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Abstract. Path planning has long been one of the major research areas
in robotics, with PRM and RRT being two of the most effective path
planners. Though they are generally very efficient, these two sample-
based planners can become computationally expensive in the important
special case of narrow passage problems. This paper develops a path plan-
ning paradigm which uses ellipsoids and superquadrics to respectively
encapsulate the rigid parts of the robot and obstacles. The main benefit
in doing this is that configuration-space obstacles can be parameterized
in closed form, thereby allowing prior knowledge to be used to avoid
sampling infeasible configurations, in order to solve the narrow passage
problem efficiently. Benchmark results for single-body robots show that,
remarkably, the proposed method outperforms the sample-based plan-
ners in terms of the computational time in searching for a path through
narrow corridors. Feasible extensions that integrate with sample-based
planners to further solve the high dimensional multi-body problems are
discussed, which will require substantial additional theoretical develop-
ment in the future.

1 Introduction

Sample-based planners such as PRMs [1] and RRTs [2] (and a multitude of their
extensions, e.g [3, 4]) have demonstrated remarkable success. These methods
usually are based on polyhedral representations of robots and obstacles and
perform explicit collision detection to assess the feasibility of samples. These
methods have had a profound impact both within robotics and across other
fields such as molecular docking, urban planning, and assembly automation.

It is well known that despite the great success of these methods, the “narrow
passage problem” remains a significant challenge. The reason is that, generally
speaking, sample-based approaches use a strategy of sampling states in the whole
configuration space, followed by collision checking. When a robot and an obstacle
are found to be in collision, the corresponding sample is discarded. Then, valid
state configurations are connected by edges, where each edge is sub-sampled
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and collision checking is done along the edge. If any of the states on the edge
corresponds to a collision, the whole edge is discarded. This approach works
extremely well when the obstacles in the environment are sparse. But when
there is a narrow passage, an inordinate amount of computational time is spent
on the samples and edges that eventually will be discarded. To increase the
probability of sampling valid configurations in a narrow passage, various methods
have been proposed such as [5–8]. However, there is still no guarantee of finding
valid vertices efficiently within the corridor due to the probabilistic nature of
sampling and collision checking. Therefore the first goal of this paper is:

1. Extend our previous method of parameterizing a priori the free space [9],
and develop a planner so as to avoid traditional collision checking computations.

In the planner developed here, the basic objects are unions of ellipsoids for
the robot and superquadrics for environmental features. One reason to use su-
perquadrics is that they can characterize a wide range of the complex shapes
while requiring only a few parameters [10–12].

It is well known that for a single rigid body with a fixed orientation in
n-dimensional space, a “slice” of the configuration space (C-space) obstacle cor-
responding to this orientation is the Minkowski sum of the rigid body and the
obstacles in the workspace [13–17], denoted as a “C-layer” [18, 19]. There is
substantial literature on the computational complexity of Minkowski sums of
polyhedra and faceted approximations of ellipsoids [20–24]. Recently an exact
closed-form formula for n-dimensional ellipsoids was introduced and discussed
[25]. As a generalization of that, the closed-form Minkwoski sums of an ellip-
soid and an arbitrary convex differentiable shape embedded in n-dimensional
Euclidean space is presented here, with superquadrics being a typical exam-
ple. This is another essential reason for the choice of superquadrics objects as
environmental features in our new planner.

Minkowski sums characterize the C-space obstacles for the individual rigid
components in an articulated robot, and the feasibility of a robot’s configuration
corresponds to each rigid component of the robot in the complement of the union
of C-space obstacles. Consequently collision-free samples can be generated. How-
ever, if one seeks to connect such samples using current sample-based planning
paradigms like PRM or RRT, then collision checking is still required. Therefore,
the second goal of this paper is:

2. Develop guaranteed safe and efficient methods for connecting configura-
tions with different rotational components without performing traditional colli-
sion checking.

This applies the idea of the Kinematics of Containment for convex objects
[26], as well as detailed derivations for ellipsoids [27, 28]. It is shown in this paper
that one can enclose the robot by a slightly larger ellipsoid, so the allowable
motions of the robot being fully contained can be characterized as a convex
polyhedron, which is denoted by the “Local C-space” for a specific configuration.

As an evaluation, the performance of the proposed planner is compared with
the sample-based algorithms from the well-known “Open Motion Planning Li-
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brary (OMPL)” [29]. Path planning for planar motions, i.e. those on SE(2), are
demonstrated, with the robot being an ellipse and obstacles being superellipses.

The rest of the paper is organized as follows. Section 2 reviews the concepts
of Minkowski sum and difference, and extends the closed-form expressions for
Minkowski operations of an ellipsoid and a convex differentiable surface embed-
ded in n-dimensional Euclidean space so that the free space of individual robot
components can be parameterized. Section 3 reviews our previously proposed
Highway RoadMap algorithm for elliptical robot and obstacles, and extends the
idea to the ellipse-superellipse case. An idea of the “Local C-space” is then pro-
posed to connect configurations with different rotational components. We then
evaluate the efficiency and effectiveness of our algorithm on SE(2) by benchmark-
ing with probabilistic planners from OMPL, especially for the “narrow passage”
problem, in Section 4. We conclude with discussions in Section 5.

2 Mathematical Preliminaries

This section provides the mathematical preliminaries for the path planning algo-
rithm. At first, closed-form Minkowski sum and difference between an ellipsoid
and any surface with implicit and parametric expressions is derived. As a con-
crete representation of the environment, a surface in the form of a superellipse is
studied, where the closed-form Minkowski sum and difference between an ellipse
and a superellipse is derived explicitly.

2.1 Minkowski Sum and Difference between Two Convex Objects

The Minkowski sum and difference of two convex point sets (or bodies) each
centered at the origin, P1 and P2 in Rn, are defined respectively as [30]

P1⊕P2
.
= {p1 + p2 | p1 ∈ P1, p2 ∈ P2}, and P1	P2

.
= {p | p+P2 ⊆ P1}. (1)

Alternatively, the Minkowski difference of two convex bodies can be defined rela-
tive to the Minkowski sum as the body P ′1 = P1	P2 where P1 = P ′1⊕P2. While
it is relatively simple to mathematically define the Minkowski operations, cal-
culating useful representations of Minkowski sums or differences can be difficult
and computationally expensive, especially when the boundary of these regions
requires an explicit representation.

2.2 Closed-form Minkowski Operations between an Ellipsoid and a
General Convex Differentiable Surface Embedded in Rn

It has been observed that the Minkowski sum and difference between two el-
lipsoids can be computed in closed-form. The computational procedure can be
further extended when one ellipsoid is substituted by an arbitrary convex differ-
entiable surface embedded in n-dimensional Euclidean space (Rn).
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Assume that S1 is a hyper-surface embedded in Rn, with implicit and para-
metric forms being

Φ(x1) = 1 and x1 = f(ψ), (2)

where Φ(·) is a real-valued differentiable function of x1 ∈ Rn and f is a dif-
ferentiable n-dimensional vector-valued functions of ψ ∈ Rn−1. Let E2 be an
arbitrary ellipsoid in Rn, with semi-axis lengths a2 = [a1, a2, ..., an]>. Then, the
implicit and explicit equations are of the form x>A−22 x = 1 and x = A2u(ψ),
where A2 = R2Λ(a2)R>2 is the shape matrix of E2 where R2 ∈ SO(n) denotes
the orientation of the ellipsoid, and Λ(·) is a diagonal matrix. Here u(ψ) is the
standard parameterization of the n-dimensional hyper-sphere with parameters
ψ = [ψ1, ψ2, ..., ψn−1]>.

The affine transformation that shrinks the ellipsoid into a sphere with radius
r = min{a1, a2, ..., an} on the surface S1 can be expressed as x′

.
= Tx, where T =

R2Λ(r/a2)R>2 denotes the “shrinking” affine transformation, which is symmetric
and positive definite since Λ(r/a2) is diagonal and positive definite.

The implicit expression for the “shrunk” S1, denoted as S′1, is Φ(T−1x′) = 1.
Then the Minkowski sum between S′1 and E′2 (now is a sphere), is obtained by
computing the boundary of the offset surface with offset radius r as xofs =

x′ + rn′, where n′ = ∇Φ(T−1x′)
‖∇Φ(T−1x′)‖ is the outward normal of the surface and

∇Φ(T−1x′) = T−>∇Φ(x) with T−> = (T−1)> = (T>)−1 = T−1.
The Minkowski sum between the original surface S1 and ellipsoid E2 can be

given by “stretching” the transformed space back, using inverse affine transfor-
mation, as

xeb = T−1xofs = T−1(Tx + r
T−>∇Φ(x)

‖T−>∇Φ(x)‖
) = x + r

T−2∇Φ(x)

‖T−1∇Φ(x)‖
(3)

The Minkowski difference S1	E2 therefore can be obtained by switching the
plus sign in Eq. (3) to minus. However, for the Minkowski difference, a “curvature
constraint” should be satisfied: after the “shrinking” operation, the curvature of
every point on the transformed surface S′1 should be smaller than the curvature
of the transformed ellipsoid E′2.

2.3 Explicit Expressions of the Closed-form Minkowski Operations
between an Ellipse and a Superellipse

We now give a concrete example for the closed-form Minkowski operations when
the surface is a 2D superellipse. This formulates a mathematical representation
for the implementation in this paper.

The implicit and explicit equations for a superellipse S1 in R2 are defined as

Φ(x) =

(
x1
a1

) 2
ε

+

(
y1
b1

) 2
ε

= 1, and x =

(
x1
y1

)
=

(
a1 cosε θ
b1 sinε θ

)
, −π ≤ θ ≤ π,

(4)
respectively. The shape described by the above function changes with ε. We
only consider the case of 0 < ε < 2 to ensure the convexity of the corresponding
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(a) Both bodies are rotated
clockwise with an angle θ2.

(b) Both of the bodies are
shrunk until ∂E2 becomes a cir-
cle.

(c) The Minkowski sum in
the shrunk space is an offset
surface (the shaded area).

(d) Transform back to the origi-
nal space. The shaded region rep-
resents S1 ⊕ E2.

Fig. 1. Algorithm for obtaining the characterizations of the Minkowski sum between
a superellipse S1 and an ellipse E2.

shape. Then the normal vector of the superellipse can be obtained by calculating

the gradient of Φ(x1, y1) as ∇Φ(x1(θ), y1(θ)) =
2

ε

(
cos2−ε θ/a1
sin2−ε θ/b1

)
.

Suppose an ellipse is defined by the parameters a2 = [a2, b2]> and its ori-
entations be characterized as R2 = R(θ) ∈ SO(2). If we further define r =
min{a2, b2}, then the “shrinking” transformation can be computed as T =
R2Λ(r/a2)R>2 . Now we have all the information to calculate the closed-form
Minkowski sum and difference between an ellipse and a superellipse, i.e. S1⊕E2

and S1 	 E2 respectively. Fig. 1 illustrates the computational process.

3 The Highway RoadMap Path Planning Algorithm for
Ellipsoidal Robots: Reviews and Extensions

With the definition of the exact closed-form contact boundary of an ellipsoid
and a superquadrics obtained in Sec.2.3, path planning problems can be solved
effectively. In this section, the “Highway RoadMap” algorithm [9, 31] which takes
advantage of the knowledge of collision-free C-space a priori is briefly reviewed.
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Algorithm 1: Highway RoadMap Algorithm

Input: Robot; Obstacle; Arena; EndPoint
Output: Graph; Path

1 Rot = Discretized Orientations;
2 foreach Rot do
3 CObs, CArena ← Minkowski Operations between Robot and Obstacle, Arena;
4 CellCF ← Cell Decomposition by Sweep-Line Process;
5 Graph← Vertex Generations and Edge Connections Within the C-Layer;

6 end
7 Graph← Connect Closest vertices among Adjacent C-Layers;
8 Path← Graph Search Process;

An extension for configuration connections with different rotational components
is developed.

3.1 Overview of the Highway RoadMap Algorithm

The Highway RoadMap system is built based on the idea of cell decomposition
at each orientation of the robot. At first, the orientations are discretized from
the configuration space. Then, at each fixed orientation, a subset of the C-space
that only contains translational motions is built, denoted as a “C-layer”. The
roadmap system is built by first decomposing each C-layer into disjoint collision-
free cells, and connecting vertices between adjacent C-layers. At each C-layer,
The closed-form Minkowski sum and difference are computed between the robot
and the obstacles and arenas, respectively 4. Note that for the sake of simplicity,
one can always make the arena larger enough in comparison to the robot, so
that the “curvature constraint” of Minkowski difference is not activated. Once
the Minkowski operations are applied, the configuration space with C-obstacles
is constructed, then the free space can be characterized and decomposed into
disjoint collision-free cells. A subset of the roadmap can be constructed by de-
tecting the middle point at each boundary of the adjacent cells as a vertex and
connecting edges between two vertices. The entire roadmap system can then be
constructed by connecting vertices among adjacent C-layers.

This procedure is based on our previously published work which uses two
ellipsoids [9]. In this paper, we extend this description by using superquadrics,
and propose a new method to connect vertices among different C-layers. The
planning algorithm is illustrated in Algorithm 1.

3.2 A Sweep-Line Process for the Cell Decomposition within One
C-Layer

Within one C-layer, the motion of a robot is restricted to translations only, and
the Minkowski operations are applied here to obtain C-space obstacles and are-

4 Here the word “arena” denotes the bounded area in which the robot and obstacles
are contained.
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Fig. 2. The cell decomposition at one C-layer. Black superelliptical objects: obstacles;
blue curves: the closed-form Minkowski sum and difference boundaries; thin black line
segments: the sweep lines parallel to x-axis; black dots: collision free vertices within
the C-layer; thick black line segments: collision free edges that connect vertices.

nas. To address this, a process similar to the “sweep line” method to decompose
the collision-free space as disjoint cells has been proposed [32].

Suppose that the robot is constructed by a finite union of M ellipsoids
E1, E2, . . . , EM , and the transformations between the first ellipsoid E1 and
other ellipsoids E2, E3, . . . , EM are defined as g2, g3, . . . , gM respectively. Let
the collision-free C-space for each ellipsoid Ei be denoted as Ci (i = 1, . . . ,M).
Then the collision-free space for the whole robot can be characterized as a union
of them as viewed in the body frame of first ellipsoid, i.e. C = C1 ∩ (g2 · C2) ∩
(g3 · C3) ∩ · · · ∩ (gM · CM ), where gi · Cj

.
= RiCj + ti(i, j = 1, ...,M).

In order to detect those regions, a set of sweep lines parallel to the x-axis are
generated. Each sweep line intersects with all the curves, with the intersecting
points saved as pairs or intervals. Denoting the line segments within the obstacles
as POi , and those within the arenas as PAi , the collision-free line segment PCF
for each sweep line can be represented as

PCF =

MA×M⋂
i=1

PAi −
MO×M⋃
j=1

POi (5)

where MA and MO are numbers of superquadrics that represent arenas and
obstacles respectively. Figure 2 shows the decomposed C-space at one layer with
collision-free cells highlighted by horizontal raster lines.

3.3 A Local Planner for Vertex Connections between C-Layers

Since each C-layer only represents one orientation of the robot, one must connect
the subgraphs among different C-layers so that the robot can transform between
different layers by rotations. It is always beneficial to find a continuous collision-
free space that can enclose all the steps along the edge between two vertices.
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Therefore, we propose a local planner to build a continuous convex C-space that
allows the robot to move between two configurations in different C-layers.

The basic idea is to enclose the actual robot within a slightly larger ellipsoid,
i.e. scale the actual robot up by a factor of ε = 0.1. Then the robot is allowed
to move small amounts inside the larger ellipsoid without collisions. Such mo-
tions can be described locally in the C-space, denoted as “Local C-space”. The
local C-space becomes collision-free if the Minkowski operations are performed
using the larger ellipsoid, and the descriptions of the local C-space can be done
before building the roadmap a priori. Once the local C-space of the two ver-
tices intersect, a new vertex can be generated within the intersecting area and
connected to the two vertices. The following subsections introduce in detail the
characterizations of the local C-space and the procedure to connect two vertices
by a collision-free path.

Characterization of the Local C-space We first review the allowable mo-
tions of the smaller ellipsoid inside a larger ellipsoid, both of which can be de-
scribed in the n-dimensional case. The related study traces back to the concept
of the “Kinematics of Containment”, which deals with any convex body that
moves inside another [26]. A recent study of a special case, in which both bodies
are n-dimensional ellipsoids, can be applied here [27].

Given two n-dimensional ellipsoids Ea and Eb, with Ea ⊆ Eb, we let a =
[a1, a2, ..., an]>,b = [b1, b2, ..., bn]> ∈ Rn denote the semi-axes of Ea and Eb
respectively. By substituting the explicit expression of the moving ellipsoid Ea
into the implicit expression of the fixed ellipsoid Eb that is aligned with the
world frame, the algebraic condition for Ea to move inside Eb without collision
can be written as

(RaΛ(a)u + ta)>Λ−2(b)(RaΛ(a)u + ta) ≤ 1. (6)

This highly nonlinear expression can be simplified by a small angle approxi-
mation. If Ea is restricted to infinitesimal motions, the rotation part calculated
by exponential map can be approximated to the first order as

Ra = exp(ω̂a) ≈ I + ω̂a, (7)

where ω̂a ∈ so(n). Grouping parameters (u) and variables (ω and t) gives the
first-order approximation of the left-hand side of the algebraic condition of con-
tainment as

Cu(ξ) = ξ>H(u)ξ + h>(u)ξ + c(u), (8)

where H(u) ∈ Rn(n+1)/2×n(n+1)/2, h(u) ∈ Rn(n+1)/2 and c(u) ∈ R. The first
order algebraic condition of containment is then defined as Cu(ξ) ≤ 1.

It can be further proved that Eq. (8) is a family of convex functions, with
parameters u and unknown variables ξ

.
= [ω>, t>]> ∈ Rn(n+1)/2. 5 As a result,

5 Explicitly, ω = log∨(R), R ∈ SO(n) and t ∈ Rn (t is the actual translation as seen
in the world reference frame). And the pair (R, t) forms the “Pose Change Group”,
i.e. PCG(n)

.
= SO(n)×Rn, with the group operation being a direct product, which

is different than SE(n)
.
= SO(n) o Rn (for more details, see [33]).
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(a) Edges between C-layers in the “Lo-
cal C-space”.

(b) A complete Highway RoadMap in C-
space.

Fig. 3. (a) A collision-free vertex connection scheme between adjacent C-layers. Blue
dots are the two vertices, V1 and V2, with convex polyhedron being their local C-
space. The green line segments connect V3 at the intersection and the two vertices
respectively. (b) The fully connected graph structure. The vertical axis represents the
rotational angle; black dots are valid vertices and line segments are collision-free edges.

enclosing several valid configurations by a convex hull gives a convex polyhe-
dron in the C-space of the smaller ellipsoid. This convex polyhedron describes
a collision-free subspace and any path inside is guaranteed to be collision-free.
The convex polyhedron is a lower bound of the actual local C-space, where the
first-order approximation works well when the rotational motion is small. There-
fore, not only the inflation factor ε, but the roundness of the ellipsoid also affects
the approximation. With the increase of the aspect ratio, which quantifies the
roundness, the convex lower bound takes larger portion of the volume related
to the actual local C-space. For more details about the performance of convex
lower bound of the local C-space, see [28].

Vertex Connections Based on the Convex Polyhedron Local C-space
To further connect two vertices, V1 and V2, by a collision-free path Path12, one
can first define a new middle vertex V3 that is inside the intersection of the
Local C-space of V1 and V2. Then connecting V1, V3 and V2, V3 by line segments
gives Path13 and Path23 respectively. These two path segments are guaranteed
to be collision-free since both are fully inside the convex polyhedron of V1 or V2.
Finally, the desired collision-free path is a combination of the two segments, i.e.
Path12 = Path13∪Path23. Fig.3 demonstrates the proposed connection scheme
for vertices in different C-layers, and a complete Highway RoadMap system in
the C-space with valid vertices being connected.

4 Experiments on Path Planning for a 2D Elliptical
Robot

As a demonstration of the extended Highway RoadMap algorithm, we consider a
2D single-body planning problem, where the robot is an ellipse and the arena and
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Table 1. Benchmark Parameters for Highway RoadMap and Sample-Based Planners
From OMPL.

Parameters Explanations

Maps Sparse, Cluttered, Maze
Samplers Uniform, Obstacle-based(OB), Bridge
Shapes Ellipse, SuperEllipse
NL Number of C-layers for Highway RoadMap
NSL Number of sweep lines for Highway RoadMap
NV Number of valid configurations
NE Number of valid edges that connect two valid configurations
NP Number of vertices in the collision-free path

obstacles are modeled as superellipses. To evaluate the performance of the pro-
posed algorithm, benchmarks are performed with three commonly-used sample-
based planners (PRM, RRT, RRT-Connect) from the well-known Open Motion
Planning Library (OMPL). Moreover, three different sampling methods are also
compared for the probabilistic planners: uniform random sampling (Uniform),
obstacle-based sampling (OB) [6] and bridge test (Bridge) [7]. This section de-
scribes the benchmark process and results, followed by some discussions and
potential extension in the future work. Our algorithm is implemented in C++
and all the comparisons are performed in an Intel Core i7 CPU at 3.60GHz.

4.1 Experimental Parameters

Our experimental parameters include two types of shapes for representing the
obstacles and define different kinds of maps for benchmark environments. The
obstacles are defined as ellipses and superellipses, and for each shape, three maps
are considered. We deal with a sparse map, where there are only a few obstacles
and the free space occupies a majority of the area; a cluttered map, where more
space is occupied by obstacles which are placed in different orientations; and
a maze map, where only some narrow passages are free. Those maps capture
different real life scenarios the robot might face, which can evaluate the perfor-
mance of difference algorithms. And the comparisons include the running time
for solving the problem and the success rate across multiple experimental trials.

For each map and each algorithm, we perform 50 planning trials and com-
pute the average planning time and success rate. Note that for the probabilistic
algorithms, a time limit of 60 seconds is set for one planning trial, which means
the planning fails if the time exceeds the limit. The list of parameters for our
comparisons is shown in Table 1.

Table 2 provides the implementation details for the Highway RoadMap plan-
ner, where the numbers of C-layers and sweep lines and the resulting vertices,
edges and valid vertices on the path are provided.
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Table 2. Implementation details of the parameters for Highway RoadMap planner

Shape Map NL NSL NV NE NP

Sparse 15 17 723 916 25
Ellipse Cluttered 20 35 3621 4828 37

Maze 50 40 10636 14699 486

Sparse 14 10 493 672 21
SuperEllipse Cluttered 14 25 2009 2547 72

Maze 55 30 9782 13450 554

4.2 Collision Checking Methods for the Sample-Based Algorithms

In sample-based methods, the majority of time is consumed in collision checking,
so the choice of a relatively fast collision checker is a priority. The standard and
widely-used collision checking library, “Flexible Collision Library (FCL)”, has
been applied in many scenarios [34], therefore we include FCL in our benchmark
process. In particular, a special and efficient ellipsoidal method from FCL is ap-
plied for the case of elliptical obstacles. Since the input parameters for describing
the ellipses for the planners used in our experiments are the same, the compar-
ison is fair. For the case of superellipses, the objects are treated as polygons,
and traditional collision checking for polygons is applied. To make the checking
process more efficient as for a relatively fair comparison, we characterize each
superellipse object by 10 discrete points on its boundary and construct triangu-
lation meshes as inputs for the polygonal collision checking. We select 10 points
on the boundary because a superelliptical object can be arbitrarily characterized
and the speed of collision checking is still fast.

4.3 Experimental Results

This section describes the experimental results for benchmarking, followed by
some discussions and potential extensions for future work.

Figure 4 shows the maps used for benchmark as well as the valid path High-
way RoadMap finds, which verifies the correctness of our implementation. As a
comparison, Fig. 5 shows the valid paths found by the three sampled-based plan-
ners from OMPL. Different sampling methods are also compared, and shown at
the bottom row. It is evident that either bridge or obstacle-based method sam-
ples more valid configurations inside the narrow corridor.

Figure 6 shows the planning time for different algorithms on different maps.
The “errorbox” plots demonstrate the statistics of the planning time among the
50 trials of the experiments. Although in the sparse map the Highway RoadMap
is almost twice as slow as the probabilistic planners, as the map becomes more
dense and cluttered, its speed increases slightly and it starts to take the lead
among other planners. It becomes more obvious in the maze map that the speed
of Highway RoadMap is much faster than the RRT-connect planner, which is
the most efficient among the three sample-based planners from the comparisons.
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(a) Ellipse, sparse (b) Ellipse, cluttered (c) Ellipse, maze

(d) SuperEllipse, sparse (e) SuperEllipse, cluttered (f) SuperEllipse, maze

Fig. 4. The maps with elliptical and superelliptical obstacles for benchmarking the
algorithms. The red and green ellipses are the robot at the start and goal configurations
respectively.

Furthermore, because of deterministic nature of the Highway RoadMap, it be-
haves much more stable among different trials, while sample-based planners have
relatively large variance. The choice of collision checking methods matters, since
the sample-based planners becomes slower when the obstacles are superellipses
and polygonal collision checking is applied. For the superellipse maze map, al-
most all the trials for the sample-based planners fail to find a solution within
the time limit. Therefore we only show the planning time comparisons for the
RRT-Connect planner, which illustrates that Highway RoadMap is more advan-
tageous when solving the “narrow passage” problem by having a higher quantity
of valid vertices in less computational time.

4.4 Discussion

The extended Highway RoadMap planner solves the path planning problems
on SE(2) in different scenarios efficiently. This is due to usage of a closed-form
expression of Minkowski sum and difference that explicitly characterizes the C-
space, in addition to the effectiveness of the cell decomposition method to solve
the “narrow passage” problem. On the other hand, the sample-based planners
are very efficient when the environment is sparse, but start to drop speed as
the space occupied by obstacles increases. This is because most of the sampled
configurations are discarded, so the “sample-check-discard-resample” process it-
erates much longer than in sparse environments.

The idea of “local C-space” gives a connection strategy for vertices on adja-
cent C-layers, which requires the existence of the intersection volume between
the local C-space of the two vertices. In the SE(2) case, a necessary condition for
this existence requirement is that the “gaps” between adjacent C-layers should
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(a) PRM/Uniform (b) RRT/Uniform (c) RRT-C/Uniform

(d) PRM/Bridge (e) RRT/Obstacle-based (f) RRT-C/Obstacle-based

Fig. 5. A demonstration of the paths found by sample-based planners with different
sampling strategies. The environment is the superellipse cluttered map. The blue dots
and line segments are valid configurations and edges.

be smaller that the largest rotational angle, therefore there is a trade-off be-
tween selecting the inflation factor and the number of layers. The largest angle
of rotation can be computed in closed-form, when fixing the smaller ellipse to
the center of the larger one.

The major current limitation of the Highway RoadMap planner, however, is
that its extension to solve high degree-of-freedom multi-body problems is not
yet clear. The computational complexity of a naive implementation would grow
exponentially as the dimension of the C-space increases. Addressing this problem
is a challenge for future work.

One of the direct extensions to the current implementation is to solve the
SE(3) planning problem, using a similar computational process. In fact, hy-
brid planners might be a promising solution, where one can either construct a
whole graph structure by sampling in SO(3) and then generate valid vertices
and edges in a similar fashion to the PRM method. A second option is to build
a tree structure by repeatedly sampling orientations with associated C-layers
until reaching the goal, similar to RRT. These possibilities potentially allow the
Highway RoadMap planner to solve higher dimensional planning problems with
narrow passages.

5 Conclusion

This paper proposes a closed-form characterization of Minkowski sums and differ-
ences between an ellipsoid and a general convex differentiable surface embedded
in Rn. As a specific demonstration, the Minkowski operations between a 2D el-
lipse and a superellipse are explicitly derived. These formulate the mathematical
basis for describing the configuration space of an elliptical robot with superel-
liptical obstacles. With prior explicit knowledge of the C-space, a path planning
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(a) Ellipse, sparse (b) Ellipse, cluttered (c) Ellipse, maze

(d) Superellipse, sparse (e) Superellipse, cluttered (f) Superellipse, maze

Fig. 6. Planning time comparisons between different algorithms.

problem can be solved by the proposed extended “Highway RoadMap” planner,
where configurations with different rotational components can be connected via
the procedure of generating the “Local C-space” for each configuration. A bench-
mark scheme with an elliptical robot and superelliptical obstacles is performed
using the Highway RoadMap and PRM, RRT and RRT-Connect planners from
the Open Motion Planning Library. Different sampling strategies for the narrow
passage problem are also applied to sample-based planners. The results show
that the extended Highway RoadMap outperforms the sample-based planners
on the cluttered and maze maps, where obstacles occupy much space. Finally,
potential extensions of the Highway RoadMap to higher dimensional planning
problems with narrow passages are discussed, which the authors plan to explore
more in the future. By combining the efficient explicit descriptions of the configu-
ration space presented here and the effectiveness of the sample-based planners on
high dimensional C-space, hybrid path planners can thereby potentially achieve
better performance in higher dimensional cluttered environment.
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