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Knowing the set of allowable motions of a convex body mov-
ing inside a slightly larger one is useful in applications such
as automated assembly mechanisms, robot motion planning,
etc. The theory behind this is called the “Kinematics of Con-
tainment (KC)”. In this article, we show that when the con-
vex bodies are ellipsoids, lower bounds of the KC volume can
be constructed using simple convex constraint equations. In
particular, we study a subset of the allowable motions for an
n-dimensional ellipsoid being fully contained in another. The
problem is addressed in both algebraic and geometric ways,
and two lower bounds of the allowable motions are pro-
posed. Containment checking processes for a specific con-
figuration of the moving ellipsoid and the calculations of the
volume of the proposed lower bounds in configuration space
(C-space) are introduced. Examples for the proposed lower
bounds in 2D and 3D Euclidean space are implemented and
the corresponding volumes in C-space are compared with
different shapes of the ellipsoids. Practical applications us-

∗Address all correspondence to this author. This manuscript is an ex-
tended version of the conference paper (ID: DETC2018-85851) presented
in ASME IDETC 2018, Quebec City, Quebec, Canada.

ing the proposed theories in motion planning problems and
parts-handling mechanisms are then discussed.

1 Introduction
Determining the allowable motions of an object in a

structured environment is of interest in the field of robot mo-
tion planning [1], computer-aided design (CAD) [2], and au-
tomated assembly [3], etc. This problem can be interpreted
as detecting whether an object in a specific pose (a posi-
tion and orientation pair) is fully contained inside of a void,
and computing how much volume such poses occupy in the
whole configuration space (C-space).

1.1 Motivations
Concretely in an assembly task, for instance, a robot ma-

nipulator is picking an object and trying to assemble it into
another part. Due to the errors propagated from each joint,
even with a fixed input control signal, the pose of the end
effector always has uncertainties. As a result, the union of
the object at all possible ending poses formulates an error
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(a) Parts-handling for a robot
manipulator with errors on the
end effector.

(b) Path planning for an elliptical
mobile robot being enclosed by a
larger elliptical void.

Fig. 1: Demonstration of the examples as motivations to the
Kinematics of Containment theory.

space. The target area can be inscribed by ellipsoids, be-
cause of the simplicity of the shape that uses fewer param-
eters. Once the error space is fully contained inside the tar-
get area, the object can always be safely placed into the tar-
get. Further, the description of all the allowable motions in
C-space of the object to be successfully placed into the tar-
get evaluates the robustness of the manipulator. Developing
convenient methods for such problems would be helpful for
the interval analysis of kinematic errors. And an important
real-life application is the manipulators design for automated
micro-assembly tasks, which requires precise robotic tools
with guaranteed performance metric [4].

Furthermore, for a robot motion planning problem, as
another example, sample-based planners such as PRM [5],
RRT [6], RRT-Connect [7] have been well known for years
and proved to be probabilistic complete and efficient in prac-
tice. However, large amounts of computations for collision
detection between the robot and obstacles are required when
dealing with narrow passage problems. Therefore, it is bene-
ficial to develop efficient configuration construction and con-
nection strategies in the C-space so that the traditional col-
lision checking can be avoided. One of the solutions is to
slightly enlarge the robot by a convex body so that it is able
to move safely inside. Once a convex subspace of the space
of all its allowable motions can be computed, any path in-
side that subspace is guaranteed to be collision-free. Then,
connecting two safe configurations remains simply finding a
path within the convex subspace.

Figure 1 demonstrates the assembly process and the mo-
tion planning problem described above, which motivates the
work in this article.

1.2 The Goal of This Article
One way to query whether the moving ellipsoid at a spe-

cific configuration is in collision with the fixed one is to per-
form collision detection, where [8,9] give fast ways to check
collisions. Moreover, [10] computes the signed distance be-
tween two overlapping ellipsoids, which gives an algorithm
to check whether one ellipsoid is contained in another. How-
ever, collision detection cannot fully describe the C-space of
the allowable motions of the moving object, and this is where
the concept of the Kinematics of Containment (KC) [11] fits

in.
The KC theory discusses how to identify and describe

the allowable motions of a convex body being fully con-
tained inside a slightly larger one, and provides an efficient
way to compute the range of the restricted motions. The
KC theory is further applied in [12], where a closed-form
hyper-spherical representation as a lower bound for the al-
lowable motions when the convex objects are ellipsoids was
proposed. Based on those work, the contributions of this ar-
ticle are summarized as follows:
(1) Two lower bounds of the allowable motions based on the
algebraic and geometric conditions of containment are de-
veloped respectively;
(2) Efficient containment checking process of a specific con-
figuration for each lower bound is proposed;
(3) The computations of the occupied volumes for the two
proposed lower bounds are performed and compared; and
(4) Applications in motion planning problems and parts-
handling mechanisms are discussed.

The remainder of this article is organized as follows. In
Section 2, we review the general concept of the Kinematics
of Containment theory. Then in Section 3, we formulate the
algebraic and geometric conditions for one n-dimensional el-
lipsoid being fully contained in another. Further in Section 4,
we propose a convex lower bound for the allowable motions
of the smaller ellipsoid based on the approximated algebraic
condition of containment. In Section 5, we then propose a
geometric lower bound based on the closed-form Minkowski
difference between two ellipsoids. To make the lower bounds
useful, in Section 6, we introduce the containment checking
processes for the two lower bounds and the computations of
the occupied volumes of allowable motions in C-space. In
Sections 7 and 8, we perform numerical experiments in the
2D and 3D cases respectively, and compare the performance
of the two proposed lower bounds. In Section 9, we dis-
cuss applications on a configuration connection strategy in a
robot motion planning paradigm, and the error estimations
and evaluations of a parts-handling task for a robot manipu-
lator. We conclude in Section 10.

2 The Kinematics of Containment: A Review of the
General Concepts
The Kinematics of Containment (KC) addresses the

range of allowable motions for one convex body in Rn be-
ing completely inside of another, and provides a simple ex-
pression to compute the volume of such motions in the group
of rigid-body motions, SE(n) [11]. The derivations are based
on the Principal Kinematics Formula (PKF) [13,14] from the
field of integral geometry.

PKF studies the range of possible motions when two
convex bodies, Ka and Kb in Rn, intersect to each other.
Such a range of motions can be characterized by the indica-
tor function ι(·), which is defined as 1 when the argument is
nonempty and 0 otherwise. Therefore, when the two convex
bodies intersect, i.e. ι(g ·Ka∩Kb) = 1 (assuming Ka is mov-
ing and Kb is fixed, g∈ SE(n) and g ·Ka

.
=RKa+t defines the

group action on the rigid body Ka, where R ∈ SO(n) denotes
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the orientation and t ∈ Rn is the translation of the body), the
volume of such motions can be computed as, when n = 2,

V SE(2)
PKF =

∫
SE(2)

ι(g ·Ka∩Kb)dg

= 2π[A(Ka)+A(Kb)]+P (∂Ka) ·P (∂Kb),

(1)

where A and P are the area and perimeter of a planar object
respectively, and dg is the bi-invariant integral measure for
SE(n). When n = 3,

V SE(3)
PKF =

∫
SE(3)

ι(g ·Ka∩Kb)dg

=8π
2[V (Kb)+V (Ka)]+2πF (∂Kb)M (∂Ka)

+2πF (∂Ka)M (∂Kb),

(2)

where V is the volume of a spatial body, and F and M are
the surface area and the integral of mean curvature of the
bounding surface enclosing a spatial body respectively.

Different from PKF, the KC theory deals with the case
when the moving Ka is completely contained inside Kb, i.e.
ι(g ·Ka ⊆ Kb) = 1. Then the volume of all possible motions
of Ka can be expressed as, when n = 2,

V SE(2)
KC =

∫
SE(2)

ι(g ·Ka ⊆ Kb)dg

= 2π[A(Ka)+A(Kb)]−P (∂Ka) ·P (∂Kb),

(3)

and when n = 3,

V SE(3)
KC =

∫
SE(3)

ι(g ·Ka ⊆ Kb)dg

=8π
2[V (Kb)−V (Ka)]−2πF (∂Kb)M (∂Ka)

+2πF (∂Ka)M (∂Kb).

(4)

The general KC theory provides the above clean and
simple expressions for volume computations of the allow-
able motion space for arbitrary convex bodies.

Moreover, the volume expressions for the PKF and KC
are also related to the Minkowski sum and difference be-
tween the two convex bodies with fixed orientations. Con-
cretely and taking the volume of KC C-space as an example,
the volume expression can be rewritten, for SE(n), as [11]

V SE(n)
KC =

∫
SE(n)

ι(g ·Ka ⊆ Kb)dg

=
∫

SO(n)

∫
Rn

ι(t · (R ·Ka)⊆ Kb)dtdR

=
∫

SO(n)
V (Kb	 (R ·Ka))dR,

(5)

where 	 denotes the Minkowski difference between two
bodies.

The integrand is the volume of the Minkowski differ-
ence [15] between Kb and a rotated version of Ka, and the
total volume of KC C-space can be computed by integrating
over the rigid-body rotation group. Throughout this article,
we specifically use Eq. (5) as a reference to evaluate the
relative volumes of different lower bounds, denoted as the
volume of the “actual” KC C-space. Note that Eq. (3)-(5)
that extend from PKF to KC are heuristic with the follow-
ing conditions being hold: the moving Ka is required to kiss
the inner wall of Kb at one point while being fully contained
at all orientations; in addition, the Minkowski difference be-
tween the two convex bodies is also required to exist at every
orientation and be convex.

In the applications that motivate this work, not only the
volume of motions is important, but getting a clear expres-
sion to describe that space plays another essential role. The
latter problem can be addressed when the convex bodies are
ellipsoids, where the actual motion space is lower bounded
by the bounding volume. And the characterizations of such
subspace are what this article mainly focuses on.

3 Mathematical Formulations: the Algebraic and Geo-
metric Conditions of Containment
This section introduces the basic mathematical concepts

that will be applied throughout the whole article, and pro-
vides both algebraic and geometric conditions for one n-
dimensional ellipsoid being fully contained in another.

3.1 Configuration Space of an N-Dimensional Ellipsoid
An n-dimensional ellipsoid can be implicitly repre-

sented by (x− t)>A(x− t) = 1, and the eigenvalue decom-
position of A = RΛ−2(a)R> gives the semi-axis lengths and
orientation of the ellipsoid, where Λ(·) denotes a diagonal
matrix. This “inside-outside” equation can be applied to
check whether a given point x0 is inside of the ellipsoid or
not, i.e. the point is inside (in the interior or on the bound-
ary of the ellipsoid) if (x0− t)>A(x0− t) ≤ 1. Further, the
explicit expression can then be defined as x = RΛ(a)u+ t,
which gives a quick way to sample a point on the boundary
of the ellipsoid.

The allowable motions of the moving ellipsoid Ea can
be described by the displacement of its center (as a transla-
tion t∈Rn) and the orientation (as a rotation R∈ SO(n)) with
respect to the fixed ellipsoid Eb. Such a rotation and trans-
lation pair forms a Lie Group called “Pose Change Group”
(PCG) as (R, t) ∈ PCG(n) .

= SO(n)×Rn [16]. The corre-
sponding Lie algebra can be obtained by logarithm map as
ξ = [ω>, t>]> ∈ Rn(n+1)/2. The Lie Algebra element can be
transformed back to the Lie Group by exponential map, i.e.
(exp(ω̂), t) ∈ PCG(n) 1.

An element in PCG(n) specifies a configuration of the
moving ellipsoid, and all of the configurations formulate the
configuration space (C-space) [17]. The subset of the whole

1The mappings for the pose change group between the Lie Group and its
Lie Algebra are different than the exponential and logarithm for SE(n).
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C-space where the moving ellipsoid is fully contained in an-
other fixed ellipsoid without any collision is denoted as the
“Kinematics of Containment C-space (KC C-space)”. The
choice of PCG(n) provides a correct and natural way to rep-
resent a pose of the body and compute the change of poses
as seen from the fixed world reference frame. In particular,
the vector t, which is the actual translation as seen in the
world frame, remains the same when performing the expo-
nential mappings between Lie group and Lie algebra. This
is convenient from the computational aspect. On the other
hand, for the conventional SE(n) representation, the trans-
lation part will change and have different meanings through
the exponential maps.

Moreover, the volume computations of the KC C-space
in PCG(n) follows the same fashion as in SE(n), where the
rotation and translation parts can be split as

∫
PCG(n)

f (R, t)dtdR =
∫

SO(n)

∫
Rn

f (R, t)dtdR, (6)

where f (·) denotes a general function.

3.2 The Algebraic Condition of Containment
The semi-axes of Ea and Eb are denoted as a =

[a1,a2, ...,an]
>,b = [b1,b2, ...,bn]

> ∈ Rn respectively. By
substituting the explicit expression of the moving ellipsoid
Ea into the implicit expression of the fixed ellipsoid Eb that
is aligned with the world frame, the algebraic condition for
Ea to move inside Eb without collision can be written as [12]

(RaΛ(a)u+ ta)
>

Λ
−2(b)(RaΛ(a)u+ ta)≤ 1, (7)

where u is the explicit expression of an n-dimensional sphere
with ‖u‖= 1.

For this highly nonlinear expression, a small angle ap-
proximation can make it much simpler, where some better
properties, such as convexity, can be proved. If the rotation
of Ea is restricted, the rotation part calculated by exponential
map can be approximated to the first order as

Ra = exp(ω̂a)≈ I+ ω̂a, (8)

where I ∈ Rn×n denotes an identity matrix, ω ∈ so(n) is the
Lie algebra of R, and ·̂ denotes the “hat” operation that maps
an n-dimensional vector into a skew-symmetric matrix.

Substituting Eq. (8) into Eq. (7) and grouping parame-
ters (u) and variables (ω and t) gives the approximation of
the left-hand side of the algebraic condition of containment
as

Cu(ξ)
.
= ξ

>H(u)ξ+h>(u)ξ+ c(u), (9)

where H(u) ∈ Rn(n+1)/2×n(n+1)/2, h(u) ∈ Rn(n+1)/2 and
c(u) ∈ R. The first order algebraic condition of containment

Table 1: Confusion matrix for the actual algebraic condition
in Eq. (7) of containment and its approximation in Eq. (10).

Actual Approx. (2D) Actual Approx. (3D)

(2D) True False (3D) True False

True 1858 1771 True 2404 951

False 0 6371 False 0 6645

is then defined as

Cu(ξ)≤ 1. (10)

The approximation is a subset (or a lower bound) of the
actual algebraic condition of containment in the sense that
Eq. (10) implies Eq. (7) and the reverse is not true. This
statement is verified by numerically sampling 10000 random
configurations and testing the status of Eq. (7) and Eq. (10)
respectively. The result is shown as a confusion matrix in
Tab. 1 for both the 2D and 3D cases. From the experi-
ment, when the approximation returns “True” (Ea is fully
contained in Eb), the actual containment condition is always
“True”, which implies that all the configurations that satisfy
the approximation also satisfy the actual algebraic condition
of containment.

3.3 The Geometric Condition of Containment
The KC C-space boundary can also be determined in a

geometric way: For each fixed orientation of Ea, the trajec-
tory of its center when just touching Eb is generated by the
Minkowski difference between the two ellipsoids. And the
whole actual KC C-space boundary can be constructed as a
union of those Minkowski differences at all possible orienta-
tions.

For two n-dimensional ellipsoids, the Minkowski dif-
ference can be calculated in explicit closed-form efficiently
[18], by first shrinking Ea into a sphere (E ′a) and computing
an offset curve. The constraint for such derivation requires
the curvature of the ellipsoid at every point after shrinking
must be smaller than the curvature of the sphere. Another
implementation for Minkowski difference between two el-
lipsoids is introduced in Ellipsoidal Toolbox [19], which is
used throughout this paper to generate the exact KC C-space
as a reference for comparison.

The explicit boundary of the Minkowski difference can-
not be applied directly in the KC theory, because it is non-
trivial to determine whether a point is inside only from the
knowledge of the parametric boundary expression. As a re-
sult, it is important to find a lower bound for the KC C-space
that has a simple expression, making such a querying pro-
cess easy and fast. Inspired by the shrinking process in the
closed-form solutions, a geometric lower bound can be ob-
tained from computing the extreme distance for the sphere
to move along each semi-axis of the ellipsoid in the shrunk
space.
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4 A Convex Lower Bound Based on the Approximated
Algebraic Condition of Containment
This section starts from showing that the approximation

of the algebraic condition is convex, so that given some con-
figurations, the interior of their convex hull is a safe subset
and can be treated as a lower bound of the KC C-space. Then
this convex lower bound can be constructed as a convex poly-
hedron using several extreme vertices.

4.1 Convexity of the Approximated Algebraic Condi-
tion of Containment

The approximated algebraic condition must be satisfied
over all ui in the unit sphere, which is equivalent to

max
∀ui

Ci(ξ) = max
∀ui

[ξ>H(ui)ξ+h(ui)
>

ξ+ c(ui)]≤ 1 (11)

We first show that the left-hand side of (11) is convex as fol-
lows.

Proof. For any fixed ui (i = 1, ...,m), given ξ1,ξ2 ∈
Rn(n+1)/2,

Ci(αξ1 +(1−α)ξ2)− [αCi(ξ1)+(1−α)Ci(ξ2)]

=[(αξ1 +(1−α)ξ2)
>H(ui)(αξ1 +(1−α)ξ2)

+h(ui)
>(αξ1 +(1−α)ξ2)+ c(ui)]

−[α(ξ>1 H(ui)ξ1 +h(ui)
>

ξ1 + c(ui))

+(1−α)(ξ>2 H(ui)ξ2 +h(ui)
>

ξ2 + c(ui))]

=−α(1−α)[(ξ1−ξ2)
>H(ui)(ξ1−ξ2)],∀α ∈ [0,1].

(12)

The above expression is non-positive if and only if (ξ1 −
ξ2)
>H(ui)(ξ1− ξ2) ≥ 0, or equivalently, H(ui) is symmet-

ric positive semi-definite. By direct calculations for the
quadratic part, we have, ∀ξ ∈ Rn(n+1)/2,

ξ
>H(ui)ξ = (ω̂aΛ(a)ui + ta)

>
Λ
−2(b)(ω̂aΛ(a)ui + ta).

(13)
Since Λ−2(b) is diagonal with non-negative entries on diag-
onal, Eq. (13)≥ 0, which means that H(ui) is symmetric and
positive semi-definite. Hence, each condition function Ci(ξ)
is convex. And since maximization preserves convexity [20],
maxCi(ξ) is convex, which concludes the proof.

From the convexity of maxCi(ξ j), if for two ex-
treme points ξ1,ξ2, maxCi(ξ j) ≤ 1, j = 1,2 hold, then
for points on the line segment between them, αξ1 + (1−
α)ξ2,∀α ∈ [0,1], maxCi(αξ1 +(1−α)ξ2)≤ αmaxCi(ξ1)+
(1−α)maxCi(ξ2) ≤ 1 is also satisfied. Hence points inside
the convex hull of the extreme points also satisfy the approx-
imated algebraic condition of containment.

4.2 Finding extreme vertices that represent the polyhe-
dron

Now we search for the extreme points of the polyhedron
by the following 2 cases: (1) extreme points that lie on each

axis of the C-space; (2) points that have the largest magni-
tude.

Extreme points in each axis can be simply found by fix-
ing the other axis lengths to zero. Since in each axis, there
are 2 extreme points (positive and negative), we get 2n points
for the first case, where n is the dimension of the configura-
tion space.

For the vertices that have largest magnitude, we seek to
maximize the squared norm of ξ, with the constraint being
the algebraic condition as

ξ
∗ = argmaxξ

>
ξ s.t. Ci(ξ)≤ 1 (i = 1, ...,m). (14)

Since the objective function is quadratic, the solutions for
each variable have 2 possibilities, so the total number of so-
lutions can be up to 2n. However, not all of those possibilities
are feasible solutions, meaning that we have to validate them
by substituting back to the constraint inequalities.

5 A Geometric Lower Bound Based on the Minkowski
Difference between Two Ellipsoids
In this section, we first review and derive a more ex-

plicit expression for the closed-form Minkowski difference
between two ellipsoids. Further, a convex polyhedron as a
lower bound for the Minkowski difference boundary is de-
veloped by computing the extreme points at each semi-axis
of the ellipsoid in the shrunk space.

5.1 Review of the Closed-Form Minkowski Difference
between Two N-Dimensional Ellipsoids

The closed-form Minkowski difference between two
ellipsoid first applies an affine transformation to shrink
the smaller ellipsoid Ea into a sphere E ′a with radius r .

=
min(a1,a2, ...,an) [18]. The resulting space is denoted as a
“shrunk space”, and the original Eb is transformed into E ′b as

x′ = RaΛ
−1(a/r)R>a x .

= T−1x, (15)

where T = RaΛ(a/r)R>a .
The implicit expression for the boundary of E ′b is

Φ(x′) = x′>B′−2x′ = 1, where B′−2 = T B−2T . The
Minkowski difference between E ′b and E ′a can be obtained
by computing the offset surface with offset radius r as

xo f s = x′− rn′, (16)

where n′ = ∇Φ(x′)
‖∇Φ(x′)‖ is the outward normal of the surface and

∇Φ(x′) = 2B′−2x′. Then the Minkowski difference between
the two ellipsoids Ea and Eb can be given by “stretching” (in-
verse of the previous affine transformation) the shrunk space
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Fig. 2: Demonstration of the computational procedure of the
closed-form Minkowski difference between two ellipsoids.

back as

xeb = T xo f s = T (x′− rn′) = T (T−1x− r
T B−2T T−1x
‖T B−2T T−1x‖

)

= x− r
T 2B−2x
‖T B−2x‖

= Bu(φ)− r
T 2B−1u(φ)
‖T B−1u(φ)‖

.

(17)
The computational procedure is demonstrated in Fig. 2.

5.2 Extreme Distance that a Sphere Can Move Along
Each Semi-Axis of an Ellipsoid in Rn

Inspired by the derivations above, the geometric lower
bound can be obtained from the extreme distance that E ′a can
move along each semi-axis of E ′b in the shrunk space. It can
be further observed E ′b is still an ellipsoid, whose semi-axis
length and orientation can be computed by eigenvalue de-
composition of the transformed shape matrix T Λ−2(b)T =

R′Λ−2(b′)R′>. For simplicity, E ′b is further rotated by R
′>

to align with the world frame. The extreme distance at each
semi-axis happens when E ′a just touches E ′b, the condition of
which is stated as follows.

Suppose x0 = [x1,x2, ...,xn]
> ∈ ∂Eb′ is a point on the el-

lipsoid surface, it should also be on the surface of the sphere,
and the outward normals of both surfaces at x0 should lie on
the same line. Then, the problem becomes simultaneously
solving

x>0 Λ
−2(b′)x0 = 1, (18a)

(x0−dei)
>(x0−dei) = r2, (18b)

2Λ
−2(b′)x0 = 2k(x0−dei), (18c)

where d is the extreme distance at the ith semi-axis, and k is
a scalar indicating the outward normal of both surfaces lies
on the same line. The solution can be obtained as

d∗i =


1

b′j∗

√(
b′2j∗ −b′2i

)(
r2−b′2j∗

)
, r ≥ b

′2
j∗/b′i

b′i− r, r < b
′2
j∗/b′i,

(19)

where j∗ = argmax j 6=i(b′j).

Proof. Without loss of generality, we limit the range of the
extreme distance to be d∗i ∈ [0,b′i − r]. The upper bound,
which is the largest distance that E ′a can move along each
semi-axis. Expanding Eq. (18c) and defining B′ .= Λ−2(b′)
gives

(B− kI)x0 =−kdei. (20)

Since B− kI is diagonal, Eq. (20) holds in just two cases:
(I) x0 = xiei (xi 6= 0); or
(II) x0 = xiei +∑ j x je j, where ∀ j,k = b

′−2
j (i 6= j, xi,x j 6= 0).

Geometrically, case (I) or (II) happens when the vector from
origin to the touching point is or is not parallel to the ith semi-
axis respectively. As a result, those two cases cover all pos-
sible situations of the solution.

Case (I): when x0 = xiei (xi 6= 0), Eq. (18a) and (18b)
become x2

i b
′−2
i = 1 and d2−2xid + x2

i − r2 = 0 respectively.
Solving for d gives d = xi± r = ±b′i± r. Combining with
the range of the extreme distance, we have

d∗i = b′i− r. (21)

Case (II): Substituting x0 into Eq. (18a) and (18b) gives

∑
j
(x2

jb
′−2
j )+ x2

i b
′−2
i = 1, (22a)

∑
j
(x2

j)+(xi−d)2 = r2. (22b)

Since ∀ j,b
′−2
j = k are the same, it can be grouped out from

the summation in Eq. (18a) as

b
′−2
j ∑

j
(x2

j)+ x2
i b
′−2
i = 1. (23)

Further, by substituting the equation for the sphere into the
equation for the ellipsoid, we obtain

b
′−2
j [r2− (xi−d)2]+ x2

i b
′−2
i = 1. (24)

Using the condition k = b
′−2
j , Eq. (20) becomes

(b
′−2
i −b

′−2
j )xi =−b

′−2
j d, (25)

where xi and b′i are fixed since the touching points are fixed
once the shapes of the ellipsoid and sphere are given. The
index j can be searched when b′j∗ is the maximum of all the
semi-axes other than b′i, because the extreme distance should
be the minimum among all possible values. Therefore we
have

j∗ = argmax
j 6=i

(b′j). (26)
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Fig. 3: Demonstration of polyhedron lower bound for
Minkowski difference boundary in the shrunk space and ac-
tual C-space.

Combining Eq. (24), (25) and (26) and solving for d gives

d∗i =
1

b′j∗

√(
b′2j∗ −b′2i

)(
r2−b′2j∗

)
. (27)

The critical value of the radius r between the two cases
can be calculated by equating (21) and (27) as

r = b
′2
j∗/b′i. (28)

And from the geometric point of view, when r is less than this
critical value, the sphere should touch the end point of the
ellipsoid at the ith semi-axis, which is in case (I); otherwise,
we should compute the extreme distance according to case
(II).

5.3 Polyhedron as a Lower Bound for the Minkowski
Difference Boundary at Each Orientation of the
Moving Ellipsoid

From the result (19), a convex polyhedron in the shrunk
space can be constructed by the extreme points at each semi-
axis of the ellipsoid. The polyhedron is guaranteed to be
in the interior of the true Minkowski difference boundary
since Minkowski difference between two convex sets are
convex. Also, since affine transformation preserves the con-
vexity [20], transforming back from the shrunk space still
gives a convex polyhedron which is a lower bound for the
Minkowski difference between the two original ellipsoids.
Figure 3 shows the idea of polyhedron lower bound for the
Minkowski difference in the shrunk space and the actual C-
space.

The polyhedron introduced above is defined at one spe-
cific orientation of the moving ellipsoid, and the union of
the polyhedron subset at all orientations of Ea formulates the
geometric lower bound of the KC C-space. Note that, this
lower bound is no longer a convex polyhedron any more, but
it is relatively simple in terms of querying an interior point
and computing the volume.

6 Containment Checking and Volume Computations
for the Lower Bounds of KC C-space
This section gives a review of how to query a point

Ptest ∈ Rn inside a polyhedron and compute the volume of
such an n-dimensional polyhedron. The processes can be di-
rectly applied for the Convex Lower Bound, and extended for
the Geometric Lower Bound.

Suppose the convex polyhedron is constructed by m ver-
tices {Pi} ∈ Rn, i = 1, ...,m. It can be decomposed into a
union of disjoint simplexes in Rn by Delaunay triangula-
tion [21]. For each simplex with n+ 1 vertices, i.e. Ps

i (i =
0, ...,n), the point inside should satisfy

Ptest =
n

∑
i=0

λiPs
i , where λi ∈ [0,1] and

n

∑
i=0

λi = 1. (29)

This condition can be formed in matrix form as[
Ptest

1

]
=

[
Ps

0 Ps
1 ... Ps

n
1 1 ... 1

][
λ0 λ1 . . . λn

]>
, λi ∈ [0,1](∀i)

(30)
The point Ptest is inside the simplex if the solution of the ma-
trix equation Eq. (30), [λ0, ...,λn]

>, satisfies λi ∈ [0,1](∀i).
Further, this point is inside the polyhedron if it is inside any
decomposed simplex.

Given the vertices of a convex polyhedron, the volume
can be computed as a sum of all the volumes of the decom-
posed simplexes as

Vpoly =
m

∑
i=1

V (i)
simplex(P

s
0,P

s
1, ...,P

s
n), (31)

where V (i)
simplex(P

s
0,P

s
1, ...,P

s
n) denotes the volume of the i-th

simplex with n+ 1 vertices Ps
0,P

s
1, ...,P

s
n. The volume of a

simplex in Rn defined by the n+1 vertices can be calculated
as [22]

Vsimplex =

∥∥∥∥ 1
n!

det(Ps
1−Ps

0,P
s
2−Ps

0, ...,P
s
n−Ps

0)

∥∥∥∥ (32)

For the Convex Lower Bound, the above computations
can be applied directly; and further for the Geometric Lower
Bound, since at each fixed orientation, the KC C-space is a
convex polyhedron, the same process can be used.

The containment checking for the Geometric Lower
Bound is given as follows: once a configuration ξtest =
[ω>test , t>test ]

> is given, we first transform the whole space via
the knowledge of ωtest , and query the translation part ttest
configuration in the shrunk space. For the volume, since the
polyhedron vertices are aligned with the semi-axes of the el-
lipsoid, and the two vertices on one semi-axis are symmetry
about the origin, the volume of the polyhedron becomes

V ′geo(Ra) =
2n

n!

n

∏
i=1

d∗i . (33)
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The actual volume after the inverse affine transformation can
be computed as

Vgeo(Ra) = det(T R′a)V ′geo(Ra) =
2n

n!
|Λ(a/r)|

n

∏
i=1

d∗i . (34)

The volume computed at each orientation of Ea is a function
of the rotation group, so the total volume can be calculated
by integration over all rotations as

Vtotal =
∫

R
Vgeo(R)dR. (35)

Explicitly for the case SO(2),

V SO(2)
total =

∫
π

−π

Vgeo(θ)dθ; (36)

and for the case SO(3),

V SO(3)
total =

∫
‖ω‖<π

Vgeo(R(ω))|det(J(ω))|dω, (37)

where analytically |det(J(ω))|= 2(1−cos‖ω‖)
‖ω‖2 [23].

7 Numerical Experiments in 2D
This section simulates the proposed convex and geomet-

ric lower bounds for the KC C-space in one rigid body 2D
ellipse case. We define a = [a1,a2]

> and b = [b1,b2]
> =

(1+ ε)a as the semi-axis lengths of the moving and fixed el-
lipses Ea and Eb. The constrained motion of Ea within Eb is
described as a rotation and translation pair (R, t) ∈ PCG(2).
For the convex lower bound which applies the algebraic con-
ditions, the expressions of matrix H, vector h and scalar c
have been calculated explicitly in [12]. And for visualiza-
tion and comparison purposes, we construct the shape of the
true Minkowski difference boundary to illustrate the relation-
ships between the actual KC C-space and the two proposed
lower bounds. All the experiments are implemented in Mat-
lab 2017a and run in an Intel Core i7-4790 CPU @ 3.60GHz.

7.1 Visualizations and Containment Checking Valida-
tions of the Two Lower Bounds

The Convex Lower Bound is construct by first finding
extreme points at each C-space axis as follows. For the two
translational axis (x and y), the extreme points are located at
xex = ±εa1 and yex = ±εa2 respectively. For the rotational
axis (θ), the extreme points can be found, in closed-form, as
θex = arctan(θy/θx), where

θx =
√

(1+ ε+α)(1+ ε−α)(1+α(1+ ε))(1−α(1+ ε))
(38a)

θy = αε(2+ ε) (38b)

(a) Convex lower bound by
10 extreme vertices. Blue
dots: the extreme configura-
tions; Shaded area: the convex
polyhedral lower bound.

-5 0 5

x

-4

-3

-2

-1

0

1

2

3

4

y

(b) Ellipses at the 10 extreme con-
figurations. Blue ellipses: ellipses
with the extreme configurations;
Red asterisks: centers of the blue
ellipses.

Fig. 4: Visualizations for the Convex Lower Bound.

Note that this solution can be found by equating the implicit
expressions of the two ellipsoids. Then, for the points with
largest magnitude, we apply the convex constraint optimiza-
tion with ξ = [θ,x,y]>. Note that we might get 8 results since
the cost function is quadratic, only 4 of them are valid by
plugging back into the constraint functions. Thus, in total,
we now get 10 extreme points to construct the polyhedron
subspace from the configuration space.

Figure 4a demonstrates the proposed convex lower
bound in C-space as a polyhedron made by 10 extreme ver-
tices, which are plotted as big dots, and Fig. 4b plots the
small ellipses in Euclidean space which are at the extreme
configurations. To check the validity of the convex lower
bounds, Fig. 5 shows the numerical results of the “point-in-
polyhedron” test for 1000 randomly sampled configurations
for Ea. Further, the ellipses whose configurations are inside
the polyhedron are checked for collision with the larger el-
lipse using Eq. (7) numerically. The configuration points
inside are indicated as plus signs while those in collision are
marked as dots. The corresponding ellipses with those safe
configurations are drawn in green whose center are marked
as red asterisks. This visualization, along with the collision
checking criteria, numerically verifies that the proposed con-
vex lower bound gives the collision-free space and the query-
ing procedure is numerically correct.

The same sampling and containment checking proce-
dure are performed for the geometric lower bound. Figure 6a
demonstrates the containment checking process with 1000
sampled configurations, and the numerical collision check-
ing are performed for each safe configuration for a double
confirmation. The blue dashed surface visualizes the shape
of the geometric lower bound, where we uniformly sample
the rotational angles between the maximum and minimum
allowable angles. The number of the angles does not play
an important role, since it does not affect the containment
checking process. Plus signs and dots indicates the collision-
free and in-collision configurations, respectively. Figure 6b
shows the safe poses of the smaller ellipsoid in Euclidean
space.
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(a) Convex lower bound with
sampled configurations. Dots:
outside the polyhedron; plus
signs: safe configurations in-
side the polyhedron.

(b) Ellipses with the safe config-
urations. Green ellipses: ellipses
with safe configurations; Red as-
terisks: centers of the green el-
lipses.

Fig. 5: Validation of the containment checking procedure for
Convex Lower Bound.

(a) Geometric lower bound
with sampled configurations.
Dots: outside the lower
bound; plus signs: safe con-
figurations inside the lower
bound.

(b) Ellipses with the safe con-
figurations inside the geometric
lower bound. Green ellipses: el-
lipses with safe configurations;
Red asterisks: centers of the
green ellipses.

Fig. 6: Validation of the containment checking procedure for
Geometric Lower Bound.

7.2 Volume Comparisons of Different Lower Bounds
Numerical computations of the volume for each method

are compared. And both the absolute and relative volumes
with respect to the actual KC C-space are calculated. For the
actual KC C-space, the volume is computed by integrating
the volume of the actual Minkowski difference between the
two ellipses over SO(2) using Eq. (5).

The experiments are performed by: (1) varying the in-
flation factor ε between Ea and Eb with the semi-axis lengths
fixed as a = [5,3.5]> and b = (1+ ε)a; and (2) varying the
aspect ratio α = a1/a2 for Ea with fixed longer semi-axis
length at a1 = 5 and inflation factor at ε = 0.08.

Figure 7 shows the volume comparisons of the KC C-
space for different methods, where Fig. 7a shows the ab-
solute volume and Fig. 7b shows the relative volumes com-
pared to the one generated by the Minkowski difference. The
convex lower bound occupies a slightly larger space when
the inflation factor is small, but becomes smaller as the infla-
tion factor increases. This indicates that the small angle as-
sumption and the first-order approximation works well when
the rotation is restricted, but drops accuracy when there is
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Fig. 7: Comparisons in 2D for the volumes of different lower
bounds of the KC C-space with different inflation factors.
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Fig. 8: Comparisons in 2D for the volumes of different lower
bounds of the KC C-space with different aspect ratios.

more freedom for Ea to rotate. The geometric lower bound,
on the other hand, performs more stable in terms of the rel-
ative volume. This shows that the polygon generated by
extreme points at each semi-axis is a good choice to ap-
proximate the Minkowski difference boundary in the shrunk
space.

Figure 8a compares the volume for different methods
with the aspect ratio of the ellipse varying at the range α ∈
[1.1,1.5], and Fig. 8b shows the relative volumes with the
one generated by Minkowski difference. As the aspect ratio
increases, the volume of allowable motion decreases, but the
relative volume for the convex lower bound increases. When
the aspect ratio is close to 1, the ellipses are close to circles,
and so Ea has more free space to rotate, which makes the
first-order approximation less accurate, and the convex lower
bound performs worse. But the geometric lower bound still
works much more stable with the changes of the aspect ratio.

8 Numerical Experiments in 3D
We further perform experiments for 3D ellipsoid case,

whose configuration space is now 6 dimensional, i.e ξ =
[ω1,ω2,ω3,x,y,z]> ∈R6. Since it is not possible to visualize
a 6D space, we only perform the query process for sampled
configurations and do the collision checking as a double con-
firmation for each method; and compute the volume of each
lower bound of KC C-space for comparisons.
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Fig. 9: Comparisons in 3D for the volumes of different lower
bounds of the KC C-space with different inflation factors.

8.1 Containment Checking Validations of the Two
Lower Bounds

The extreme points in translation axes are, similar to
2D, xextreme =±εa1, yextreme =±εa2 and zextreme =±εa3 re-
spectively. To find the extreme points in rotational axes, we
project the 3D space onto the x,y-, x,z-, y,z- plane. So the
problem shrinks to the 2D case of finding the extreme ro-
tational points at each plane, then the number of extreme
points is 12. The extreme points with largest magnitude can
be obtained by the constraint convex optimization from Eq.
(14), which gives 64 possible solutions and only 32 are valid.
Combined with the extreme points at each axis, in total, we
get 44 extreme points to create the 6D polyhedron. For nu-
merical validations, we also randomly sample 1000 config-
urations, and query those points in the 6D polyhedron. The
results are compared with the collision detection based on
the exact algebraic condition of containment to verify our
theory.

For the geometric lower bound, we first compute the
orientation of each of the 1000 sampled configurations, and
check whether the translation part is inside the polyhedron
lower bound for the Minkowski difference boundary. Fur-
ther validations of the exact algebraic condition of contain-
ment are performed for double confirmation.

8.2 Volume Comparisons of the Two Lower Bounds
The volumes of the lower bounds with respect to in-

flation factors and aspect ratios are compared. For the in-
flation factors, the semi-axis lengths of Ea are set to be
a= [4,2.5,2]>, and the inflation factors vary within the range
of ε ∈ [0.01,0.2]. Figure 9 shows the volume comparisons
between different lower bounds with respect to the inflation
factor. The geometric lower bound occupies a much larger
volume of the KC C-space than the convex lower bound.
This means that when there are more degrees of freedom,
the convex subset is no longer a good approximation of the
entire KC C-space.

As a comparison over different aspect ratios, we fix
the largest semi-axis of Ea as a1 = 4, and the vary the
other two semi-axis lengths by different aspect ratios, i.e.
a2 = a1/α1,a3 = a1/α2, where α1,α2 ∈ [1,1.2]. Figure 10
shows the comparison results. As the aspect ratios increase,
which gives more constraints for Ea to move, the volumes

(a) Absolute volume. (b) Relative volume.

Fig. 10: Comparisons in 3D for the volumes of different
lower bounds of the KC C-space with different aspect ratios.

decreases, but the relative volumes are stable for both of the
two lower bounds. Also, the geometric lower bound per-
forms much better than the convex lower bound.

9 Applications
The kinematics of containment for ellipsoids has a wide

range of real-life applications such as robot motion planning,
parts-handling mechanisms, automated assembly, etc. For
example, when planning a collision-free path for a mobile
robot, the convex subspace of the allowable motions gives a
solution for safe configuration connections; and when evalu-
ating the robustness of a robot manipulator, the volume of the
allowable motion space can be treated as a metric. Therefore,
this section discusses the potential applications of the pro-
posed theory, and provides some simple examples that might
lead to the future work.

9.1 Safe Configuration Connections for Robot Motion
Planning Problems

Generating a collision-free path is the essential goal and
priority in robot motion planning problems, with PRM, RRT
and their variants being efficient state-of-the-art planners.
Generally speaking, those planners randomly generates ver-
tices in the configuration space and checks for collisions in
the Euclidean space. Once a collision-free configuration is
found, it is stored in either a graph or tree data structure.
Then, to connect those valid configurations into edges, inter-
polations between two configurations are often performed.
Despite the fact of simplicity and effectiveness in practice,
such edge connection strategies are discrete, which signif-
icantly depends on the resolution of interpolations. There-
fore, it might not provide a safe guarantee for the edges, es-
pecially in the case of narrow passage. This is where the
propose “Convex Lower Bound” of the KC C-space fits in.

Consider a 2D path planning problem for a holonomic
elliptical robot, as illustrated in the introduction, and sup-
pose the robot is enlarged by a small inflation. Then the
actual robot can move slightly inside the larger ellipse, de-
noted here as a “guard”. Once the vertex generations are
performed with respect to the guard, all the allowable mo-
tions for the robot are guaranteed to be collision-free, and a
KC C-space can be generated accordingly. Here, the “Con-
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(a) The robot motions in the
Euclidean space.

(b) Vertex connections in the
configuration space.

Fig. 11: A demonstration of the configuration connection
strategy. The robot is moving from P1 to P2 while staying
fully contained in the larger ellipse (as shown in a). If the
KC C-space is convex (as shown in b), then the path is guar-
anteed to be collision-free.

vex Lower Bound” plays a necessary role to connect adjacent
configurations, since any path within the convex subspace is
guaranteed to be safe. If the two adjacent configurations are
both inside the convex lower bound, then connecting them
remains simply to find a straight path between them. This
provides a collision-free edge between the two configura-
tions without interpolations and thus any collision checking
calculation for the configurations between them. Figure 11
shows the idea of configuration connections within the con-
vex lower bound of the KC C-space.

The KC theories and the vertex connection strategy de-
scribed above have been applied and shown a success in 2D
motion planning problems in [24], where the robot is encap-
sulated by an ellipse. As an extension of the motion planner,
it is important to tackle the more difficult 3D problems with
the similar ideas. Therefore this article deals with the gen-
eral n-dimensional case (particularly verified when n = 3),
and will provide a more useful tool for the motion planning
algorithm in 3D.

9.2 Error Analysis for Robot Manipulators
The “pick-and-place” task is a famous problem for robot

manipulators, where the accuracy of handling parts requires
the control of errors from the joints. Because of the unavoid-
able errors propagated from the joints, the end effector of the
manipulator always has uncertainties. Suppose that the ob-
ject to be handled is enclosed by a 3D ellipsoid, with its cen-
ter of mass being a reference point. Then a body-fixed ref-
erence frame can be attached to that point, which describes
the configuration of the object, and all the possible config-
urations form a space of uncertain poses, denoted as “error
space”. In practice, the error space can be constructed nu-
merically by encapsulating an ellipsoid to the object at some
sample ending poses. The target placing location can be in-
scribed by another ellipsoid that is slightly larger than the
object, in order to give some clearance to put the object.

Therefore, for such a “pick-and-place” task, it is always
important to:
(I) determine whether the error space is fully contained in
the target area; and

Table 2: Numerical settings of the error analysis for a pick-
and-place task by KUKA LWR robot.

Description Numerical Data

Ellipsoidal object a0 = [0.2,0.15,0.1]>

Desired pose (R|t) =


1 0 0 0.5

0 −1 0 0

0 0 −1 0.15


Desired q = [−0.7768,0.1991,−0.1991,

joint angles 1.6981,−1.6241,1.9656,−0.9147]>

(II) assess the robustness of the robot that can deal with error
on its joints.

These two goals are closely related to the proposed the-
ory, where the “Geometric Lower Bound” can be applied
since it occupies larger volume in the C-space. The fol-
lowing example gives a numerical demonstration of how the
two goals are addressed by using the theory of KC C-space,
which is performed on a KUKA LWR robot shown in Fig. 1.

The simulation is performed by first setting a target pose,
and solving for the corresponding configuration in the joint
space [25]. The object is predefined with fixed semi-axes
lengths, and the target area is slightly larger with a fixed infla-
tion factor ε. To model the uncertainty, a zero mean Gaussian
white noise is added to each joint angle. The simulation is
repeated with different standard deviation of the noise, and at
each trial, 100 random poses of the object are placed accord-
ingly. Table 2 shows the numerical settings of this example.

Problem (I) can be addressed by directly querying
whether the error space is inside the target area. The sim-
ulation results demonstrate the correspondence between the
inflation factor and the uncertainty of each joint with differ-
ent noise levels. The inflation factor for the target area is
determined numerically as the minimum number that the ob-
ject is placed safely inside the target at all the possible poses.
This gives a guidance for the design of the control method to
limit the error within an acceptable range.

To assess how much error the robot manipulator can deal
with, as stated in problem (II), the concept of parts entropy
[26] is used here as an evaluation metric. The parts entropy
evolving in time t for one object is originally defined as

Sh(t) =−
∫

G
h(g; t) logh(g; t)dg. (39)

For this application where the target is fixed and the ob-
ject is moving, the distribution of the constrained motion of
the object can be computed as h(g) = 1/V , where V is the
volume of the allowable motion in PCG(3) [27]. The result-
ing parts entropy is therefore given by Sh = logV . Since the
volume is associated with the inflation factor, for each exper-
imental trial, the parts entropy is computed. Figure 12 plots
the relationships between the joint errors, inflation factors
and the corresponding parts entropy.
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Fig. 12: Simulation result for the pick-and-place task.

The trend of the data points gives the relationships be-
tween the joint errors and robustness of the manipulator. As
the error of each joint grows, the space to be placed needs
to be larger to accommodate the noise, and so the parts en-
tropy becomes larger also. In the real application, on one
hand, once the control parameters of the manipulator are
well-tuned, one can refer to this figure to determine how
large the target area is; while on the other hand, if the tar-
get space is chosen in advance, one can also read from the
figure and find the requirement for the errors of the joints,
which guides the control strategy.

10 Conclusion
The fields of automated assembly and robot motion

planning deal with many problems of determining whether
one object is contained in another, and how much space the
smaller object can move without any collision. This article
applies the concept of the Kinematics of Containment and
investigates a special case when the arena is slightly larger
than the moving object, both of which are ellipsoids. The
algebraic condition of containment is reviewed and the ge-
ometric condition of containment is then introduced. Based
on these two conditions, two lower bounds for the allowable
motion in the configuration space are proposed, denoted as
Convex Lower Bound and Geometric Lower Bound respec-
tively. Containment checking process for a specific con-
figuration and volume of motions within the lower bounds
are introduced. To verify the theory, implementations and
volume comparisons in 2D ellipses and 3D ellipsoids cases
are performed. The results show that the Geometric Lower
Bound occupies larger volume in the C-space than the Con-
vex Lower Bound when the smaller ellipsoid has more free-
dom to move, and its relative volume to the actual KC C-
space performs more stable with the change of the ellipsoid
shapes. Finally, applications on a configuration connection
strategy for path planning problems and a pick-and-place
task with uncertainties on the end effector of a manipulator
are studied and numerically demonstrated.
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Nomenclature
A The shape matrix for a general n-dimensional ellipsoid.
Cu(·) A family of expressions for the approximation of the

algebraic condition of containment, with u being the
parameters.

Ci(·) ith element in the family Cu(·).
Ea The moving smaller ellipsoid A.
Eb The fixed larger ellipsoid B.
E ′a Ea after the shrinking transformation.
E ′b Eb after the shrinking transformation.
I Identity matrix.
Ka The moving smaller convex body.
Kb The fixed larger convex body.
Ps

i ith vertex of a simplex in Rn, where i = 0,1, ...,n.
R A rotation matrix as an element in SO(n).
Sh(t) Time-evolving parts entropy for probability h(g; t).
T Transformation matrix for the shrinking operations.
V Volume of allowable motions.
a Semi-axis lengths of Ea, i.e. a = [a1,a2, ...,an]

>.
b Semi-axis lengths of Eb, i.e. b = [b1,b2, ...,bn]

>.
d∗i Extreme distance that a sphere can move along the ith

semi-axis of an ellipsoid while remain fully contained.
ei ith basis element of a Cartesian coordinate system.
f (·) Any general function.
g A rigid-body motion, i.e. g ∈ SE(n) .

= SO(n)oRn. Fur-
ther, the group action can be denoted as g ·K .

= RK + t.
h(g; t) Time-evolving probabilistic density function with

respect to rigid-body motion.
m Number of finite sampling points in Rn.
n Dimensions of the space.
n Unit normal vector of a surface.
q A vector of joint angles for a robot manipulator.
r Radius of E ′a, which is shrunk into a sphere.
t Translation element in a rigid-body motion in Rn.
u Explicit expression of an n-dimensional sphere with
‖u‖= 1.

x A general point in Rn.
x0 A specific point for containment checking in Rn.
xeb A point on the Minkowksi difference boundary.
Λ(·) A diagonal matrix in Rn×n.
Φ(·) Implicit expression of a surface in Rn.
A(·) Area of a planar body.
P (·) Perimeter of a planar body.
F (·) Surface area of bounding surface enclosing a spatial

body.
M (·) Integral of mean curvature of bounding surface en-

closing a spatial body.
V (·) Volume of a body in Rn.
α The aspect ratio of an ellipsoid.
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ε The positive inflation factor between two ellipsoids Ea
and Eb, i.e. b = (1+ ε)a.

ω An element in the Lie algebra so(n), i.e. ω = log∨(R) ∈
Rn(n−1)/2

ξ An element in the Lie algebra pcg(n), i.e. ξ =
[ω>, t>]> ∈ Rn(n+1)/2.

θexi Extreme angle that an ellipsoid can rotate around i-th
semi-axis of a larger ellipsoid without collisions.

ι(·) An indicator function.
∨ Vectorization operation for a skew-symmetric matrix.
·̂ Hat operation that converts a vector into a skew-

symmetric matrix.
‖ · ‖ Euclidean norm of a vector.
> Transpose of a matrix or vector.
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