part to the reduced cost of such systems and in part to the increased difficulty
of the tasks that they can address. A multi-robot system is usually composed of sev-
eral individual robots such as mobile robots or unmanned aerial vehicles. Many prob-
lems have been investigated for multi-robot system such as motion planning, collision
checking and scheduling. However, not much has been published previously about the
calibration problem for multi-robot systems despite the fact that it is the prerequisite
for the whole system to operate in a consistent and accurate manner. Compared to the
traditional hand-eye & robot-world calibration, a relatively new problem called the
AX B = YCZ calibration problem arises in the multi-robot scenario, where A, B, C'
are time-varying rigid body transformations measured from sensors and X, Y, Z are
unknown static transformations to be calibrated. Several solvers have been proposed
previously in different application areas that can solve for X,Y and Z simultane-
ously. However, all of the solvers assume a priori knowledge of the exact temporal
correspondence among the data streams {4; }, { B; } and {C; }. While that assumption
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may be justified in some scenarios, in the application domain of multi-robot systems,
which may use ad hoc and asynchronous communication protocols, knowledge of
this correspondence generally cannot be assumed. Moreover, the existing methods
in the literature require good initial estimates that are not always easy or possible to
obtain. To address this, we propose two probabilistic approaches that can solve the
AXB = Y (CZ problem without a priori knowledge of the temporal correspondence
of the data. In addition, no initial estimates are required for recovering X, Y and
Z. These methods are probabilistic in the sense of viewing the sets {A4;}, {B;}, and
{C;} as samples drawn from underlying probability density functions. This is what
allows these methods to work in the absence of temporal correspondence. However,
measurement errors are not explicitly modeled, and so the results are sensitive to
the sort of noise that is ubiquitous in real world data. We therefore introduce ways
to add robustness to noise, including a hybrid method which combines traditional
AXB = YCZ solvers with the probabilistic methodology and an iterative method
for refinement to add robustness in the case of noisy experimental data. It is shown
that the new algorithm is robust to both noise and the loss of correspondence informa-
tion in the data. These methods are particularly well suited for multi-robot systems,
and also apply to other areas of robotics in which AX B = Y CZ arises.

Keywords Calibration - AX B = Y (CZ - Multi-Robot - Probabilistic Methods

1 Introduction

Many multirobot calibration problems can be formulated using the equation AX B =
YCZ, where A, B and C are known time-varying homogeneous transformations
from sensor readings, and X, Y and Z are unknown static relationships between two
target frames. For the dual arm system [22] shown in Fig. (1), the problem becomes
the hand-eye (X), robot-robot (Y) and tool-flange (Z) calibration problem where
robot 1 holds the camera and robot 2 holds the marker. For a team of mobile robots
[8] illustrated in Fig. (2), a triple hand-eye ( or camera-marker ) calibration problem
exists where each robot agent is “looking at” the marker on the next agent. In Fig. (3),
the problem of the serial-parallel hybrid robot system [25] is cast as the tool-gripper
(X), flange-base (Y') and camera-base () calibrations. The same mathematical mod-
eling also exists in co-robotic ultrasound (US) tomography where two hand-eye and
one robot-robot calibrations are needed [1].

Relatively little work has been done on AX B = Y (CZ calibration. To the best
of our knowledge, only Wang et al [22, 24] and Yan et al [25] have proposed sev-
eral algorithms for solving X, Y and Z simultaneously. Yan et al proposed an op-
timization approach and a Kronecker-product based approach towards calibrating a
serial-parallel manipulator whereas Wang et al presented an optimization method for
the calibration of a cooperative dual-arm system, both of which are formulated as the
AXB =YCZ problem.
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Fig. 1: The Hand-Eye, Robot-Robot, Tool-Flange Calibration of a Dual Arm System

Fig. 2: Triple Hand-Eye Calibration of a Multi-Robot System

1.1 Related Work

The AXB = Y(CZ problem first originated as an extension of the robot hand-eye
problem. The hand-eye calibration problem can be formulated as AX = X B, where
A and B are homogeneous transformations calculated from sensor readings, and X
is the unknown transformation from the mounted sensor (US probe, camera, etc.)
to the robot end-effector. Tsai [21] and Shiu [20] were among the first to solve
the AX = X B problem. Many other solvers have also been proposed in litera-
ture [2, 3, 4, 7, 10, 14, 18, 26]. The hand-eye and robot-world calibration problem
is an extension of the hand-eye problem, and is formulated as AX = Y B where
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X denotes the transformation between the sensor and the end-effector and Y de-
scribes the transformation between the robot base frame and the world frame. In
this formulation, A and B are the homogeneous transformations measured directly
from the sensors. Quite a few AX = Y B solvers have been proposed in literature
[9, 12, 13, 15, 16, 19, 27]. Most of the existing AX = X B and AX = Y B solvers
deal with the case where there is an exact correspondence between the data pairs A;
and B;. However, this is generally not true in real applications due to asynchronous
sensors or missing data. [2] and [16] proposed probabilistic approaches for solving
the AX = XB and AX = Y B problems respectively, and both of them show the
superiority of the probabilistic approaches over the traditional solvers when handling
data without a priori knowledge of correspondence. Ackerman and Chirikjian[2] han-
dled the data that is completely scrambled whereas Li et al.[16] more focused on
recovering the correspondence of shifted data streams using probabilistic methods
which can boost the performance of traditional AX = Y B solvers. Wang [22, 24]
and Yan [25] have proposed several AX B = Y CZ algorithms for solving X, Y and
Z simultaneously.

1.2 Contribution

This article is a substantially expanded and modified version of the authors’ work
in the conference paper [17] in which we proposed two “probabilistic” algorithms
for solving the AX B = Y CZ robot system calibration problem. Due to the differ-
ent physical properties of robotic systems, these two types of probabilistic AX B =
Y CZ solvers are built which greatly reduce the need for a priori knowledge of the
temporal correspondence between sensor data. We use the word “probabilistic” be-
cause the measured datasets { A;}, { B;}, and {C; } are each replaced with histograms
on the space of rigid-body poses, and normalized to be probability densities. That is,
while there are no random variables in this problem, the tools of probability and
measure theory can still be employed with great benefit. As novel contributions in
the present article, we develop a hybrid approach which combines traditional deter-
ministic AX B = Y CZ solvers and probabilistic estimates of rigid-body poses, and
introduce an iterative post-processing step to add robustness to measurement noise
in experimental data. The approach is simple and turns out to be very effective at
handling noisy data when there is partial knowledge of the correspondence.

The rest of this article is organized as follows. In Section 2, we introduce some
of the fundamental mathematical background. Section 3 describes in detail the for-
mulation of the two probabilistic AX B = Y CZ solvers. In Section 4, we perform
numerical simulations to compare the probabilistic and traditional AXB = YCZ
solvers, and show the effectiveness and robustness of the former. Comparison be-
tween the two probabilistic approaches are also performed to show their respective
desired application scenarios. Section 5 presents a new hybrid approach which com-
bines traditional solvers with probabilistic methodology to handle noisy data. Sec-
tion 6 develops a new post-processing step which iterates on the whole set of data
and demonstrates greater robustness to measurement noise. In Section 7, physical ex-
periments are performed, and the comparisons between probabilistic and traditional
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Fig. 3: Flange-Base, Camera-Base and Tool-Gripper Calibration of a Serial-Parallel
Manipulator

algorithms show that the former is more robust to the scrambled data and the itera-
tive solver recovers the unknown transformations more effectively. In Section 8, we
draw conclusions and point out future directions. Three appendices provide the full
mathematical justification for the presented algorithms.

2 Mathematical Background

Before going into the probabilistic solvers for the AX B = Y C'Z problem, we pro-
vide a brief introduction to the concepts of mean, covariance and convolution on the
special Euclidean group SE(3).

2.1 Preliminaries on the Special Euclidean Group

The special Euclidean group SF(3) is the space consisting of rigid body transforma-
tions of the following form:

H(R,1) = ((f’; i) € SE(3), )

where t = [t1,t,t3]7 € R3 is a translation vector and R € SO(3), the special
orthogonal group consisting of 3 x 3 rotation matrices with the group operation of
matrix multiplication. 7" denotes the transpose of a vector or matrix and H is the
symbol for a group element in S E(3). The properties of the operation of matrix mul-
tiplication H (R, tq)H (Rp,t,) = H(Ry Ry, Raty + L) together with the analyticity
of the underlying space makes SF(3) a six-dimensional Lie group.

To every Lie group, G, consisting of elements {g}, there is an associated Lie alge-
bra, &, consisting of elements { X }, which is the tangent space of the Lie group at the
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identity element. In the neighborhood of the identity, any g € G can be parameterized
as

g = exp(X) 2

where X € & and exp is the exponential map, which for matrix Lie groups such as
SO(3) and SE(3) is simply matrix exponentiation. For these two groups, the expo-
nential map is surjective, and it is possible to define its inverse (i.e., the logarithm)
uniquely except for the set of measure zero corresponding to rotations by an angle of
m [5, 6].

The Lie algebra for SO(3) is

s0(3) = {N] 2 =0T e R¥*3}. 3)
Specifically,
0 —Ww3 W2
== ws 0 —w | €s0(3) 4
—Wo W1 0
where w = [wy,ws,ws]T € R? and ~ is called the “hat” operator that converts

a three-dimensional vector into a 3 x 3 skew symmetric matrix. The inverse “vee”
operation V does the following
2V =uw. (5)

Any rotation matrix can be parameterized as R = exp® where ||w| < 7, and
log R is uniquely defined as long as ||w|| < 7. In the probabilistic formulations that
follow, the set of measure zero corresponding to ||w|| =  is inconsequential and so
no distinction is made between SO(3) and SO~ (3), which is SO(3) depleted by the
set {expW | ||lw] = 7}.

For the Lie algebra of SE(3), the following expression can be evaluated for any

5 = [51752753764755756]T S RG:

0 —& & &

> | &8 0 =& &

€= e 6 0 & € se(3). (6)
0O 0 0 O

This defines the “hat” operator for se(3) as  ~: R® — se(3). This maps a six-
dimensional vector to its corresponding Lie algebra element. The “vee” operator does
the reverse. The use of the hat and vee notation to mean two different things for so(3)
and se(3) should not be a source of confusion, because the case under consideration
is always clear from the object to which they are applied.

Any H € SE(3) can be parameterized as H = exp(£) where the first three
entries of ¢ are contained in a solid closed ball of radius 7 and [¢4, &5, &]T € R3.If
the discussion is restricted to the open solid ball, then the result of the exponential
map is SE.(3), which is SE(3) depleted by a set of measure zero. Technically,
the logarithm can be defined uniquely only on SE.(3). But the distinction between
SE(3) and SE,(3) can be blurred when integrating over SE/(3), and it is acceptable
to compute ¢ = log”(H) € R for all H € SE(3) by ignoring any contributions
from SE(3) — SE.(3) in integrals.
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The adjoint for SF(3) is defined as

Ad(H(R,t)) = (;; %’) € RO*® @)

where £ € 50(3).
If ¢ € RS is partitioned as & = [wT, vT]7T, then adjoint for se(3) is defined as

ad(€) = (“’ (033> € R6*6, (8)

U W
The relationship between ad and Ad is
expad(§) = Ad(exp§). )

The following identities will be used later:

RT 0
Ad(H™') = Ad™Y(H) = (—ET\tRT RT> 10)
and
Ad(H,)Ad(Hs) = Ad(H, H>). (11)

2.2 Probability Densities on SFE(3)

There is a unique and correct way to define integration on SE(3) called the “Haar

measure” denoted as dH . In particular, if R is expressed in ZXZ Euler angles (v, 3, 7),
then the Haar measure can be written as dH = sin 8 da df dy dt; dts dts to within an

arbitrary scale factor. In this context, the convolution of two well-behaved functions

can be defined as [5, 6]:

(% f2)(H) = /S o B ) a1 (12)

where K, H € SE(3). The integral over SE(3) can be expressed in various coordi-
nates and here we choose the exponential coordinates. The six-dimensional integral
over SFE(3) and its measure d K expressed in these coordinates can be found in [23].

As it will be used in later sections, we define a Dirac delta function on SE(3),
d(H), by the properties

(f *0)(H) = FUO)S(K ™ H) dK = f(H), (13)
SE(3)
and
/ §(H)dH = 1. (14)
SE(3)
Informally, we can think of 6(H) as an infinite spike of the form

S(H) = {o fH AL (15)
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for any H € SE(3), and I; denotes a 4 by 4 identity matrix. Given A € SFE(3), the
corresponding shifted version of the Dirac delta function can be defined as d4(H) =
S(ATTH).

In the probabilistic approaches to be introduced, all SE(3) elements will be rep-
resented by their mean M and covariance Y. Given a probability density function
(PDF) as f(H), its mean M and covariance X' are defined to satisfy the following
equations [5, 23]:

/ log(M~'H)f(H)dH = Q4 (16a)
SE(3)

r= log” (M~ H)[log¥ (M~ *H)|* f(H)dH (16b)
SE(3)

where Q4 denotes the 4 x 4 zero matrix.
Given a PDF describing {A;} as f4(H), where ¢ = 1,...,n, the corresponding
discrete versions of the sample mean and sample covariance are:

Z log(M ;' A;) = Q4 (17a)
Zlog (M A)log” (M1 AT (17b)

Numerically, given a set of A;, the mean M 4 can be solved in an iterative manner
as described in [23]. In the context of AX B = Y CZ calibration, M g and M can be
computed in a similar fashion, and X4, X' and X' are straightforward to compute
given M 4, Mp and Mc.

Given two PDFs f; and f on SE(3), the sample mean and sample covariance
of their convolution (f; * f2)(g) can be approximated to a high order of accuracy as
[23]:

Mo = MM (18a)
Diwg = Ad(My )2 AdT (My ) + 25 + F(A, B) (18b)

where F'(-;-) is defined as

Bad ) Aij

ux\»ﬂ

4,5=1

6
T T
BjJA+ AT E B

4,j=1

1\9"_‘

6
J:
1 6
T T
—2 Aj;1B+ B ZA;j] (19)
i,j= 1
{ 7] 1
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with A = Ad(M; '), AdT (M), B = s, and

with E; denoting the ~ of the i*” unit basis vector in RS,
The F(-;-) function is bi-linear in the sense that

FaS) + o' 5, %) = aF (51, 55) + o' F(X,, 55) 22)
and
F(21, 8% + B'Y5) = BF (21, Xo) + B'F (X1, X5) (23)

for arbitrary constants «, o, 3, 3’ and arbitrary symmetric matrices Xy, X, X, X%.
In particular, if one of these constants is zero, then

F(0,%,) = F(£,,0)=0 (24)

and if both fy(H) and fo(H) are “highly-focused” in the sense that || X;| < 1 and
| X2 < 1, then F'(X, Xo) = Q.
For the three-fold convolution, the mean and covariance can be written as:

M1*2*3 = M1M2M3
and

D1aayes = Ad™ (Mo M3) X1 Ad™T (Mo M3) + Ad™" (M3) £, Ad ™" (Ms)
+AdH(M3)F (Ad™ (Ma) 21 Ad~ T (M) 5 £5) Ad~T(M3) + X5
+F (Ad~' (Mo M3) 21 Ad™ " (Mo Ms) ; X5) +
F (Ad™'(M3) X5 Ad™" (M3) ; X3)
+F (Ad™" (M3)F (Ad™' (M2) 21 Ad™ T (M) 5 £5) Ad™ " (M3) 5 3) .

By the properties of F'(-,-), if either Xy = Xy = Q or Xy = Y3 = O, then all
the F'(-, -) terms in the covariance 1 .0.3 vanish (please see Appendix B for detailed
derivation). This will be useful in our approach to solving the AX B = Y C'Z problem
described in the following section.

3 Problem Formulation

In this section, we formulate the two probabilistic approaches for the AXB =Y CZ
problem. They share a common theoretical underpinning but are designed for dif-
ferent types of robotic systems. Note that for the three types of robotic systems de-
scribed in Fig. 1, Fig. 2 and Fig. 3, different types of constraints can be applied onto
the datasets {A;}, {B;} and {C;}. For the multi-mobile robotic system, any two
robot agents can remain static with the third agent moving freely. Or equivalently,
any one of A, B and C can be fixed without fixing the other two. For the dual-arm
and serial-parallel robotic systems, only A or C' can be fixed without fixing the other
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two. This is because B describes the transformation between the marker frame and
the camera frame, while A and C are solely determined using the forward kinemat-
ics of the robots. Hence it is very difficult to keep B constant while varying A and
C. We employ the above physical properties of the systems to build the fundamental
framework for the probabilistic approaches.

3.1 Mathematical Approach

Given a large set of triples (A;, B;,C;) € SE(3) x SE(3) x SE(3) where i =
1,--- ,n, the following equation can be obtained:

A XB; =YC,Z. 25)

Using the shifting property of Dirac delta function, we have

(64, % 0x *0p,)(H) = 8(B; ' X 1A H) (26a)
(8y * 6, ¥ 0z)(H) = 6(Z*C; 'Y 1 H). (26b)

The above two equations can be combined to replace Eq. (25), with
(5,41*5)(*531)(}]):(51/*507*52)([‘[) (27)

An analogous approach was taken previously in the AX = XBand AX =Y B
problems [2, 16]. Converting the original equations to functional equations has two
advantages. First, it allows them to be summed over all values of ¢ because it always
makes sense to add scalar functions, whereas it does not make sense to add group
elements. Second, it allows us to use the covariance propagation formulas presented
earlier. The difference between the AX B = Y CZ problem and the others is that A;
and B; are on the same side of the equation. Therefore, if data were being recorded
in an uncontrolled way, the approximation

%Z% % 0x % 0p, ~ <225A> * Ox * <i253>

would need to be made on the left-hand side of Eq. (25). Such an approximation can
be justified if the covariances 3’4 and X' are small, but there is no need to resort to
this approximation, because during the calibration process we have control over A,
B, and C, and can choose to hold one of these fixed.

The relationship in Eq. (27) obviously still holds if we fix A; to be a constant
transformation A:

(ba*xdx x0p,)(H) = (0y *d¢, x07)(H). (28)

Fixing A (or B or C) while letting the other two sensor streams take various values
is practical by employing the physical properties of the robotic systems as described
above. We only provide the derivation for fixed A, as the derivations for fixed B or
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C follow in a similar way, and the results for all three cases are summarized later in
Table 1. Next, define the PDF of { K} as:

Fre(H) = 3 b, (H) (29)
i=1

where K € {A, B, C}. If we use the bi-linearity of convolution, add n instances of
Eq. (??) and substitute Eq. (29) into the summation, the Eq. (32) can be achieved
with intermediate steps shown from Eq. (30) to Eq. (31):

lzn:(é *0x %0 )(H)—li:(é * 8¢, * 07)(H) (30)
o A*0x *0p, = y *0c; ¥ 0z .

i=1 i=1

Then by employing Eq. (18a) twice, we get the mean equation of AXB =Y(CZ
as
MaMxMp = MyMcMyz. (33)

Because X, Y, Z and A are all single elements of SE(3), Mx = X, My =Y,
My =72, My =Aand Xx =0, Yy =0, Yz =0, ¥y = 0. Eq. (33) then
becomes

|AXMp =Y McZ| (34)
The covariance equation is obtained by first computing X' 4, x and then X'y, x.p

as:
Dawxsp = Ad(B™HAd(X X, AdT (X HAdT(B™Y) + ¥ (352)
=Xp (35b)

Similarly, Yy .c«z can be obtained as:

Syscez = Ad(Z 1) EcAd" (Z71) (36)

Therefore, by equating Eq. (35a) and Eq. (36), the covariance equation for AX B =
Y CZ with A fixed becomes

Yp=Ad(Z Y)Y AdY (Z7Y) (37)

Eq. (34) and Eq. (37) are the fundamental tools to solve for the unknowns without a
priori knowledge of the correspondence among sensor measurements.
In order to decompose Eq. (37) into sub-equations, define the covariance matrix

1 2
Yy = (EH EH) € R6x6 (38)

as
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No. Representation Fixing Simplified Sig-Rot
1 AXB=YCZ A ElB _ REEERZ
2 AT'YC=XBz™ !
3 Bz 'CT'=X"'A"Y 1 pT T 1 o7
B Rc Xt Ri = Ry RaX 4Ry Ry
4 B'X'AT'=z7tcTly !

—1 —1 _ —1 —1
ey A=ZBTX c Rp¥LRL = RL XY Ry
CZB™!' =Y 'AX

Table 1: The simplified Sig-Rot equations after fixing A, B or C

where H = A, B,C and X%, € R3*3., To simplify the notation, we define U = {.
Substitute Eq. (38) into Eq. (37) and one gets the upper left block as

Yp =R} XERz, (39)
and the upper right block as
Y% =RLELRZUL + RLEER, (40)

For convenience, we call Eq. (39) the Sig-Rot equation and Eq. (40) the Sig-Trans
equation. Sig-Rot equation contains only the rotational information from the un-
known matrices while Sig-Trans equation contains both the unknown rotations and
translations. These two equations are not sufficient to solve the problem since Eq. (39)
contains only Rx and Rz, and Eq. (40) contains only ¢£x and ¢z in addition to the
above two rotations, whereas Y is “lost” in the covariance equation. However, it
turns out that by rearranging the order of X, Y, Z and fixing different sensor data
(A, B, C), similar equations to Eq. (39) and Eq. (40) can be obtained to solve for the
unknown transformations.

There are a total of six variations of AX B = Y CZ formulations. If we write
AXB=YCZas AXBZ 'C~1Y ! =, premultiply it by A~! and postmultiply it
by A on both sides of the equation, we have X BZ~1C~'Y ~' A = I which “moves”
A from the left to the right. The same operation can be done in turn for X, B, Z~!,
C~!and Y ! and these give a total of six variations as shown in the “Representation”
column of Table 1. For simplicity, we only list the Sig-Rot equations and leave out
the Sig-Trans equations. In the next part, we present the frameworks for solving the
calibration problem for each of these two types of systems.

3.2 Two Versions of AXB = YCZ Calibration

Before presenting the two versions, we present Theorem 1 to simplify the computa-
tion of the mean and covariance of H ~*.

Theorem 1 If the mean and covariance are M and X for a PDF f(H), then the
mean and covariance for f(H~1') are M~ and Ad(M)X Ad™ (M) respectively.
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Please refer to the Appendix A for the proof. Theorem 1 provides a simple way to
calculate the mean and covariance of f(H 1), which is very useful due to the fre-
quent calculations of PDFs on the inverses of {4, B, C'}. Another equation extracted
from Eq. (81) is

Yl = Rg X RE. (41)

which is useful when converting the Sig-Rot equations into the simplified versions
shown in the last column of Table 1.

3.2.1 Version 1

For the dual-arm and serial-parallel systems, we show that X, Y and Z can be re-
covered without a priori knowledge of the correspondence between the data. This
is achieved by fixing A and C' to give datasets I and II respectively. When A is
fixed, or equivalently A = Ay, datasets {By;} and {C;} can be measured where
1,7 = 1,--- ,n. According to Table. 1, we have

Yh, =R,Y4, Ry 42)

Remember that the above equation is achieved using X'y, = O. However, this
zero constraint on X4, applies to neither Rep.3 nor Rep.6, where Rep.3 and Rep.6
denote the No.3 and No.6 Representation equations in Table 1 respectively. When
A is fixed to Ay, the right hand side of Rep.6, namely Y =1 A; X, becomes a single
“point” on SE(3), whereas both Cy; and BI_j1 are PDFs on SE(3). The correspond-
ing convolution equation of Rep.6 becomes

(fC’I*(SZ*fB;l)(H):((SY*I *5AI *(5)()(['[) (43)

which does not hold because the convolution of PDFs is a general PDF instead of a
Dirac delta function. Therefore, the underlying constraint of every convolution equa-
tion is that there should be at least one non-trivial PDF on both sides of the equation,
and we call it the balanced-PDF constraint. This constraint simply means that there is
a sufficiently rich set of calibration motions so that those covariances corresponding
to varying quantities are full rank, and that the the choice of quantities being fixed
during each segment of the calibration process are complementary. For example, if
A is fixed and and B and C are allowed to vary, this does not provide independent
information as compared to holding B fixed and allowing A and C' to vary. We either
hold A or B fixed, and then hold C fixed. Other solvers also require a rich enough set
of input data to function.

As shown in [2], 2}3 and Zé have the same eigenvalues due to the fact that
Eq. (42) is a similarity transformation between X'} and X},. Calculate the eigende-
composition of X and ¢ as X'} = QpAQE and X} = Qo AQL where A denotes
the diagonal matrix. Substitute these two equations into Eq. (42), and we have

A=QLRL,Qc AQERZQp = QAQT. (44)
Q
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According to [2], the special structure of Eq. (44) gives four solutions for Q. Thus,
we also get four candidates of Rz as:

Rz = Qc, QQ%,- (45)

For the translation part ¢z, Eq. (40) can be simplified as
Tk, = RyX4,RaUG + Ry 52, Ry (46)

and t; = Uy can be solved directly.
Similarly, when fixing C = Cry, X, = Zcﬁl = O, the Sig-Rot equation of
Rep.6is
E}BI_II =RYY) Rx. (47)
Recall that this leads to an equation with structure similar to Eq. (44) and so Q has
four possibilities, and the four candidates of Rx can be calculated as

Rx = Qa,,9Q} (48)

There are two possible methods to recover Y. One method is to apply X} = O
to Sig-Rot.2 to get

RLRLYL \RyRo =R, .\ YERz, (49)

and hence we obtain a total of sixteen candidates of Ry that are based on the candi-
dates of Q and Ry:

Ry = Qa-1QQLRZRE. (50)

The other method is to employ the mean equations to recover Y using the candidates
of X and Z as

Y = A XMp, Z~"M;] (51)

and

Y = Ma,, XMp,, Z7'Cr} (52)

Hence the second approach gives a total of 16 + 16 = 32 candidates of Y. When
numerically simulating the two approaches above, the second approach is better in
terms of generating candidates of Y that are closer to the ground truth, whereas the
first one is more likely to result in candidates far from the true Y.

The solution for ¢t 7 and ¢ x becomes trivial once Rz and Rx are known. Using the
second approach to compute Y, we will have a total of 4 x4 x 32 = 512 combinations
of {X,Y, Z}. In order to filter out the best combination among the 512 choices, the
two datasets can be used to minimize an objective function. For simplicity, let M, =
AIXiMBI, MRI = )/jMCIZk’ ML” = MA”X,'MB” and MRU = }/jC]]Zk.
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It turns out that the objective function is critical in getting an optimal X,Y, Z
consistently out of the possible 512 candidates. We tried a few functions and found
that this function

min||log” (R}, Rt )2 +|log” (Riy,  Ratp,, )l

(53)
w [ty = tag, |2 +w - [[ta,,, — tag,, ll2

wherei =1,...,4, j=1,...,4,k =1,...,32 has the highest success rate of pick-
ing the optimal X, Y, Z. Here w is the weighting factor and can be varied depending

on the precision requirement on rotation and translation. Different X, Y, Z will be
selected given different w, and we settled on w = 1.5 for the simulation.

3.2.2 Version 2

For the multi-robot hand-eye calibration problem, a less restrictive approach exists to
solve for X, Y and Z. In addition to fixing A or C, we can also fix B, and this will
produce three datasets that are labeled as follows.

Dataset I: A = Ay with {By;} and {Cy;}

Yk =RLYLRy. (54)
Dataset II: B = By with {Arr;} and {Crr;}
Yt =RLYL . Ry. (55)
Dataset IIIl: C' = Cyyy with {A777;} and {Brrz;}
Yho = RY Y Rx. (56)

Under this situation, X, Y and Z are solved independently and there are a total
of 4 x 4 x 4 = 64 combinations of solutions. By letting My,,,, = Ma,,, X;Mp,,,
and Mg,,, = Y;Cr11Z), we can form the following objective function using all 3
datasets:

min||log" (R, Rasw 2 + 108" (RY,, Rasa)lle

1log” (Riy,,, Batn,, Mz +w - [ftar,, — targ, |2+ 57

w-ltmy,, —tup,, |2 tw-lltng,,, —tmeg,,, |2
wherei=1,--- 4, j=1,--- 4andk=1,--- 4.

4 Numerical Comparison between Probabilistic and Traditional Methods

In this section, we compared our probabilistic approaches numerically with the ex-
isting methods in the literature. For convenience, we called the two versions of the
probabilistic method presented previously Probl and Prob2 respectively. In [25], two
approaches were proposed for solving the AX B = Y CZ problem: one is called the
DK method while the other is the PN method. In [22], a simultaneous AXB =Y (CZ
solver was introduced and we call it Wang in this article. Note that all of the three
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Fig. 4: Rotation/Translation Errors in X, Y, Z v.s. scrambling rate for 10 trials and
100 measurements

methods in the literature require a priori knowledge of the exact correspondence be-
tween the datasets {A;}, {B;} and {C;}, and in this section we refer to them as the
“traditional methods”. We performed numerical simulations on both the traditional
and probabilistic methods to show that: 1) probabilistic approaches showed superior
performance when dealing with data that has little or no correspondence compared
to traditional solvers; 2) Prob2 performed better than Probl when the former had
complete datasets.

There are several things to pay attention to when comparing the probabilistic
approaches with the traditional methods. Firstly, PN is an unconstrained nonlinear
optimization algorithm which requires multiple initial guesses of X, Y and Z to
achieve an almost global minimum solution. Secondly, Wang is a least-squares-based
search algorithm that requires good initial guesses of at least two of Rx, Ry and
Rz. Thirdly, both of them are simultaneous approaches meaning that none of A,
B or C needs to be fixed during the calibration process. Lastly, DK is a separable
method requiring A or C' to be fixed during the calibration process. However, no
initial guesses are needed to obtain the final result.
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Fig. 5: Rotation/Translation errors v.s. standard deviation of measurement data for
r =1% and oyeise = 0

4.1 Data Generation and Error Metrics

In order to compare all of the five AX B = Y (CZ solvers together, we generated the
simulated datasets as follows. First, we fixed A such that A = Ay, and {By;} are
given by

B[i = exp(éi)Bm (583)
5 € N(0; X) C RS (58b)
where the mean ;1 = 0 € se(3), the covariance matrix X = oguulls € R6*6 and

1 =1,2,...,100. The hat operator " converts a 6 by 1 vector into its corresponding
Lie algebra in se(3). Given the ground truth of X, Y and Z, {C};} is generated by

Cri=Y 'A;XBZ™*, (59

and we call this dataset I.

Then, we generated dataset IT where we fixed C' such that C' = C, and generated
Byr; and Ay, in a similar fashion:

Brri = exp(0i)Br1o (60a)
A =YCrZBri X! (60b)
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Fig. 6: Rotation/Translation errors v.s. standard deviation of noise applied to the data
for r = 1% and 0 gaa = 0.02

Lastly, dataset III was obtained by fixing B such that B = Byyy, and {Asrr;},
{Cr11:} were given by

Aqrri = exp(0i)Arrr10 (61a)
Criri =Y "Ai XBZ™t. (61b)
In each dataset, the number of measurement data for A, B, C'is 100,1.e.7 = 1,...,100.

Note that there were a total of three datasets but only the first two could be applied on
DK and ProbI methods, but all three sets could be used by PN, Wang and Prob2 meth-
ods. In order to compare the methods, the datasets being passed into each method are
indicated by checkmarks in Table 2. The recovered X, Y and Z were compared with
the actual transformations using the following metrics for the errors in rotation and
translation:

Error(Ryg) =|| IOgV(RESO,wdRHm) I (62a)

Error(ta) = o = tre || /| T | (62b)

where H = XY, Z.
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Dataset Probl  Prob2 Wang PN DK
I Ar ABri},{Crn} v v v v v
I Cr1,{Brr1i}, {Arni} v v v v v
Il Brrr,{Arrr:i},{Crrri} X v v v X

Table 2: Datasets used on each method

4.2 Simulation and Discussion

To compare all the five algorithms comprehensively, we performed numerical simu-
lations by varying

1. the scrambling rate r,
2. standard deviation oy, for generating the measurement data,
3. noise level opgige-

For each set of conditions, we ran 10 trials and plotted the average error of the com-
puted X, Y, Z from the true values. For experiments (2) and (3) the range of the
errors were very big across all the methods. Hence we used the logarithm scale for
the vertical axis in Fig. (5), Fig. (6) and Fig. (7).

First, given the three sets of { A}, {B} and {C'}, we scrambled r percent of the
dataset By;, Arri, Crrri where 1 = 0%, 20%, 40%, 60%, 80%, 100%. This means
that r percent of the elements in each set have been scrambled by a random permuta-
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tion. Since these permutations are random and include the possibility of leaving some
of the r percent of the data in the correct temporal correspondence, they changed the
order of up to r percent (rather than the full » percent) as compared to the original
unscrambled data sequence. This is why the error plots for the method that assumes
correspondence are not monotonically increasing. This is just one way of generating
the data that doesn’t have the complete correspondence information. There are also
other situations such as missing data and asynchronous data that are not introduced
here. We set 04a, = 0.02 to generate the original datasets A, B and C. 10 trials were
run for each algorithm at each scrambling rate r, and the average errors in rotation
and translation were plotted as in Fig. (4). It can be seen that the rotation and trans-
lation errors of both Probl and Prob2 remain close to zero despite the scrambling
rate r increasing, while the errors of DK, PN and Wang either diverged quickly or
blew up in the beginning. This showed the superior performance of the probabilistic
approaches when dealing with data streams that had missing correspondence infor-
mation. In addition, no initial estimates of any kind were needed to calculate X, Y
and Z.

Next, we varied the datasets gy, = {0.02,0.04,0.06,0.08,0.1} and r = 1%.
As shown in Fig. (5), as the standard deviation og,, increased, both the rotation and
translation errors increased. This was consistent with the assumption on the datasets
that they should be “highly focused”. Moreover, Prob2 gave smaller rotation and
translation errors compared to Probl, when all three datasets were available. This
meant that although Probl can be applied to a broader scope of robotic systems,
Prob?2 is preferable if the system allowed the acquisition of complete datasets. This
is important because candidates of Y can affect the picking of both X and Z. If no Y
is close to its ground truth, it is possible to pick the wrong X and Z even when there
are some candidates very close to their ground truths. Besides, the performance of
the probabilistic methods in general are comparable to or better than the traditional
methods even when the scrambling rate is as low as 1%.

In the real world, data gathered from experiments are usually noisy, and it is
interesting to see how the five algorithms perform with noisy and scrambled data.
In Fig. (6) and Fig. (7), we fixed the standard deviation for generating the datasets
as Odgaa = 0.02. For a homogeneous matrix H, we apply noise with zero mean
and standard deviation oy = {0, 0.002,0.004, 0.006,0.008,0.01} to get a noisy
Hpoise = Hexp(6), § € N'(0; X), where the covariance matrix ¥ = opoisel € R6¥6.
The scrambling rate in Fig. (6) is r = 1% and the scrambling rate in Fig. (7) is
r = 10%. There are several observations from these two figures.

1. Probabilistic methods deteriorate relatively faster than the traditional methods
when the scrambling rate is very low, in this case r = 1%.

2. The probabilistic methods become closer or much better than the traditional meth-
ods when the scrambling rate increases from 1% to 10%, despite the effects of
noise.

3. For traditional methods, the scrambling rate was the dominant factor on the errors
of the solved X, Y and Z when it is large enough. As in Fig. (7), when r = 10%,
the performance of the traditional methods only fluctuated within a small range
despite the increasing noise.
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5 A Hybrid Approach to Handle Noise and Lack of Correspondence
5.1 Algorithm Formulation

As can be observed in Fig. 6 and Fig. 7, the two probabilistic approaches deteriorate
quickly as the noises on the sensor measurements increase. This is reasonable because
the applied noises becomes more and more comparable to or even on the same scale
of the sensor measurements themselves. In practice, one has to keep the noise level
really low in order for Probl and Prob2 to work well. To solve this problem, we
seek to introduce multiple clouds of sensor measurement cluttered around different
means instead of just one. This is logical because the perturbation of the noise on the
means of the data cloud is much smaller compared to its influence on each sample
point of the cloud. To avoid the confusion of notation, we use A;; to represent the
new sets of data measurements. ¢ is the index of the sequence of all the point clouds
where: = 1,...,n,, 7 = I, 11,111 indicates the types of motion constraints when
gathering data and k represents the k;; individual data in the corresponding point
cloud. For consistency, we use the Arabic numbers for the j index instead and one
has 7 = 1,2, 3. The algorithm is described as the following work flow:

My11 XMp11 =Y Mo Z
Mp12XMpi12 =Y Mc12Z
Ma13XMp13 =Y Mci13Z

Map 1 XMpp1=YMcp 12
Mpn 2XMpn,2 =Y Mcp, 22
MAnSSXMBnSS = YMCnSSZ

1
Traditional AX B = Y CZ Solver

where M;;, Mp;; and Mc,; are obtained as in Eq. (17a), denoting the mean of
the 44, cloud under the j;;, motion constraint. These 3n equations can be fed into
Wang or PN method to solve for X, Y and Z in a simultaneous manner. The overall
formulation of the solver is very simple and straightforward, but it turns out to be
very effective in handling both the noise and incorrespondence in the data.

5.2 Numerical Comparison

In this section, we picked Wang method as the traditional solver for the hybrid method
and compared it with Probl and Prob2 methods. For a comprehensive study, we
compared these three solvers against 0 4,¢q, Tnoise and ng. We adopted the same way
to generate the data cloud as in Section 4.1 except that a number of ng clouds are
needed instead of one for each case of motion constraint. In Eq. (64), B;1¢ denotes
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Fig. 8: Rotation/Translation errors in X, Y, Z v.s. 0p0ise for 20 trials and 50 measure-
ments with ng = 4 and 0444, = 0.02

the initial B for generating the i, data cloud under case I. Data scrambling within
each point cloud is not needed because none of the probabilistic or hybrid methods
use this information for solving the unknowns. To better reflect the noise level, the
data noise is set as Opoise = Tnoise * Tdata Where 7,0ise 1s the percentage of noise on
Odata- The same error metrics were used for evaluating the errors of the solved X, Y
and Z.

Bilj = exp(éj)Bﬂo (643)
§; € N(0; X)) C R® (64b)

The numerical simulation results can be seen as in Fig. (8 - 11). Note that the y
axes in Fig. (8) and Fig. (9) are in logarithm due to the large range of the errors.
In Fig. 8, the noise level ry,0i5¢ 18 Tnoise = {0%, 2%....,10%}, the number of sets
of data clouds is n; = 4, and the standard deviation used for generating each no-
noise cloud is 044t = 0.02. A total of 50 points were chosen for each data cloud.
20 trials were run for each combination of parameters and the averaged errors were
plotted. It can be seen that Probl and Prob2 methods diverged quickly as the 7,45
went up while the hybrid method maintained a relatively low level of errors. Fig. (9)
showed that the errors of hybrid method decreased very quickly as the number of
data set ng incremented. The hybrid method is competent or even better than Probl
and Prob2 when 044, = 0.1 and 7,,0;s¢ = 0. This behavior is a reflection of the
property of the traditional AXB = Y CZ solver which demands more data with
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data cloud for 20 trials and 50 measurements with 7,,,;5c = 1% and ng, = 3

correspondence. However, the sets of means of A, B, C' fed into the solver do not
have the exact correspondence, since they are the “average” of the corresponding
data cloud. Fig. (10) and Fig. (11) showed the performances of the three solvers
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when 04,4, increased. It can be seen that all of the solvers share similar sensitiveness
towards o 4qt,. The hybrid method performed better when there is noise and Prob2
gave more accurate results when the data is noise free.

5.3 Discussion

The proposed hybrid method is better at handling noise compared to the probabilistic
approaches. This is achieved by providing extra amount of data clouds which clut-
tered around different means, and this mitigated the affect of noise on the entire data
sets. However, the pure probabilistic methods gave better results when the data is
noise free and require much less complicated data gathering process. In analogy to
combining deterministic and probabilistic approaches in the area of robot path plan-
ning, the hybrid method presented here is a tentative approach to apply the same
methodology onto the field of robot-sensor calibration. The authors think this is a
very empty and open field and worth the further pursue of the community.

6 Iterative Updates for Combined Dataset

The two versions of the algorithm proposed in the Section 3 solve the system of equa-
tions by fixing each known transformations only once, which affects the robustness
of the procedure and might be sensitive to noise. In order to cope with such problem,
a combined dataset with various configurations of the fixed frames should be used.
For this reason, we proposed an iterative process to solve for the same equations,
where the input is a combined dataset of different configurations of fixed frames.
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More specifically, we are interested in the case when frame A or frame C is fixed at
different poses, indexed by ¢ and j respectively, and the other two frames are mea-
sured for each fixed value of A4; or C}.

The equations we seek to solve can be picked from Table 1 with the representa-
tions and the corresponding covariance, where the full covariance matrices are used
instead of the “Sig-Rot” part only. This is because we are trying to recover the rotation
and translation parts of the unknown matrices simultaneously.

Explicitly, when A; is fixed, we pick Representation 1 and the corresponding
equation for the covariance matrices as

A, XMp =Y Mo 2
{ b < (65)

T, = Ad(Z ") S, AdT(27),

where A; is the i'" pose when frame A is fixed, Mp, and Mc, are the mean of the
sets { B;} and {C;} when A; is fixed at the i*" pose, X', and X¢, are the covariance
of {B;} and {C;}, Ad(Z~') is the adjoint of Z~*.

As () is fixed, on the other hand, we are interested in solving for Representation
6 and its corresponding equation for the covariance matrices as

CiZMg' =Y ' Ma, X
’ (66)

Tpor = Ad(X 7N 24, AdT (X,
where Cj is the jth pose when frame C is fixed, M4, and Mp, are the mean of

the sets {A;} and {B;} when Cj is fixed at the j*" pose, X4, and X1 are the

covariance of {A;} and {B; '}, Ad(X ") is the adjoint of X .

We solve for this system of equations (65) and (66) at the same time by adding
small variations € x, &y and £z to X, Y and Z in the space of Lie algebra respectively.
Using the first-order Taylor series approximation, the updates can be written as

Xir1 = Xe(I+€x,)
Yitr = Xe([+ &) (67)
Zys1 = Xi(I+€2,),

where k is the number of iterations.

For each iteration, we can expand the equations by the updates of the variables
and get a linear system of equations

Py £y b1
k
A= [ 2] (G | =be=| 22, (68)
%3 ¢y b3
Py k b4

where £x,, &y, , £z, € RE*! are variables to be solved in each iteration; and the
calculation of Py, € R12X18 P, c R36x18 P, c RI2X18 3pd Py, € R36*18 and
the corresponding by, € R12X1 by, € R36X1 by, € R2X! and by, € R36%! are
shown in the Appendix C.
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Fig. 12: Real-world experiment settings for calibration using two NAO robots

Once the variable &y, is solved by inverting Py, (the pseudo-inverse should be used
here) to the right hand side, the matrices to be calibrated can be updated. This process
will converge to satisfy all the four equations where in the ideal case &, = O.

7 Experimental Validation

In this section, real-world experiments are performed to further verify the extendabil-
ity of the probabilistic methods, especially the robustness of the iterative approach,
compared with the deterministic ones. The platform is composed of two NAO robots,
where one is moving its arm and the other retrieves the transformation of the hand
by the camera. The data collected is put into both Wang’s [22] approach and the
proposed probabilistic approaches for comparisons.

7.1 Experiment Settings

As is shown in Fig. 12, the two NAO robots are set to stand and face to each other,
and the description of transformation matrices are summarized in Table 3.

Transformation Starting Frame Ending Frame
A Robot Frame of NAO 1 Head Frame of NAO 1
B Camera Frame of NAO 1~ Marker Frame on NAO 2
C Robot Frame of NAO 2 Arm Frame of NAO 2
X Head Frame of NAO 1 Camera Frame of NAO 1
Y Robot Frame of NAO 1 Robot Frame of NAO 2
Z Arm Frame of NAO 2 Marker Frame on NAO 2

Table 3: Summary of transformations that are measured and to be calibrated.
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Fig. 13: Moving sequence of the experiment.

The transformations A and C' can be measured using the subroutine in the SDK
for programming provided by the company, and the transformation information of B
is retrieved by attaching a marker on the right hand of NAO 2 and using the ArUco
library [11].

The experiments are performed by first fixing the head of NAO 1 to a pose, and
moving the arm of NAO 2, which we call it a trial of data, followed by changing the
head frame into several different poses and moving the arm of NAO 2 again. This
gives several trials of data with fixed A and varying B and C. Trials of data with
fixed C can be obtained by fixing the arm of NAO 2 to several different poses and
moving the head of NAO 1. The current experimental data includes: (1) 3 different
trials with fixed frame A and 50 sets of changing frames B and C; (2) 3 different
trials with fixed frame C and 50 sets of changing frames A and B. In total, there are
300 pairs of measured data {A, B, C'} that are with correspondence. But since the
camera cannot always detect and measure the transform of the ArUco marker, only
298 pairs of the data are valid without missing frames. Fig. 13 shows the sequence of
moving the arm of NAO 2 while the head of NAO 1 is fixed in different poses.

The data are then labeled as {4;, B;, C;} where i = 1,2,3 for 3 trials of data
with fixed A;, and {4;, B;, C;} where j = 1,2, 3 for 3 trials of data with fixed C},

7.2 Error Metric for Experimental Validation

Since for experiments, we do not have ground truths for comparison of calibrated
transformations, the metrics for simulated data in Eq. (62) are no longer ideal for
evaluating the experimental data. Instead, we can compute the closeness between the
left and right hand side of the basic equation AX B = Y CZ, and evaluate the mean
of the accumulated error for all the pairs of data. In other words, the error metric for
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Algorithm Data Combinations
Wang Combination of the whole dataset { A, B, C'};
Iterative Refinement ~ Combined data: {A;, B;, C;} and {A;, B;,C;},
where 7, j = {1, 2, 3}.

Table 4: Summary of the data combination as inputs of each algorithm.

experimental data can be defined as

N
1
Error = N Z ||AmeolvedBm - }/;olvedeZsolved|‘F7 (69)

m=1

where the pair { A,,,, B, Cy, } is the data with correspondence and N is the number
of the pairs of data in the whole dataset.

7.3 Data Processing

We compared two different algorithms: Wang’s method and the iferative refinement.
The other two versions of probabilistic method are not tested because: when running
the iterative refinement, one can treat the results from Prob I as an initial guess, and
since the refinement uses the whole dataset to minimize the error iteratively, the fi-
nal results should be much better than Prob I (the choice of the initial guess will be
discussed through the experimental results); also, for Prob 2, it is required to fix B
matrix also, but in the experiment it is a nontrivial task to fix the transformation be-
tween camera and the marker, so we did not consider this scenario in our experiment.
We therefore process the data in the following ways according to the requirements
and assumptions of each algorithm:

(1) for Wang’s method, we stack all the data pairs together as { A, B, C'} where each
of the matrices contains the whole sets of the transformations;

(2) for the iterative refinement, we separate trials of data for fixed A and fixed C, and
treat as two inputs to the algorithm.

Table 4 summarizes the combination of data that are put into those algorithms
according to their requirements and assumptions.

To verify that the probabilistic methods can deal with the data without correspon-
dence, we also scrambled the order of the data and compare the errors of the methods.
Note that the forms and sizes of inputs are the same, but the orders are not; and the er-
ror is still calculated using the data with correct correspondence. Also, for reference,
the algorithms are tested using the simulated data, where 5 trials for fixed A and C'
respectively and each trial has 100 pairs of data.

7.4 Results and Analysis

The results for algorithm comparisons using simulated and experimental data with
respect to the scramble rate are shown in Fig. 14 and 15 respectively, where the three
plots show the error as the scrambling rate increases with different initial guesses.
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Fig. 14: Error v.s. scrambling rate on simulated data with different initial guesses.
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Fig. 15: Error v.s. scrambling rate on simulated data with different initial guesses

As can be seen from the results, the errors using the probabilistic approach are
invariant to the correspondence of the data, while using the traditional method the
error increases significantly if the data is scrambled. In this aspect, once the collected
data has some missing parts or the order is not correct by accident, the iterative re-
finement can still get a solution that is close to correct. Further, if the data is rich
enough, the covariance of the dataset will become even more robust to recover the
unknown transformations. Here rich means that the number of data collected is large,
and the degrees of freedom for the moving part of both robots are high, which make
all the measured transformations vary on a larger space so that the distribution can be

approximated closer to a Gaussian.

The initial guess also plays a role on the efficiency of the two algorithms. As
shown in Fig. 16, the number of iterations differs with the changes of the initial
guesses. The results from Prob I can be a starting point to the iterative refinement,
which gives faster convergence than an arbitrary guess, e.g. identity matrix. Further,
if we can manually approximate a measurement of the transformations, for instance,
from the kinematic data of the robot, the algorithms can perform even more effi-

ciently.
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8 Conclusion

Motivated by problems that arise in multi-robot systems, in this article we proposed
two probabilistic approaches to solve the AXB = Y (CZ calibration problem for
the case where partial or all correspondence information between the datasets was
lost. Numerical simulations were performed to show the superior performance of the
probabilistic approaches over the traditional AX B = Y C'Z solvers that demand ex-
act correspondence among the datasets. In addition, the probabilistic approaches did
not require initial estimates which made the calibration process easier. We compared
the performance between the two probabilistic approaches and showed that given
complete datasets, Prob2 gave better Ry and ty. However, Probl required fewer
datasets and had wider applications.

Though the probabilistic methods can handle scrambled data very well, they
are very sensitive to the noise. As a tentative action to solve this problem, we also
proposed a hybrid approach which combines traditional AXB = YCZ solvers
with probabilistic methodology. The probabilistic methods deteriorated quickly as
the noise level went up, because the desired data clouds are highly concentrated and
even small noise can perturb the data a lot. However, by introducing multiple data
clouds cluttered around different centers, the influence of noise on the data is miti-
gated. It is shown that the hybrid method converged quickly as the number of data
clouds incremented, and its performance beat the pure probabilistic methods when the
noise level is high. However, when the data is noise free, the probabilistic approaches
are still better than the hybrid method, and it also requires much fewer sets of data. A
new iterative refinement to the current probabilistic methods is proposed to mitigate
the effect of the noise. It is shown, with simulated dataset as well as the physical
experiments using a system with two humanoid robots, that it not only preserves the
nice properties of the pure probabilistic method, but also can deal with the real-world
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data which contains noise. The experiments also show that the refinement reliably
converges to the correct answer with different initial guesses of the transformations
to be calibrated, and the efficiency improves with a good choice.

A Mean and Covariance of the Distribution of the Inverse Transformation

Proof Let f'(H) = f(H ') whose mean and covariance are M’ and X’ satisfying the following equa-
tions

/ log(M' ™ H)f(H)dH = O (70)
SE(3)
and

3= / log" (M’ ™ H)[log¥ (M'~* H)|T f' (H)dH. )

SE(3)
After a simple substitution, Eq.(70) becomes
/ log(M' ™ H)f(H=)dH = 0. (72)
SE(3)

Next, set K = H~! and use the invariance of integration under inversion, Eq. (72) becomes:
/ log(M' 'K~ f(K)dK = O. (73)
SE(3)
Premultiply M’ and postmultiply M’ ! on both sides of the equation to get
/ log(K~'M' ™Y f(K)dK = O (74)
SE(3)
by using the property
Hi(log Ho)H ' = log(H1 H2HY). (75)
Eq.(74) can be further written as

/ log(M' K) f(K)dK = O, (76)
SE(3)

given log(H ') = — log H. This shows that M’ = M 1.
By definition, covariance X’ will be

X = / log" (M' " H)[log¥ (M’ " H)|T f(H~V)dH (7
SE(3)

which becomes
3’ =/ logV (MK~ Y[log¥ (MK~ YT f(K)dK (78)
SE(3)
under a change of variables and substitution of M’ = M ~!. Knowing that

Ad(H1)log" (Hz) = log" (H1HoHy )

79
log" (K1) = — log” (M1 K) i
AdMH X' AdT (M) =
/ logv(K_lM)[logV(K_lM)]Tf(K)dK (80)
SE(3)
so that
AdM~ s’ AdT" (M) = & 1)

which, after inversion of the Ad matrices, completes the proof.
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B Second-order Approximation of the Convolution of three PDFs

From the associativity of the group operation, we have

((f1 % f2) = f3)(9) = (fr* (f2* f3))(g9) = (f1* f2 * f3)(g) (82)

and
2(1x2)%3 = L1x(243) = L14243 - (83)
Let us now evaluate the three fold convolution using both of the above equalities and the properties of

F(-,-) in Eq. (24):

S(1eayes = Ad(Mz ) T2 AdT (Mg ") + Zg + F (Ad(Mg ) S1.24dT (M5 )3 )

(84)
where 1.0 = Ad(My 1)1 AdT (My ") + S5 + F (Ad(M;l)zlAdT(Mgl) ; 22>.
IfX =%, =0,
Jx2+3 = X33 (85)
andif Yo = X3 =Q, . .
—1 —1 — —
Xx243 = AdMgAdM2 ElAsz AdMS. (86)
Hence both of the covariances do not depend on the second-order term.
C Solutions for the Iterative Refinement
The equations we need to solve are
AiXMBi = YMCiZ (873)
Zp, = Ad(Z7 X0, AdT(Zz7T) (87b)
-1 _ -1
CJ'ZMBj =Y "My X (87¢)
Yo =AdX )X, AdT(XTH) (87d)
J

for 4, j are the number of trials of dataset for fixing A; and C; respectively.
A small perturbation of the initial X, Y and Z can be expressed as

Xpq1 = Xp(I+ éxk)
Vi1 = Ye(I+&vy) (88)
Zw1 = Zp(1+€7,)

where, &, = [wg, vi]7.

The following gives a detailed derivation of the explicit forms of each part of the matrices Py, and by

C.1 Construction of P;; and by,

Substituting Eq. (88) back into Eq. (87a) and eliminating quadratic terms gives
A Xpéx, Mp, — Yiby, Mc, Zi, — YiMc, Zyéz, = —Ai Xk Mp, + YuMc, Zy.  (89)

Separating the rotation and translation parts gives,
(1) Rotation part:

Ra;Rx,, 0x Ryp, — Ry, Ry, Rz, Wz — Ry, Oy Ry, Rz, = —Ra, Rx) Ryp +Ry, Ry, Rz,
(90)
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Using the fact thata X b = ab = —ba and treating each column separately gives

—Ra,Rx, (Rump,) wx), + Ry, By, Rz @mwz, + Ry, (Ryg, Rz,) @y,

= ROt(—AiXkMBi + YkMCIZk)m

on

where m = 1,2, 3 is the index of columns of the rotation matrices, and Rot(-) is the rotation part of a
rigid body transformation matrix.
(2) Translation part:

— Ry, RXk/t\MBz‘ wx, + Ry, (R]V[citzk + tMCi )wyk + Ra,Rx, vx,
— Rkayk — Ryk RMC‘i RZkVZk (92)
= Trans(—Al-XkMBi + Ykoi Zk)

where T'rans(-) is the translation part of a rigid body transformation matrix.

Combining the rotation and translation parts and stacking wy, and vy, together to form a linear system
of equations, we obtain the corresponding matrices P;; and by, as

P Pima 03x3 Pims 03x3 Pims 03x3
k= —RaRx,tmp, Ra;Rx, Ry, (Ryg,tz, +tug,) —Ry;, 03x1 —Ry, Rug, Rz,
93)
where,
Pipt = —Ra; Rx, (Rump,) » Pims = Ry, (Rug, Rz,,) » Pims = Ry, Ry, Rz, €m.
And
b — ROt(—AiXkMBi +YkMC,-Zk)m 4
e =\ Trans(—Ai XpMp, + YiMc, Zx) |
C.2 Construction of Py, and bgy,
Using the similar idea for Eq. (87b), we have
Sp, = Ad(Z; ) S, AdT(Z; ) (95)
By using the identity of adjoint in Eq. (9) and (11), we get
g, +ad(€2)Xp, + Yp,ad" (€2) =  Ad™N(Zy) Yo, Ad™T (Z) (96)

Splitting the covariance and adjoint matrices into 4 blocks and applying matrix multiplications give,
bz O] %5, T3 | | |T6 T
Uz Wz

3 7 4 T 3 T 4 T
X B, X B, X B, X B,
Applying block matrix multiplications and for each block, we extract wz and vz by treating the columns
separately as

~T ~T
{“Z Y%} = Ad~Y(Zp)Sc, Ad~T(Zy) — D, (97a)
0 @y i i

[~(Z5)m + Th,8m] wz = (RHS)},

[—(2}237, Yo -+ EQBiém] wz + 5k emvz = (RHS)?,
! ! [ 98)
[f(zgi)m T zgiam] wz — (5% Ymvz = (RHS)?,

i

[~(ZE)m + Zh8m] wz + [~(5F)m + T8 vz = RES),
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where RHS = Ad~1(Zy) X, Ad~T (Zy) — Xp,, m = 1,2, 3 denotes the index of the column on each
matrix or block of matrix, and the right superscripts denotes the index of the block in the matrix.
In this case, the Pyj and boj, matrices are

—

03x12 —(¥p, )m + X €m 03x3
03512 — (52 28 s
Py = | X2 (/f\i)m B, o, Bl : 99)
03><12 _(EBi)erEBiem _(EBi)m
and
(Ad=Y(Z1) 20, Ad=T(Z1) — £,)},
Ad~Y(Zy)Zc, Ad~T (Zy) — XB,)3
by = | i il 100
2 = | (Ad~1(Z) So, Ad~T (Z)) — Zp, ), (100
(Ad=Y(Zy) X2, Ad~T (Zy) — T2,

C.3 Construction of Ps; and bgy,

The matrix Ps;, and bsy, can be obtained explicitly, using the same ideas above, as

RYk—lRMAj Rx,€m 03x3 —(Ryk—lRMAj Rx,)m O3x3 —Rc, Rz, (RM};})m 03x3

Py = J
O3x3 P34 Ps43 I3x3 Ps45 Ps46
(101)
where, - -
P3go = —RYk—l RJ\/IAJ, Rx, ,P343 = —(Ryk—l RMA]. tx, + Rkal tMAj + tkal ), P3a5 = —ch RZktngl s
P36 = Ro, Rz, .
And

Rot(~C; ZMp | + Y, Ma; Xi)m

bsy = 1 1 (102)
Trans(—Cj ZkMBj + Y T Ma, Xk)
C.4 Construction of Py, and by
For Eq. (87d), we have
-1 -1
Tpr = Ad(X L) Za, AdT (XL (103)
Note that when actually calculating the inverse of Xp, itis better touse X', 1 = Ad(B)X' AdT(B).

J
Using the same methodology with previous derivations, the explicit forms of Py and by can be
written as

7((2/8:)1)m +(Zg-1)'enm O3x3 0O3x12
L J
—((Zg=1))m + (Z5-1)%€m (Zp-1)'enm 03x12
Py = — T L ; (104)
—((Zg-1)3)m + (Zg-1)%m —((Zg-1))m O3x12
2 J s J
—((Zp=1)Ym + (X o—1)*Em —(Z5=1)2)m + (X ,—1)%@m 03x12
B; B B; B;
J
and
(Ad=H(Xp) T, Ad~T(Xg) — X 1)1,
J
. (Ad~ 1 (Xp) T4, Ad~T(Xy) — 23;1)%1 105
T (AN (X)) XA, AdTT (X)) — Xp-1)3, (105)
(Ad™(Xk)Za; Ad™T (Xp) = Zp-1)m
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In the end, the Pj, and by matrices can be obtained by concatenating the four parts calculated above.
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