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Abstract—The concepts of Fisher Information matrix and
covariance are generalized to the setting of probability densities
on spheres and rotation groups, and inequalities relating these
quantities are derived. Probability density functions on these
spaces arise in various scenarios in the fields of structural biology,
robotics, and computer vision. The approach taken is to first
derive matrix generalizations of Wirtinger’s inequality for tori
and spheres and generalize these to rotation groups. Then new
inequalities are derived that relate the covariances of probability
density functions on spheres and rotation groups with their Fisher
information. These inequalities are different than the Cramér-
Rao bound, and can be used to estimate the rate of increase of
the entropy of a diffusion process.

Index Terms—Haar measure, convolution, group theory, har-
monic analysis, inequalities

I. INTRODUCTION

The Cramér-Rao bound is well known in Euclidean statistics
as a way to bound the variance of an estimator with its
Fisher information. However, for a variety of reasons, this
bound breaks down for statistics of nonlocalized phenomena
on non-Euclidean spaces. Interestingly, however, a different
bound relating Fisher information and covariance is possible
for spheres and rotation groups. Here this new bound is derived
from Wirtinger’s inequality1, which does not have an analog
for nonperiodic functions on Euclidean space.

The remainder of this introduction is broken down into
three parts: A) literature review of the Cramér-Rao bound
and circular statistics; B) review of the Wirtinger inequality
and its generalization to spheres; C) The extension of the
Wirtinger inequality to rotation groups. Later sections of this
paper generalize these inequalities and apply them to generate
bounds involving Fisher information and covariance which are
very different than the Cramér-Rao bound.

A. Literature Review

The statistical analysis of data in Euclidean spaces is a well-
developed field. A central tool in statistics and estimation in
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1This inequality is given in [1] without calling it by this name, though this
has now become the standard way that it is referenced.

the Euclidean setting is the Cramér-Rao Bound (CRB) [2], [3],
which bounds the variance of an estimator by the inverse of
the Fisher information. Apparently this bound was discovered
independently not only by Cramér and Rao, but also Darmois
[4] and Fréchet [5]. More recently, the classical CRB has
been studied from a geometric perspective [6], as well as
being extended to the case of data in non-Euclidean geometric
objects such as Riemannian manifolds (including circles and
spheres) and Lie groups in a number of works including [7],
[8]).

In this paper, an altogether different bound, which does
not involve inverses, is derived for circular data based on the
Wirtinger inequality. The scalar Wirtinger inequality is known
for spheres as well, and is extended to both a matrix form and
to the case or rotation groups in this paper. Unlike circular
versions of the CRB [9], [10], [11], [12], [13], [14], [15], the
inequality derived in this paper does not have an analog in
Euclidean statistics.

Circular statistics has gained significant attention over the
past decades, and has been summarized in various books and
computer programs [16], [17], [18]. Circular data arises from
bearing measurements in human-made tracking systems [19],
[20], as well as in periodic signals arising from biology [21].
Other notable works on the development and/or application of
circular statistics, estimation, and fusion include [22]-[25].

The concept of the circle generalizes to higher dimensions
in several ways. The Cartesian product of n circles gives the
n-torus (e.g., the surface of a donut when n = 2). The concept
of bearing in the plane generalizes as a direction defined by
a unit vector (or point on a sphere) in higher dimensions,
and statistics on spheres has been studied extensively over
more than half a century [26]. Movement around a circle
generalizes as a rotation matrix in n-dimensional Euclidean
space, and for n = 3 has applications in spacecraft attitute
estimation (see [27], [28], [29], [30] for references to this
vast literature). An altogether different application area that
uses similar mathematical methods is the reconstruction of
biomolecular structures in cryo-electron microscopy [31].

The n-sphere is an example of a Riemannian manifold,
and specialized differential-geometric methods for statisitical
analyisis on the sphere have been developed. The n-torus



is an Abelian Lie group, quite similar to Euclidean space,
though it is compact. The rotation group, SO(n), is a compact
noncommutative Lie groups. The underlying manifolds for
these Lie groups are also Riemannian manifolds, and could
therefore be treated with the generalized tools developed for
the sphere. But one can do better by using the structure of Lie
groups.

B. Wirtinger’s Inequality for Circles and Spheres

Wirtinger’s inequality for the circle states that for a differ-
entiable function

f : S1 → C with

∫ 2π

0

f(θ) dθ = 0,

that ∫ π

−π
|f(θ)|2dθ ≤

∫ π

−π
|f ′(θ)|2dθ (1)

where f ′ = df/dθ. The proof of (1) is straight forward: expand
f(θ) as a Fourier series of the form

f(θ) =
1

2π

∑
k∈Z

f̂(k) eikθ

where
f̂(k) =

∫ π

−π
f(θ) e−ikθdθ.

Then take the derivative, and observe that

d̂f

dθ
(k) = ikf̂(k) .

Parseval’s equality is written as

1

2π

∫ π

−π
|f(θ)|2dθ =

∑
k∈Z
|f̂(k)|2 ,

and so
1

2π

∫ π

−π
|f ′(θ)|2dθ =

∑
k∈Z

k2|f̂(k)|2 .

From the premise of the theorem, f̂(0) = 0. Consequently, all
terms in Parseval’s equality for the derivative are greater than
or equal to that of the original function, hence (1). Obviously,
the same proof can be done in the case of an n-torus using
multidimensional Fourier series to generalize (1) to∫ π

−π
· · ·
∫ π

−π
|f(x1, ..., xn)|2 dx1 · · · dxn ≤∫ π

−π
· · ·
∫ π

−π
‖∇f ‖|2 dx1 · · · dxn . (2)

For technical reasons, throughout this paper the gradient is
viewed as a row vector

∇f =

[
∂f

∂x1
, · · · , ∂f

∂xn

]
.

The generalization of this to spheres gives [32]∫
Sd−1

|f(u)|2 du ≤ 1

d− 1

∫
Sd−1

‖(∇f)(u)‖2 du (3)

where f : Sd−1 → C is a differentiable function with∫
Sd−1

f(u) du = 0.

Here u ∈ Sd−1 is a d-dimensional unit vector, ∇f is the
gradient of f , du is the usual integration measure for the
sphere, and the proof follows in essentially the same way as
for the circle by expanding f(u) in hyper-spherical harmonics.

C. Wirtinger’s Inequality for Rotation Groups (And Compact
Lie Groups More Generally)

By the Peter-Weyl Theorem [33], matrix elements of the
irreducible unitary representations (IURs) of a compact Lie
group, G, form an orthonormal basis for L2(G). In the case
when G = SO(3), these IURs are enumerated by l ∈ Z≥0,
and for any R,A ∈ SO(3) these (2l + 1) × (2l + 1) IUR
matrices have the fundamental properties

U l(RA) = U l(R)U l(A) and U l(RT ) = U l(R)∗

where ∗ is the Hermitian conjugate of a matrix.
For functions f ∈ L2(SO(3)), the Fourier coefficients are

computed as

f̂ lmn =

∫
SO(3)

f(A)U lmn(A−1) dA . (4)

The following orthogonality relation holds∫
SO(3)

U lmn(A)Uspq(A) dA =
1

2l + 1
δlsδmpδnq (5)

where dA is scaled so that
∫
SO(3)

dA = 1. The Fourier series
on SO(3) has the form

f(A) =

∞∑
l=0

(2l + 1)

l∑
m=−l

l∑
n=−l

f̂ lmnU
l
nm(A) , (6)

which results from the completeness relation
∞∑
l=0

(2l+ 1)

l∑
m=−l

l∑
n=−l

U lmn(R−1)U lnm(A) = δ(R−1A) . (7)

Another way to write (6) is

f(A) =

∞∑
l=0

(2l + 1)trace
[
f̂ l U l(A)

]
. (8)

The Lie algebra so(3) consists of skew-symmetric matrices
of the form

X =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 =

3∑
i=1

xiEi . (9)

Every such matrix can be associated with a vector x by making
the identification

E∨i = ei ⇐⇒ Ei = êi .

This interchangeability of 3×3 skew-symmetric matrices with
three-dimensional vectors via the “vee” and “hat” maps will
be used extensively later.



Matrix exponentiation of skew symmetric matrices results
in rotation matrices. Moreover, the logarithm of almost every
R ∈ SO(3) produces a unique X ∈ so(3). This important fact
will be used later.

The skew-symmetric matrices {Ei} form a basis for the set
of all such 3×3 skew-symmetric matrices, and the coefficients
{xi} are all real. The ∨ operation extracts these coefficients
from a skew symmetric matrix, X , to form a column vector
[x1, x2, x3]T ∈ R3. Then Xy = x×y for any y ∈ R3, where
× is the usual vector cross product.

For any fixed values of xi, it is possible to compute a
directional derivative of the form

(X̃f)(R)
.
=

d

dt
f
(
RetX

)∣∣∣∣
t=0

.

Then evaluating at X = Ei defines partial derivatives, and
(X̃f)(R) =

∑3
i=1 xi(Ẽif)(R).

The gradient of a function can be thought of as a row-
vector-valued function

(∇f)(R)
.
= [(Ẽ1f)(R) , (Ẽ2f)(R) , (Ẽ3f)(R)]

and the Laplacian can be thought of as the scalar-valued
function

(∇2f)(R) = (Ẽ2
1f)(R) + (Ẽ2

2f)(R) + (Ẽ2
3f)(R)

where (Ẽ2
i f)(R) = (Ẽi(Ẽif))(R).

It is also well-known, see e.g., [29], that the Laplacian for
SO(3) applied to the matrix elements of IURs gives

∇2U lmn(R) = −l(l + 1)U lmn(R) .

When f is smooth enough such that ∇f and ∇2f both exist,
then from integration by parts,∫

SO(3)

‖∇f(R)‖2dR = −
∫
SO(3)

f(R)∇2f(R) dR .

Combining this with the Plancherel equality∫
SO(3)

f(R)g(R)dR =

∞∑
l=0

(2l + 1)trace
[
f̂ l (ĝl)∗

]
gives ∫

SO(3)

‖f(R)‖2dR =

∞∑
l=0

(2l + 1)‖f̂ l‖2HS

when f = g, and∫
SO(3)

‖∇f(R)‖2dR =

∞∑
l=0

(2l + 1)(l + 1)l‖f̂ l‖2HS

when g = ∇2f . (Here ‖A‖HS =
√

trace(AA∗) is the Hibert-
Schmidt norm.) Consequently, when

∫
SO(3)

f(R) dR = 0, and
hence f̂0 = 0, the inequality∫

SO(3)

|f(R)|2 dR ≤
∫
SO(3)

‖∇f(R)‖2 dR (10)

results.

The Laplacian is the Casimir operator for SO(3). That is,
it satisfies the commutation relations

[∇2, X̃]f = [X̃,∇2]f

for any X ∈ so(3). The key to deriving the above expression
was the use of integration by parts and the Casimir proper-
ties of the Laplacian. Since integration by parts is universal
for unimodular Lie groups (including compact ones), and
since Casimir operators exist for other compact Lie groups,
Wirtinger’s inequality can hold in more generalized contexts.

II. FISHER INFORMATION

If X is a measurable space with measure dx = dµ(x)
evaluated at x ∈ X , and if f(x;ϕ) is a pdf on X for each ϕ that
defines a parameterized family, then the Fisher information
matrix is defined as2

F (ϕ)
.
=

∫
X

(∇ϕ log f(x;ϕ))
T

(∇ϕ log f(x;ϕ)) f(x;ϕ) dx .

This is equivalent to

F (ϕ)
.
=

∫
X

(∇ϕf(x;ϕ))
T

(∇ϕf(x;ϕ))

f(x;ϕ)
dx .

A. When x and ϕ Belong to the Same Euclidean Space or
Torus

In the special case when x, ϕ ∈ Rn and

f(x;ϕ) = f(x− ϕ) ,

then F is an n× n matrix and

∇ϕf(x;ϕ) = −∇xf(x;ϕ) .

Moreover, due the shift invariance of integration,

F (ϕ)
.
=

∫
X

(∇xf(x;ϕ))
T

(∇xf(x;ϕ))

f(x;ϕ)
dx

=

∫
X

(∇xf(x; 0))
T

(∇xf(x; 0))

f(x; 0)
dx (11)

= F (0).

The Cramér-Rao bound is used in Euclidean statistics to
bound from above the eigenvalues of the covariance of a sta-
tistical estimator with the Fisher information of the underlying
distribution. For unbiased estimators, this is written as

Σ ≥ F−1 (12)

which is shorthand for vT (Σ−F−1)v ≥ 0 for all v ∈ Rn. It is
in this sense that the matrix inequalities presented throughout
this paper are expressed. A number of works have generalized
this result in different ways to manifolds, including [34], [35],
[36], [37].

In the case of Euclidean space, if f(x, ϕ) is a Gaussian
distribution with covariance Σ and mean ϕ, it is not difficult
to show that

F (ϕ) = Σ−1 .

2As in the previous subsection, ∇ϕ is considered to be a row vector.



The goal of the present work in not to write a matrix-Lie-
group version of (12). Rather, inequalities of the form

Σ ≤ c F (13)

are derived where c is a constant that results from the structure
of the space of interest. This inequality is derived in the case
of compact spaces such as spheres, tori, and rotation groups
via Wirtinger’s inequality, which does not apply to pdfs on
Euclidean space.

Moreover, if

S(ρ)
.
= −

∫
X
ρ(x) log ρ(x) dx

denotes the entropy of the pdf ρ, and if ft(x) denotes the
solution to the diffusion equation

∂f

∂t
=

1

2

n∑
i,j=1

Dij
∂2f

∂xi∂xj
−

n∑
k=1

dk
∂f

∂xk

subject to initial conditions f0(x) = δ(x), then the multi-
dimensional extension of the de Bruijn equality states that
[38]

d

dt
S(ρ ∗ ft) =

1

2
tr[DF ] (14)

where ∗ denotes convolution and tr[·] denotes the trace of
a matrix. Since Fisher information is generally difficult to
compute exactly, (13) can be used to obtain lower bounds on
the rate of increase of entropy. Moreover, since D is symmet-
ric, it has an eigen-decomposition D = QΛQT where Q is
orthogonal, and since Λ ≤ λmax(D) I, then D ≤ λmax(D) I
and tr[DF ] ≤ λmax(D) tr[F ]. Consequently, the rate of
increase of entropy can be bounded as

d

dt
S(ρ ∗ ft) ≤

1

2
λmax(D) tr[F ] . (15)

B. Spheres and Rotation Groups

The pioneering work of Bingham [39], Mardia and Jupp
[40], [41], [42], and Hartman and Watson [43] paved the way
for the study of probability and statistics on spheres. More
recently Healy, Kim, et al [44], [45] and Cui and Freeden
[46] made substantial contributions. That said, there appears
not to be any mention or use of Wirtinger’s inequality in those
works, and this affords the opportunity to present something
new here.

Equipped with the appropriate concept of gradient, (12) can
be defined just as easily for spheres and rotation groups as in
the Euclidean case. Moreover, equipped with the appropriate
concept of convolution, (14) holds as well. Convolution on
unimodular Lie groups, including SO(3), is defined as

(f1 ∗ f2)(g)
.
=

∫
G

f1(h)f2(h−1 ◦ g) dh .

Interestingly, with this definition of convolution, (14) holds for
unimodular Lie groups in general [38], [47] with a diffusion
process defined as one which satisfies the equation

∂f

∂t
=

1

2

n∑
i,j=1

DijẼiẼjf −
n∑
k=1

dkẼkf .

subject to initial conditions f0(g) = δ(g).
Convolution on the sphere, which is not a Lie group, can

be handled as follows.
If ρ(u(θ, φ)) = ρ(u(−θ, φ)) is a pdf with mean at u = e3,

and if R(a,b) is the most direct rotation that moves unit vector
a to b as b = R(a,b)a,

R(a,b) = exp

[
cos−1(a · b)

‖a× b‖
â× b

]
,

then
ρ(u;v)

.
= ρ([R(e3,v)]Tu)

is the version of ρ(u) with mean at v. Then the convolution
on the sphere can be defined as as

(ρ1 ∗ ρ2)(u)
.
=

∫
S2

ρ1(v)ρ2(u;v) dv .

Since it is possible to define a spherical gradient, and since
integration of functions over the sphere is invariant under
rotations, ∫

S2

f(RTu) du =

∫
S2

f(u) du ,

and so

F =

∫
S2

∇uρ(u;v)∇Tuρ(u;v)

ρ(u;v)
du

=

∫
S2

∇vρ(u;v)∇Tvρ(u;v)

ρ(u;v)
du .

From this, a spherical version of (14) follows using essentially
the same arguements as the Euclidean case, where in this
context ft(R) is a solution to a driftless diffusion equation
with diffusion coefficients Dij .

III. FROM WIRTINGER TO FISHER INFORMATION
INEQUALITIES

In this section, inequalities different than the Cramér-Rao
bound are derived that relate Fisher information and covari-
ance.

A. Fisher Information Inequality for the Circle

Consider the special case when f(θ)
.
= θρ

1
2 (θ) with ρ(θ) =

ρ(−θ) a pdf supported in the open interval (−a, a) with a < π.
In this case, Wirtinger’s inequality becomes∫ π

−π
|θρ 1

2 (θ)|2dθ ≤
∫ π

−π

∣∣∣∣ρ 1
2 (θ) +

1

2
θρ−

1
2 (θ)ρ′(θ)

∣∣∣∣2 dθ .
Using the fact that |θ| ≤ a < π, and ρ(−π) = ρ(π) = 0,
integration by parts gives∫ π

−π
θ2ρ(θ) dθ ≤ a2

4

∫ π

−π

(ρ′(θ))2

ρ(θ)
dθ . (16)

This bounds variance from above by Fisher information, i.e.,

σ2 ≤ a2

4
F , (17)



In the case of the n-torus, (2) can be used to generalize (17).
Letting f(x) = bTx

√
ρ(x) where b ∈ Rn is an arbitrary

constant vector, then

∇f = bT
√
ρ(x) +

1

2
bTx

∇ρ(x)√
ρ(x)

and the result of (2) is

bTΣb ≤ bT
[

1

4

∫
Tn

x
(∇ρ)(∇ρ)T

ρ
xT dx

]
b .

Hence,

Σ ≤ 1

4

∫
Tn

x
(∇ρ)(∇ρ)T

ρ
xT dx .

Note that (∇ρ)(∇ρ)T
ρ = tr

[
(∇ρ)T (∇ρ)

ρ

]
is a scalar, and the

matrix xxT has eigenvalues dominated by the inequalities
xxT ≤ (xTx) I ≤ a2 I when ρ is supported on the unit ball
of radius a. This gives the multidimensional version of (17)
for the n-torus

Σ ≤ a2

4
tr[F ] I =⇒ tr[Σ] ≤ a2n

4
tr[F ] . (18)

As will be seen in the remainder of this paper, these inequali-
ties are fundamental, and apply to spheres and rotation groups.

B. Fisher Information Inequality for Spheres

Given

f : Sd−1 → R with

∫
Sd−1

f(u) du = 0,

Wirtinger’s inequality for the sphere in Rd gives [32]∫
Sd−1

|f(u)|2 du ≤ 1

d− 1

∫
Sd−1

‖(∇f)(u)‖2 du . (19)

Here (∇f)(u) is the gradient. For an m-dimensional manifold
embedding in Rd, the gradient can be defined as a row vector
consisting of entries which are the projection of the vector

grad(f)
.
=

m∑
i,j=1

∂x

∂qi
gij

∂f

∂qj

on an orthonormal basis in the tangent plane, where {qj} is
the set of generalized coordinates. In the present case, the
position in Rd is x = u. Whereas in (19) it does not matter
if the gradient is interpreted as a row or column vector, in the
calculations that follow later, it is convenient to define it as a
row vector as above.

Choosing f(u) = aTv(u) where v : Sd−1 → Rd−1 gives

0 ≤ aT
[
−
∫
Sd−1

v vT du +
1

d− 1

∫
Sd−1

(∇v)(∇v)T du

]
a.

Since this is true for arbitrary a, this can be written as the
matrix (eigenvalue) inequality∫

Sd−1

v vT du ≤ 1

d− 1

∫
Sd−1

(∇v)(∇v)T du (20)

This matrix version of Wirtinger’s inequality can be manip-
ulated as in the case of the circle to yield a Fisher information
inequality as follows for the case of S2.

Parameterize u in the usual way as

u(θ, φ) =

 sin θ cosφ
sin θ sinφ
cos θ

 .

Then
du = sin θ dφ dθ .

The symmetry of ρ(u) is written in coordinates as
ρ(u(θ, φ)) = ρ(u(θ, φ + π)) or ρ(u(θ, φ)) = ρ(u(−θ, φ)),
and the mean being at u = e3 corresponds to θ = 0. The
vector v that describes points on the sphere relative to the
origin are of the form

w(u(θ, φ)) =

(
θ cosφ
θ sinφ

)
.

Then, by choosing

v(u) = w(u) ρ
1
2 (u) ,

the left hand side of (20) defines the covariance

Σ =

∫
S2

wwT ρ du ,

which is computed in coordinates as

Σ =∫ π

0

∫ 2π

0

(
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

)
ρ(u(θ, φ)) θ2du .

The gradient of the vector v, is the 2× 2 matrix

∇v =

(
∇v1
∇v2

)
where ∇ of a scalar function is again viewed as a row vector.
Specifically, the gradient of a scalar function f(u) with u =
u(θ, φ) is written in coordinates as [29]:

grad(f) =
∂f

∂θ
eθ +

1

sin θ

∂f

∂φ
eφ.

eφ =

 − sinφ
cosφ

0

 ; eθ =

 cosφ cos θ
sinφ cos θ
− sin θ


where {eθ , eφ} is an orthonormal basis for the tangent
plane at u. In this basis, the components of the gradient are
expressed as the row vector

∇f =

[
∂f

∂θ
,

1

sin θ

∂f

∂φ

]
.

Applying the chain rule gives

∇v = ∇(w ρ
1
2 ) = (∇w) ρ

1
2 +

1

2
w ρ−

1
2∇ρ .



The integrand in the right hand side of (20) then becomes

(∇v)(∇v)T du = (∇w)(∇w)T ρ

+
1

2
(∇w)(∇ρ)TwT +

1

2
w(∇ρ)(∇w)T

+
1

4
w

(∇ρ)(∇ρ)T

ρ
wT . (21)

In coordinates

∇w =

(
cosφ − θ

sin θ sinφ
sinφ θ

sin θ cosφ

)
.

When ρ is supported on a region where θ ≤ a ≤ π/8, then
sin θ ≈ θ, and ∇w is effectively a rotation matrix. Moreover,
under these same conditions, the first three terms on the right
side of (21) will vanish (as they did in the circle/n-torus case)
after taking the trace and performing the integration over S2.

The Fisher Information matrix for a pdf ρ : S2 → R≥0 can
be defined as

F
.
=

∫
S2

(∇T ρ) (∇ρ)

ρ
du .

Therefore, ∫
S2

(∇ρ)(∇ρ)T

ρ
du = tr[F ] ,

and so again (18) results (with n = 2). If, however, a is
not sufficiently small, then a different scale factor and biasing
terms will result.

C. Fisher Information Inequality for the Rotation Group

The same sort of matrix Wirtinger inequality that was given
for the sphere can be obtained for the rotation group as∫

SO(3)

v(R)vT (R) dR ≤
∫
SO(3)

(∇v)(R)(∇v)T (R) dR

(22)
Let ρ(R) be a pdf such that ρ(R) = ρ(RT ) for all R ∈ SO(3),
i.e., ρ is a symmetric probability density function. Then
necessarily, its mean will be at R = I . Moreover, restrict
the discussion to such pdfs supported on the ball

‖ log∨(R)‖ ≤ a < π . (23)

Then, by choosing

v(R)
.
= log∨(R) ρ

1
2 (R) ,

the left hand side of (22) will become the covariance matrix

Σ =

∫
SO(3)

log∨(R)[log∨(R)]T ρ(R) dR .

The right hand side of (22) is evaluated by first applying the
chain rule to get the matrix

(∇v)(R) = (∇ log∨)(R) ρ
1
2 (R) +

1

2
log∨(R) (∇ρ)(R) ρ−

1
2 (R) .

Substituting into the right hand side of (22) then gives three
terms: ∫

SO(3)

(∇v)(R)(∇v)T (R) dR =

∫
SO(3)

(∇ log∨)(R) (∇ log∨)(R) ρ(R) dR

+
1

2

∫
SO(3)

(∇ log∨)(R)(∇T ρ)(R)[log∨(R)]T dR

+
1

2

∫
SO(3)

log∨(R) (∇ρ)(R) (∇ log∨)T (R) dR

+
1

4

∫
SO(3)

log∨(R) (∇ρ)(R)(∇T ρ)(R)[log∨(R)]T

ρ(R)
dR

To get the desired Fisher-information-matrix inequality, it
is necessary to evaluate (∇ log∨)(R). This can be done by
evaluating the Taylor series for the matrix logarithm, but this
is not necessary because a closed-form expression exists. It is
well known that the exponential map exp : so(3) → SO(3)
is related to Euler’s Theorem as

R = exp(θn̂) = I + sin θ n̂ + (1− cos θ) n̂2 ,

where θ ∈ [0, π] is the angle of rotation around the axis n ∈
S2, with n̂ being the associated skew-symmetric matrix. Then

tr(R) = 1 + 2 cos θ and n̂ =
R−RT

2 sin θ
.

Then, since

θ = cos−1
[

tr(R)− 1

2

]
and sin(cos−1 a) =

√
1− a2 ,

it follows that sin θ can be written explicitly in terms of R as

sin θ =

√
1− (tr(R)− 1)2

4
=

√
3

4
− (tr(R))2

4
+

2tr(R)

4
.

Since X = θn̂ = logR, it follows that

log(R) =
cos−1

[
tr(R)−1

2

]
(R−RT )√

3− (tr(R))2 + 2tr(R)
. (24)

The exponential map, exp : so(3) → SO(3) is surjective.
However, it is not injective because there is no unique inverse
for rotations by angle π around any axis. However, for all
other rotations, a unique log function can be defined. Since
the set on which log fails to exist is a set of measure zero,
without loss of generality it is possible to exclude this set
when computing integrals. Moreover, since the support of ρ
is defined by the condition θ ≤ a < π, there is no issue.

The log function is odd in the sense that log(RT ) =
− log(R), as can be seen from (24). If ρ(R) is even in the
sense that ρ(R) = ρ(RT ), then the mean of ρ is the identity
element of SO(3), which is the identity matrix. Moreover, if
ρ is supported in a small ball around the identity, the values
of the first three integrals cancel, as in the case of the circle
and torus. The condition (23) means that, just like in the torus
case, the eigenvalue inequality

1

4

∫
SO(3)

log∨(R) (∇ρ)(∇T ρ)[log∨(R)]T

ρ
dR ≤ a2

4
tr[F ] I

results, and hence (18) applies to the SO(3) case with n = 3.



IV. CONCLUSIONS

Matrix versions of Wirtinger’s scalar inequality (well-known
for the case of functions on circles, tori, and spheres), are
derived and generalized to rotation groups. From these, new
inequalities are then derived that relate the covariances of
probability density functions on spheres and rotation groups
with their Fisher information. These inequalities are different
than the Cramér-Rao bound, and can be used to estimate the
rate of increase of the entropy of a diffusion process.

REFERENCES
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